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Abstract

We develop Markov topic models (MTMs), a
novel family of generative probabilistic models
that can learn topics simultaneously from multi-
ple corpora, such as papers from different con-
ferences. We apply Gaussian (Markov) random
fields to model the correlations of different cor-
pora. MTMs capture both the internal topic
structure within each corpus and the relationships
between topics across the corpora. We derive
an efficient estimation procedure with variational
expectation-maximization. We study the perfor-
mance of our models on a corpus of abstracts
from six different computer science conferences.
Our analysis reveals qualitative discoveries that
are not possible with traditional topic models,
and improved quantitative performance over the
state of the art.

1 Introduction

Algorithmic tools for analyzing, indexing and managing
large collections of online documents are becoming in-
creasingly important. In recent years, algorithms based
on topic models have become a widely used approach for
exploratory and predictive analysis of text. Topic models,
such as latent Dirichlet allocation (LDA) (Blei et al. 2003)
and the more general discrete component analysis (Buntine
2004), are hierarchical Bayesian models of discrete data
that use “topics”, i.e., patterns of word use, to explain an
observed document collection. Probabilistic topic models

∗Part of this work was done when Chong Wang was an intern
at Microsoft Research.
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have been extended and applied to a variety of applica-
tions, including collaborative filtering (Marlin 2003), au-
thorship (Rosen-Zvi et al. 2004), computer vision (Fei-Fei
and Perona 2005), web blogs (Mei et al. 2006) and infor-
mation retrieval (Wei and Croft 2006). For a good review,
see Griffiths and Steyvers (2006).

Most previous topic models assume that the documents are
part of a single corpus, and are exchangeable within it. For
many text analysis problems, however, this assumption is
not appropriate. For example, papers from different scien-
tific conferences and journals can be viewed as a collection
of multiple corpora, related to each other in as much as they
discuss similar scientific themes. Articles from newspapers
and blogs can also be viewed as multiple corpora, again re-
lated to each other in the overlap of their content.

In this paper we study the problem of modeling documents
from different corpora, respecting the boundaries of the
collections but accounting for and estimating the similar-
ities among their content. Our intuition is that although
documents across different corpora should not be assumed
exchangeable, they may show different degrees of relation-
ship. As an example, consider papers from multiple com-
puter science conferences. In general, papers from ICML1

are more likely to be similar to those in NIPS2, rather
than those in SIGIR3. However, some papers in ICML and
SIGIR—specifically those dealing with text processing and
information retrieval—can be very similar as well. As the
different topics can be considered high-level semantic sum-
marizations of a corpus from different aspects, our goal is
to discover the relations in the topic level among multiple
corpora. Thus, the models are able to discover how ICML,
SIGIR, and NIPS are correlated, rather than simply saying
that ICML and NIPS are more similar.

We introduce Markov topic models (MTMs), which use
Gaussian Markov random fields (GMRFs) to model the

1ICML: International Conference of Machine Learning
2NIPS: Neural Information Processing Systems
3SIGIR: International Conference on Research and Develop-

ment in Information Retrieval.
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Figure 1: Graphical model for MTMs with multiple cor-
pora. The left part illustrates high-level relations of topics
among multiple corpora and the right part illustrates the lo-
cal LDA model associated with each corpus.

topic relationships among multiple corpora. The mod-
els not only capture internal topic structures within each
corpus, but also discover the relations between the topics
across multiple corpora. Moreover, our approach provides
a natural way for smoothing the topic parameters using in-
formation from multiple collections.

We explain MTMs in detail in Section 2. In Section 3,
we present an efficient variational EM algorithm for model
learning. Finally, in Section 4 we present quantitative and
qualitative results on an analysis of the abstracts from dif-
ferent computer science conferences. Our analysis reveals
qualitative discoveries that are not possible with traditional
topic models, and improved quantitative performance over
the state of the art.

2 Markov Topic Models

The class of MTMs is an extension of LDA-based topic
models, where we apply a Markovian framework to the
topic parameters for different corpora. Figure 1 shows a
graphical representation of a Markov topic model with four
corpora. The topic parameters β1, . . . ,β4 are vertices in
a Markov random field that governs the relations between
corpora, each modeled by an LDA topic model. The stan-
dard topic model, for one single corpus, and individual
topic models, without any relations between corpora, are
both special cases that we will consider in our empirical
evaluation.

