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Abstract

Labels are often expensive to get, and this
motivates active learning which chooses the
most informative samples for label acquisi-
tion. In this paper we study active sensing
in a multi-view setting, motivated from many
problems where grouped features are also ex-
pensive to obtain and need to be acquired
(or sensed) actively (e.g., in cancer diagno-
sis each patient might go through many tests
such as CT, Ultrasound and MRI to get valu-
able features). The strength of this model is
that one actively sensed (sample, view) pair
would improve the joint multi-view classifi-
cation on all the samples. For this purpose
we extend the Bayesian co-training frame-
work such that it can handle missing views
in a principled way, and introduce two crite-
ria for view acquisition. Experiments on one
toy data and two real-world medical problems
show the effectiveness of this model.

1 Introduction

Labeled data can be expensive to obtain in a vari-
ety of machine learning problems. Active learning ad-
dresses the problem of efficiently choosing data sam-
ples to be labeled in order to improve overall learn-
ing performance. From a cancer diagnosis perspec-
tive, this is equivalent to choosing patients to do a
biopsy such that the tumor is correctly diagnosed (be-
nign/malignant). In this paper we consider a related
but different problem, now motivated by the fact that
features may also be expensive to obtain (much in the
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Figure 1: Settings for active learning (left) and ac-
tive sensing with 2 views (right). The “L” column
denotes the labels (outputs). Light blue blocks denote
observed data, and red blocks denote missing data.

same way as labels). More generally we consider sub-
sets of features; we refer to them as views. In cancer
diagnosis, features could come from different imaging
modalities such as CT, Ultrasound and MRI. In prob-
lems where there exist different views of the data, some
of these views could be missing for certain samples
(due to, e.g., high cost or limited budget). We call
active sensing the process of efficiently choosing what
views and samples to additionally acquire to improve
the overall learning performance (cf. Fig. 1).

Examples of the active sensing setting described above
are abundant. For land mine detection in a sensor net-
work, we may have different types of sensors (as dif-
ferent views) deployed at one location, but some sen-
sors may not be available for all locations due to high
cost. So the interest is to decide which location and
which type of sensor we should additionally consider to
achieve better detection accuracy. In the medical diag-
nosis scenario, our motivating application, specialists
rely on different sets of medical factors, such as demo-
graphics, imaging, and bio-markers, to make clinical
decisions. A patient does not undergo all possible tests
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at once (due to various side effects such as radiation
and contrast), but these tests are selected based on the
evidence collected up to a particular point. 1

It is seen that standard active learning would not work
in this setting. When some views are missing, one so-
lution is to learn a model using those samples for which
all the views are available. Another solution is to im-
pute the missing features using the observed features.
However, as the main motivating factor for multi-view
learning approaches, the information provided by the
combined set of views (taken at once) is in general
larger than that provided by any algorithm that con-
siders the views separately (e.g., views can reinforce
each other).

We provide two approaches for efficiently choosing
the (sample, view) pair, based on the mutual infor-
mation (involving various random variables) and on
the predictive uncertainty, respectively. We formal-
ize these within the recently proposed Bayesian co-
training framework (Yu et al., 2008), with an impor-
tant extension to account for data with missing view
information. This provides an undirected graphical
model representation of the active sensing problem.
We also provide methods for addressing density mod-
eling and approximated inference sub-problems aris-
ing in this probabilistic setting. Empirical studies us-
ing one toy data and two real-world medical problems
clearly show the effectiveness of this model.

The rest of the paper is organized as follows. We sur-
vey the related literature in Section 2. The Bayesian
co-training model is extended to handle missing views
in Section 3. Section 4 describes two methods for ac-
tive sensing, i.e., deciding which incomplete samples
should be further characterized, and which sensors
should be deployed on them. Experimental results are
provided in Section 5. We conclude with a brief dis-
cussion and future work in Section 6.

2 Related Work

Active sensing provides a new scenario in active data
acquisition. The present formulation benefits from
previous work in experiment design (Lindley, 1956;
Fedorov, 1972), active learning (MacKay, 1992; Se-
ung et al., 1992), and sensor placement (Krause et al.,
2008). While there exist a considerable body of work
on the general notion of active data acquisition, to the
best of our knowledge, this is the first paper to focus
on this notion of active sensing—feature acquisition—
specifically for improving multi-view learning jointly
for all unlabeled samples.

Feature acquisition was addressed in, e.g., (Melville
1This is normally referred to as differential diagnosis.

et al., 2004; Bilgic and Getoor, 2007), but there is
a clear difference to active sensing. Previous fea-
ture acquisition only considers one sample at a time,
i.e., when one sample is in consideration, the other
samples are not affected. But in active sensing, one
actively acquired (sample, view) pair will improve the
classification performance of all the unlabeled samples
via a co-training setting. A related yet different prob-
lem was considered to identify the optimal spatial lo-
cations for placing a single type of sensor to model spa-
tially varying phenomena (Krause et al., 2008); how-
ever, this work addressed the use of a single type of
sensor, and did not consider the scenario of multiple
views.