Before describing how an MTM addresses multiple cor-
pora, we describe the standard topic modeling assumptions
made for each. We assume that all V corpora cover the
same set of W terms (this is accomplished by considering
the union of terms across corpora). We will also assume
that all corpora contain the same number of topics K. Fol-
lowing Blei et al. (2003), each document in a corpus is rep-
resented as a random mixture over latent topics, where each
topic is characterized by a Multinomial distribution over
the terms. Let βv,k,1:W = [βv,k,1, · · · , βv,k,W ]T be theW -

dimensional vector of parameters for topic k, 1 ≤ k ≤ K
in corpus v, 1 ≤ v ≤ V .4

Given the (marginal) distributions over terms βv,1:K,1:W

for the K topics at corpus v, the generative process for that
corpus is defined by a local LDA model as follows:

For each document d, 1 ≤ d ≤ Dv in corpus v:

1. Draw θv,d ∼ Dir(αv).

2. For each word wv,d,n in the document d:

(a) Draw zv,d,n ∼ Mult(θv,d).
(b) Draw wv,d,n ∼ Mult(βv,zv,d,n,1:W ).

Note that αv and θv,d are both K-length vectors.5

We now turn to the topic distributions, where our goal is to
statistically tie these parameters across corpora. The stan-
dard representation of a Multinomial distribution is by its
mean parameters, with uncertainty about these parameters
represented by the conjugate Dirichlet distribution (Grif-
fiths and Steyvers 2006). We instead represent a Multi-
nomial topic-parameter distribution by its natural parame-
ters in the exponential family representation, and we model
uncertainty about this parameter by a Gaussian (Aitchison
1982). The w’th mean parameter of the W -dimensional
multinomial is denoted πw. The w’th natural parameter is
the mapping βw = log(πw/πW ), and the reverse mapping
is πw = exp (βw)/

∑
w exp (βw).

In a MTM, the (marginal) topic parameters associated with
local LDA models for different corpora are related, as the
graphical structure in Figure 1 suggests. We are therefore
considering a huge V ×K×W dimensional joint Gaussian
over all topic parameters in the model with mean m and
precision ∆ (The corresponding covariance matrix is Σ =
∆−1). That is,

β1:V,1:K,1:W ∼ NV×K×W (m,∆). (1)

We apply several constraints to this Gaussian. First, we
assume that the per-term parameters across the K topics
are mutually independent, as is standard for topic models.

Second, a topic is characterized by the terms with high
probabilities in the topic distribution over terms, and dif-
ferent topics will typically focus on different terms. Given
a particular topic we tie the mean for a particular term to
the same value across corpora. That is mv,k,w = mk,w for

4We use subscripts to indicate a particular value for a dimen-
sion (e.g. for a corpus, topic, or term) and colon notation (e.g.
1 : W ) to denote a range of values. We use various combinations
of subscripts and ranges to denote relevant sets of parameters.

5We don’t write αv and θv,d as αv,1:K and θv,d,1:K explic-
itly, since we don’t access αv,1:k and θv,d,k, 1 ≤ k ≤ K, indi-
vidually in the rest of the paper.
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all v, 1 ≤ v ≤ V . This constraint ensures that topics vary
smoothly and consistently across corpora.

Third, for simplicity, we assume that topic parameters as-
sociated with different terms are mutually independent.
In other words, the probability for a particular term in a
topic is only directly affected by the probabilities for the
same term across corpora. With this additional constraint,
the precision matrix ∆1:V,1:K,1:W is block-diagonal with
blocks ∆1:V,k,w, 1 ≤ k ≤ K and 1 ≤ w ≤W .

We further experimented with tying the blocks of preci-
sion parameters across words to the same value. That is,
∆1:V,k,w = ∆1:V,k for all w. We found that this con-
straint is too simplistic for the problem at hand. In this
case, the precisions associated with the many terms with
low probabilities—which in fact do not characterize the
topics—overwhelmed the estimation of the tied precisions.
Terms with higher topic parameter values are more impor-
tant to a topic. In order to ensure dominance of the topic
parameters for the characteristic terms, we instead scale the
tying by the weight of the expected number of observations
for each term. That is, the block of precision parameters as-
sociated with term w is scaled by the factor

gk,w = W
exp(mk,w)∑
w exp(mk,w)

. (2)

Note that
∑

w gk,w = W . If we set gw ≡ 1, we return to
the unscaled model.

Putting these three constraints together, the parameteriza-
tion of the distribution in (1) simplifies dramatically. The
distribution can now be represented by K independent
V × W -dimensional block-diagonal Gaussians with a V
dimensional block for each term w. Each block defines the
distribution for a term in a specific topic across corpora,
and is constrained as follows,

β1:V,1:K,1:W ∼
K∏

k=1

W∏
w=1

NV (mk,w11:V , gk,w∆1:V,k) ,

(3)
where 11:V denotes a V dimensional vector of ones.

Finally, in a Markov topic model, structural relations be-
tween corpora may restrict the distributions in (3) further.
For example, the corpora could be local news stories and
one could have reason to believe that topic parameters
evolve smoothly through a geo-spatial structure of neigh-
boring locations. The structure in this way defines the
Markov properties that the distribution for β1:V,k,w has to
obey, i.e., a GMRF. Alternatively to the a priori decided
structural constraints one could also choose to learn a struc-
ture via model selection methods, e.g., Meinshausen and
Bühlmann (2006).

In some modeling situations, we would like multiple cor-
pora to share a set of common “background” topics. Back-
ground topics can be modeled as isolated topics in the

GMRF representation. Notice that if all topics in the model
are background topics, the model simplifies to a standard
LDA model (with logistic normal smoothing of the topic
parameters). The generative process of MTMs with B
shared background topics is a simple extension of basic
MTMs. To generate a document, we follow the same pro-
cedure, as described in this section, except that we will now
for each corpus consider K + B topics instead of just the
K corpus specific topics.

3 Inference and Estimation

In this section, we present the approximate inference and
parameter estimation for MTMs. The models are learned
by the variational EM algorithm, which are described in
the following two sections.

3.1 Approximate Inference: E-step

The E-step computes the posterior distribution of the latent
topic structure conditioned on the observed documents, and
the current values for the GMRF parameterization of the
topic distributions (defined by m1:K,1:W and ∆1:V,1:K).
In a MTM, the latent topic structure comprises the per-
document topic proportions at each corpus θv,d, the per-
word topic assignments at each corpus zv,d,n, and the K
Markov structures of topics β1:V,k,1:W . The true posterior
is not tractable. We appeal to an approximation.

We derive an efficient variational approximation for
MTMs. The main idea behind variational methods is to
posit a simple family of distributions over the latent vari-
ables, indexed by free variational parameters, and to find
the member of that family which is closest in Kullback-
Leibler divergence to the true posterior. Good overviews
of this methodology can be found in Jordan et al. (1999)
and Wainwright and Jordan (2003). The fully-factorized
variational distribution over the latent variables is:

q(β, z,θ | β̂,φ,γ) =
K∏

k=1

W∏
w=1

q(β1:V,k,w|β̂1:V,k,w)×

V∏
v=1

Dv∏
d=1

q(θv,d|γv,d)
Nv,d∏
n=1

q(zv,d,n|φv,d,n)

 . (4)

The free variational parameters are the Dirichlets γv,d

for the per-document topic proportions, the multinomials
φv,d,n for each word’s topic assignment, and the varia-
tional parameters β̂1:V,k,w for β1:V,k,w. The updates for
document-level variational parameters θv,d and zv,d,n fol-
low similar forms of those in Blei et al. (2003), where the
difference is that we replace the topic distribution parame-
ters with their variational expectations.
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We now turn to variational inference for the topic distri-
butions. For clarity of presentation, we focus on a model
with only one topic and assume that each corpus has only
one document. These calculations are simpler versions of
those we need for the full model, but exhibit the essential
features of the algorithm. Generalization to the full model
is straightforward.

In this case, we only need to compute q(β|β̂). Note that
we drop some indices to make the following part easier
to follow. Specifically, we don’t need subscript k and d
anymore. Further simplifying notation, we use ∆ (∆̂) to
represent ∆1:V (∆̂1:V ).