Co-training (Blum and Mitchell, 1998) is based on
the idea that the error rate on unseen test samples
can be upper bounded by the disagreement between
the classification-decisions obtained from independent
characterizations (views) of the data (Dasgupta et al.,
2001). Recently, Bayesian co-training (Yu et al., 2008)
was proposed which defines an undirected graphical
model for co-training and provides a principled solu-
tion to multi-view learning. However it can only han-
dle data without missing views, and in this paper we
extend it such that it provides the basis for active sens-
ing.

One of our criteria for active sensing is to choose
the (sample, view) pair which provides the maximum
mutual information (MI) (Cover and Thomas, 1991)
about the non-parametric classification function. In
order to accomplish this, we use the D-optimality cri-
terion, while other choices such as A-optimality and
E-optimality are also available (Flaherty et al., 2006).
Apart from MI maximization, other objective criteria
for active learning include uncertainty sampling (Lewis
and Gale, 1994; Cohn et al., 1996) and performance
optimization (e.g., (Roy and McCallum, 2001)).

In this paper we make two principal contributions.
First, we extend Bayesian co-training to allow for miss-
ing views, accommodating incompletely characterized
objects. Deploying additional sensors to characterize
an object would naturally help improving classifica-
tion accuracy. Our second contribution is to identify
which objects should be characterized using additional
sensors in order to improve the classification of all the
unlabeled data. This is significantly different from pre-
vious feature acquisition work.

3 Bayesian Co-Training with Missing
Views

Bayesian co-training defines an undirected graphical
model for semi-supervised multi-view learning (Yu
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Figure 2: Bayesian co-training factor graphs for (a) one-view and (b) two-view problems, with missing views.
Observed variables are marked as dark/bold, and unobserved ones are marked as red/non-bold, including func-
tions f1, f2, fc (blue/non-bold). Unobserved variables in a dotted box (such as x(1)

j ) are potential observations
for active sensing. All labels y are denoted as observed in the graph, but this is not required.

et al., 2008). The original work assumes that the input
data are complete, i.e., all the views are observed for
every data sample, but for active sensing we need to
define a co-training strategy for data with incomplete
or missing views. In this section we extend Bayesian
co-training to the case where there are missing (sam-
ple, view) pairs in the input data. The same notations
as in (Yu et al., 2008) are preserved unless otherwise
mentioned.

Suppose we have m different views of a set of n data
samples. Let x(j)

i ∈ Rdj be the features for the ith
sample obtained using the jth view, where dj is the
dimensionality of the input space for view j.2 Let each
view j be observed for a subset of nj samples, and let Ij
denote the indices of these samples in the whole sample
set. Finally let y = (y1, . . . , yn)> denote the labels
for these samples. In this paper we consider a binary
classification scenario where each yi ∈ {−1, +1}.
In Bayesian co-training, let fj denote the latent func-
tion for the jth view, and fj ∼ GP(0, κj) be its GP
prior in view j. The consensus function fc is defined
to ensure conditional independence between the out-
put y and the m latent functions {fj} (Yu et al., 2008)
(cf. Fig. 2 for the factor graph). The undirected graph-
ical model leads to the following joint probability:

p (y, f c, f1, . . . , fm)

=
1
Z

n∏

i=1

ψ(yi, fc(xi))
m∏

j=1

ψ(f j)ψ(f j , f c), (1)

where f c = {fc(xi)}n
i=1 and f j = {fj(x

(j)
i )}i∈Ij are

2Note that subscripts index the data sample, and su-
perscripts (with round brackets) index the view.

column vectors of length n and nj , respectively. Note
that unlike in (Yu et al., 2008), f j is only realized on
a subset of samples (as denoted in Ij) and is of length
nj (instead of n). The within-view potential ψ(f j) is
defined via the GP prior,

ψ(f j) = exp(−1
2
f>j K−1

j f j),

where Kj ∈ Rnj×nj is the covariance matrix for view
j; the consensus potential ψ(f j , f c) describes how each
latent function f j is related to the consensus function
f c, which we define as follows:

ψ(f j , f c) = exp
(
−‖f j − f c(Ij)‖2

/
2σ2

j

)
. (2)

Note that f c(Ij) takes the length-nj subset of vector
f c with indices given by Ij . The idea here is to define
the consensus potential for view j using only the data
samples observed in view j. As in (Yu et al., 2008),
σj > 0 quantifies how far the latent function f j is
apart from f c, and the output potential ψ(yi, fc(xi))
is defined as λ(yifc(xi)) with logistic function λ(z) =
(1 + exp(−z))−1.