We use the following variational posterior, for term w,

q(β1:V,w | β̂1:V,w) = ϕV

(
m̂1:V,w, ∆̂

)
, (5)

where β̂1:V,w = {m̂1:V,w, ∆̂} and ϕV

(
m̂1:V,w, ∆̂

)
indi-

cates the Gaussian density with mean m̂1:V,w and precision
∆̂. Unlike mw, which is the same for all corpora, m̂1:V,w

are free parameters to fit. ∆̂ is chosen to be the same for
all terms, which is required for the numerical stability. We
will see ∆̂ is able to preserve the structure of GMRF if ∆
represents a non-dense GMRF.

Recall that, for simplicity, we assume each corpus has only
one document. Let wv be the observed document for cor-
pus v. With the variational posterior distributions (5) in
hand, we turn to the details of posterior inference. Equiva-
lent to minimizing KL is tightening the bound on the likeli-
hood of the observations given by Jensen’s inequality (Jor-
dan et al. 1999),

log p(w1:V |m,∆)
≥ Eq [log p(w1:V |β)] +Eq [log p(β|m,∆)] +H(q)

= L(m̂, ∆̂;m,∆), (6)

where H(q) is the entropy of the variational distribution.
Now we expand the right side of Equation 6 term by term,

Eq [log p(w1:V |β)] =
∑

v

Eq [log p(wv|βv,1:W )]

=
∑

v

∑
w

nv,wEq

[
βv,w − log

∑
w

exp(βv,w)

]
≥
∑

v

∑
w

nv,wm̂v,w

−
∑

v

nv

(
log
∑
w

exp (m̂v,w) + Σ̂v,v

)
, (7)

where the count of term w in document wv is nv,w, nv =∑
w nv,w and Σ̂v,v is the entry (v, v) in matrix Σ̂ = ∆̂−1.

The last inequality comes from Jensen’s inequality.

Eq [log p(β|m,∆)] =
∑
w

Eq [log p(β1:V,w|m,∆)] ,

where

Eq [log p(β1:V,w|m,∆)] =

−V
2

log 2π +
V

2
log gw +

1
2

log |∆| − gw

2
Tr
(
∆Σ̂

)
−gw

2
(m̂1:V,w −mw1)T ∆(m̂1:V,w −mw1). (8)

H(q) =
VW

2
log 2π − W

2
log |∆̂|+ VW

2
. (9)

Now we proceed to compute the required derivatives for ∆̂
and m̂1:V,w. Now, we isolate the terms that contain ∆̂,

L
[∆̂]

= −1
2

∑
v

nvΣ̂v,v −
W

2
log |∆̂| − W

2
Tr
(
∆Σ̂

)
= −W

2

(
log |∆̂|+ Tr (∆ + diag(n)/W )

)
, (10)

where we have used
∑

w gw = W in the first “=” and n =
[n1, n2, . . . , nv]. The optimal value of ∆̂ is obtained by:

∆̂ = ∆ + diag(n)/W, (11)

where we use the following Equation 12:

log |X|+ Tr(X−1A) ≥ log |A|+ d, (12)

where bothX andA are d× d positive definitive matrixes
and the equality holds if and only if X = A. Equation 11
means that to obtain ∆̂, one only needs to add a diagonal
matrix diag(n)/W to ∆. Then if ∆ is sparse, ∆̂ preserves
the sparsity. Recall that nv is the counts of all terms in
the corpus v. Then if nv becomes larger (∆̂v,v becomes
larger and Σ̂v,v becomes smaller), the marginal variational
distribution of q(βv,w) tends to peak at m̂v,w.

Numerical approaches, such as L-BFGS (Liu and Nocedal
1989), can be used to estimate m̂1:V,w. After isolating the
terms that contain m̂1:V,w, we have

L
[m̂1:V,w]

=
∑

v

(
nv,wm̂v,w − nv log

∑
w

exp (m̂v,w)

)
−gw

2
(m̂1:V,w −mw1)T ∆(m̂1:V,w −mw1). (13)

By taking the derivative w.r.t. m̂1:V,w, we have

∂L
∂m̂1:V,w

= n1:V,w − ζ1:V,w

− gw∆ (m̂1:V,w −mw1) , (14)

where

ζv,w = nv
exp (m̂v,w)∑
w exp (m̂v,w)

. (15)
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3.2 Parameter estimation: M-step

Parameter estimation is done in the M-step that maximizes
the lower bound of the log likelihood of the data obtained
by the variational approximation in section 3.1. In other
words, variational E-step computes the variational poste-
rior q(β, z,θ) given the current settings of model param-
eter m1:K,1:W and ∆1:V,1:K . Then M-step finds the max-
imum likelihood estimate of these model parameters. The
variational EM runs alternatively between two steps until
the lower bound converges.

Recall that we consider a single topic model here. Let Σ =
∆−1. First, isolating the terms that contain ∆ from 6, we
have

L[∆]

=
W

2

(
log |∆| − Tr(∆∆̂−1)− Tr(∆M)

)
=
W

2

(
log |∆| − Tr(∆(∆̂−1 +M)

)
= −W

2

(
log |Σ|+ Tr(Σ−1(∆̂−1 +M)

)
, (16)

where

M =
1
W

∑
w

gw(m̂1:V,w −mw1)(m̂1:V,w −mw1)T . (17)

Applying the Equation 12 to Equation 16, we obtain the
optimal value of ∆ as:

∆−1 = Σ = ∆̂−1 +M . (18)

Clearly, M is a weighted combination by the relative im-
portance of terms, gw. According to the form of ∆̂ in equa-
tion 11, ∆ is somehow determined byM and the counts of
all terms (or expected counts for K topic models) for each
corpus.

Second, isolating the terms that containm from 6, we have

L[m] =
V

2

∑
w

log gw −
1
2

∑
w

gwfw, (19)

where

fw = (m̂1:V,w −mw1)T ∆(m̂1:V,w −mw1). (20)

To derive the derivative of mw, we first compute

∂gw′

∂mw
=
{
gw(1− gw/W ) if w′ = w
−gwgw′/W otherwise

By taking the derivative w.r.t. mw, we have

∂L[m]

∂mw
=

V

2
(1− gw)

− gw

2

(
fw + f ′w −

1
W

∑
w

gwfw

)
, (21)

Algorithm 1 IPF algorithm for ∆
Input: S, C and initial guess ∆0

Output: the optimal ∆opt

repeat
for a ∈ C do

∆aa ← S−1
aa + ∆aac∆−1

acac∆aca

end for
until converge

where f ′w = ∂fw/∂mw, a linear function of mw.

What if ∆ is sparse? If ∆ is sparse, i.e. ∆ represents
a non-dense GMRF, it becomes difficult to obtain an an-
alytical solution like equation 18. We then choose to use
iterative proportional fitting (IPF) (Ruschendorf 1995). We
outline the procedure as follows. Let S = ∆̂−1 + M .
Recall that L[∆] can be written as

L[∆] =
W

2

(
log |∆| − Tr(∆(∆̂−1 +M)

)
=

W

2
log |∆| − W

2
Tr(∆S). (22)

Viewing S as the sufficient statistics for the Gaussian dis-
tributionN (0,∆), this optimization falls in the IPF frame-
work. Let G be the graph that ∆ represents and C be the
collections cliques of G. For a ∈ C, ac (complement of
a) contains all the other vertices in G. Define ∆ab =
{∆i,j}(i,j)∈a×b, a, b ∈ C and Sab = {Si,j}(i,j)∈a×b,
a, b ∈ C. Algorithm 1 computes the optimal ∆ for equa-
tion 22.

4 Experimental Results

In this section, we demonstrate the use of MTMs on
a multi-corpora dataset constructed from several interna-
tional conferences held in the last few years. We report
predictive perplexity, compared to LDA models, and inter-
esting topical patterns. The Dirichlet parameter α is fixed
to be a symmetric prior (2.0) for every model and we use a
dense GMRF in the MTM.

4.1 Multi-corpora Dataset

We analyzed the abstracts from six international confer-
ences: CIKM6, ICML, KDD7, NIPS, SIGIR and WWW8.
These conferences were held between year 2005 and year
2008. The publications from these conferences cover a
wide range of topics related to information processing. For
example, CIKM mainly covers “databases”, “information

6ACM Conference on Information and Knowledge Manage-
ment.

7ACM International Conference on Knowledge Discovery &
Data Mining.

8International World Wide Web Conference.
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CONF. YEARS #DOCS #WORDS AVG.WORDS
CIKM 05-07 410 27609 67.3
ICML 06-08 447 28419 63.6
KDD 06-08 374 29179 78.0
NIPS 07-08 355 25031 70.5
SIGIR 06-08 573 34607 60.4
WWW 07-08 439 27718 63.1
TOTAL 05-08 2598 172563 66.4

Table 1: Information about the multi-corpora dataset. The
vocabulary size is 3733. Year: the years when the con-
ferences were held; #Docs: the total number documents
(abstracts of papers or posters); #Words: the total number
of words; Avg.Words: the average number of words in a
document.
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Figure 2: Per-word predictive perplexity comparison.
MTM and MTM-bg achieve their best performances when
the K is around 10, while LDA achieves its best perfor-
mance when K is around 20. MTM gives the lowest pre-
dictive perplexity around K = 10.

retrieval” and “knowledge management”, while SIGIR fo-
cuses on all aspects of “information retrieval”. WWW cov-
ers all aspects of World Wide Web, also including “web
information retrieval”. We expect that these conference
are correlated in some sense. For example, artificial in-
telligence and machine learning techniques are studied and
used in these areas, but in many different ways.

Abstracts from the same conference form a corpus. After
pruning the vocabulary by removing the functional terms
and the terms that occurred less than 5 times or in less than
3 documents, the entire dataset contains 170K words split
among the 6 corpora. The vocabulary size is 3733. Table 1
shows some statistical information of these corpora.

4.2 Quantitative: Predictive Perplexity

In our quantitative evaluation, we compare the following
models: a standard LDA model over all corpora (LDA),
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Figure 3: Per-word predictive perplexity comparison for
each corpus (Standard errors are not shown). As we can
see, MTM generally gives the best performance for all the
corpora.

individual LDA models for each corpus (LDA-idv)9), the
basic MTM (MTM), and an extension of the MTM with
one background topic (MTM-bg). We use 5-fold cross val-
idation for the evaluation. In each fold, 80% of the docu-
ments from each of the six conferences are chosen as the
training set and the remaining 20% is used as the testing
set. We compute the per-word predictive perplexity over a
test dataset Dtest as our test criterion. This perplexity is
defined as

perplexitypw = exp

{
−
∑

d∈Dtest
log p(wd|β)∑

d∈Dtest
Nd

}
, (23)

where β denotes all the estimated topic parameters in a
model.

For LDA, we use variational inference to approximate
log p(wd) with a lower bound (Blei et al. 2003). The sit-
uation is slightly different for the local LDA models in
the MTM and MTM-bg. For these local models, we in
fact learn variational posterior distributions for the topic
parameters–see Section 3.2–and we instead use the mean
values as the estimated parameterization. To be clear, for
corpus v, the topic parameter for the kth-topic is estimated
by β̃v,k,w ≈ exp(m̂v,k,w)/

∑
w exp(m̂v,k,w). The per-

plexity computation now proceeds as for a standard LDA

9We achieve this by removing all the edges in GMRF in the
MTM.
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model, except that we pick the estimated parameterization
according to the corpus of each document.

We studied the performance of the models for a wide range
of numbers of topics: K = 3, 5, 10, 20, 30, 40, 50, 60.
Figure 2 shows the overall performance and figure 3 shows
the performance over each corpus. (Note that lower per-
plexity is better.) We see that MTM and MTM-bg achieve
the best perplexity around K = 10, and LDA achieves its
best perplexity around K = 20. Most importantly, mod-
eling interrelated local corpora with MTM and MTM-bg
outperforms standard LDA and the individual LDA mod-
els, with MTM achieving the overall lowest predictive per-
plexity for this application.

All three models begin to overfit after K = 20. As K
increases, the overfitting effect of MTM and MTM-bg is
worse than for LDA. There is a natural explanation to this
fact. In MTM and MTM-bg, each corpus (modeled by a
local LDA model) has K topics, and these topics are tied
to the topics from other corpora. Therefore, the “effective”
number of topics for MTM or MTM-bg is larger than K,
though smaller than KV . For each individual corpus, from
figure 2, we can see similar results. (Note that for differ-
ence corpora, the numbers of topics for the best perfor-
mance are not the same. How to discover the right number
of topics for each corpus under the MTM framework is a
question for future work.)

Observe that MTM-bg always has higher perplexity results
than MTM, indicating that the background topic is not of
use in this data. We do not expect this finding to carry over
to different types of documents, but rather attribute it to
the fact that we have been analyzing abstracts, where the
writing style is quite constrained. In abstracts, people are
only allowed to use a few concise sentences to outline the
whole paper, and these sentences must therefore be very
relevant to the main content. It is unlikely that all abstracts
would share the same background information.

4.3 Qualitative: Topic Pattern Discovery

The analysis in this section is based on the 10-topic MTM
of the previous section. In Figure 4, we visualize the corre-
lation coefficients (scaled) for two topics using the covari-
ance matrixes from the variational posterior distributions.
The whiter the square is, the more correlated the two con-
ferences are on this topic. Figure 4(a) and 4(b) correspond
to Table 2 and Table 3, where we visualize the topics us-
ing top 12 terms due to the limited space. In Figure 4(a),
the topic is about clustering, where almost all the confer-
ences have “clustering, data, similarity” in top 12 terms.
However, different conferences may have different aspect
on this clustering topic. Among these, for example, we see
that ICML and NIPS are highly correlated, they also share
“graph, kernels, spectral”, while CIKM and WWW are also
quite correlated on “pattern, mining”. Another example is

CIKM ICML KDD NIPS SIGIR WWW

CIKM

ICML

KDD

NIPS

SIGIR

WWW

(a)

CIKM ICML KDD NIPS SIGIR WWW

CIKM

ICML

KDD

NIPS

SIGIR

WWW

(b)

Figure 4: Correlation coefficient analysis (rescaled). (a)
The correlation coefficient analysis of the topics in Table
2. (b) The correlation coefficient analysis of the topics in
Table 3.
shown in Table 3, the topic is about learning & classifica-
tion. ICML and NIPS are mainly on the theoretical side
(NIPS also has image classification papers though), while
CIKM, SIGIR and WWW are on the application side. KDD
seems right in the middle.

5 Related Work

Previous work, including dynamic topic models
(DTM) (Blei and Lafferty 2006) and continuous time
dynamic topic models (cDTM) (Wang et al. 2008), has
studied the problem of topic evolution when time informa-
tion is available. If documents from the same time period
are considered as a corpus, then DTM and cDTM are
within the framework of MTM by designing a precision
matrix that only allows dependence along the time line.

Several topic models have considered meta information,
such as times, locations or authors, in estimating top-
ics (Wang and McCallum 2006; Mei et al. 2006, 2008;
Rosen-Zvi et al. 2004). In principle, corpus assignment
can be considered a type of meta information. However, all
of these previous models assume a single set of global and
independent topics. Methods such as these do not provide
a mechanism for modeling topic relations among multiple
corpora, as we have developed here for MTM.

6 Conclusions

In this paper, we developed MTMs for simultaneously
modeling multiple corpora. Across corpora, MTMs use
GMRFs to model the correlations between their topics.
These models not only capture the internal topic structures
within one corpus, but also discover the relationships of the
topics across many.

While here we examined MTMs in the context of LDA-
based document models, we emphasize that the MTM
framework can be integrated into many other topic models.
The inference and estimation procedures provide a general
way of incorporating multiple corpora into topic analysis.
In future work, we plan to study other datasets, e.g., local
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topic: clustering
CIKM ICML KDD NIPS SIGIR WWW
clustering clustering clustering clustering clustering spam
data graph data graph semantic clustering
similarity data mining similarity similarity similarity
algorithms kernels patterns data filtering mining
algorithm constraints algorithm cluster based detection
patterns relational frequent clusters document algorithms
time based algorithms algorithms cluster extraction
mining similarity clusters matching information based
method pairwise set spectral spam data
set cluster cluster kernels clusters web
series spectral graph shape algorithm patterns
based algorithms pattern set items existing

Table 2: The corresponding topic visualization of Figure 4(a).

topic: learning & classification
CIKM ICML KDD NIPS SIGIR WWW
classification learning model learning classification learning
learning model data model text models
text data classification data image topic
features models models models features images
training algorithm learning image learning classification
models bayesian labels inference labeled image
classifier approach training bayesian data text
model using labeling structure training topics
image structure labeled features using approach
approach semi-supervised algorithm classification classifier method
categorization markov text using algorithm features
based multiple multiple images segmentation framework

Table 3: The corresponding topic visualization of Figure 4(b).

news articles, and explore other possible representations of
relationships between topics.
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