3.1 Co-Training Kernel with Missing Views

As in (Yu et al., 2008), we can also derive a co-
training kernel Kc by integrating out all the latent
functions {f j} in (1). It is calculated as Kc = Λ−1

c ,
Λc =

∑m
j=1 Aj , and each Aj is a n× n matrix as

Aj(Ij , Ij) = (Kj + σ2
j I)

−1, and 0 otherwise. (3)

That is, Aj is an expansion of one-view information
matrix (Kj + σ2

j I)
−1 to the full size n × n, with the
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other (unindexed) entries filled with 0. It is easily seen
that such a kernel Kc is indeed positive definite as long
as each one-view kernel Kj is positive definite. Very
importantly, we note that one additional observation
of a (sample, view) pair will affect all the elements of
the co-training kernel. This is exactly the property we
would like to have in active sensing.

3.2 Co-Regularization with Missing Views

To be complete we also give the marginalization result
for co-regularization. Ignoring the output y for the
moment, integrating out the consensus view f c leads
to the following joint prior:

p(f1, . . . , fm) =
1
Z

exp

{
− 1

2

m∑

j=1

f>j K−1
j f j

− 1
2

∑

j<k

∑

x∈Ij∧Ik

[
[fj(x)− fk(x)]2

σ2
j σ2

k

/ ∑

I`3x

1
σ2

`

] }
.

The first part regularizes the functional space of each
view, and the second part constrains that every pair
of views need to agree on the outputs for co-observed
samples (inversely weighted by view variances and the
sum of precisions of the views in which the sample is
observed).

4 Active Sensing

In active sensing, we are interested in selecting the
best unobserved (sample, view) pair for sensing, or
for view acquisition, which will improve the overall
classification performance. In this section we mainly
discuss an approach based on the mutual information
framework, which measures the expected information
gain after observing an additional (sample, view) pair.
Another approach based on the predictive uncertainty
is also briefly discussed in Section 4.5. In the following
let DO and DU denote the observed and unobserved
(sample, view) pairs, respectively.

4.1 Laplace Approximation

To calculate the mutual information we need to cal-
culate the differential entropy of the consensus view
function f c. With co-training kernel and the logistic
regression loss, Laplace approximation can be applied
to approximate the posterior distribution of f c as a
Gaussian distribution. In particular, let the prior of
the consensus view take the GP prior with co-training
kernel, i.e., f c ∼ N (0,Kc). With the logistic regression
loss, the a posteriori distribution of f c, p(f c|DO,y), is
approximately

N (f̂ c, (∆post)−1), (4)

where f̂ c is the maximum a posteriori (MAP) esti-
mate of f c, and the posterior precision matrix ∆post =
K−1

c + Φ, with Φ the Hessian of the negative log-
likelihood. It turns out that Φ is a diagonal matrix,
with Φ(i, i) = ηi(1 − ηi) where ηi = λ(f̂ c(xi)). The
differential entropy of f c under this Laplace approxi-
mation is

H(f c) = −n

2
log(2πe)− 1

2
log det(∆post),

where det(·) denote matrix determinant.

4.2 Mutual Information for Active Sensing

Remind that x(j)
i denote the features in the jth view

for the ith sample. In active sensing, the mutual in-
formation (MI) between the consensus view function
f c and the unobserved (sample, view) pair x(j)

i ∈ DU

is the expected decrease in entropy of f c when x(j)
i is

observed,

I(f c,x
(j)
i ) = E[H(f c)]− E[H(f c|x(j)

i )]

= −1
2

log det(∆post) +
1
2
E [log det(∆x(i,j)

post )],

where the expectation is with respect to p(x(j)
i |DO,y),

the distribution of the unobserved (sample, view) pair
given all the observed pairs and available outputs.
∆x(i,j)

post is the a posteriori precision matrix, derived

from Section 4.1, after one pair x(j)
i is observed.

The maximum MI criterion has been used before to
identify the “best” unlabeled sample in active learning
(MacKay, 1992). Here we adopt this criterion and
choose the unobserved pair which maximizes MI:

(i∗, j∗) = arg max
x

(j)
i ∈DU

I(f c,x
(j)
i )

= arg max
x

(j)
i ∈DU

E [log det(∆x(i,j)
post )]. (5)

4.3 Density Modeling

In order to calculate the expectation in (5), we need
a conditional density model for the unobserved pairs,
i.e., p(x(j)

i |DO,y). This of course depends on the type
of the features in each view, and in this paper we use a
special Gaussian mixture model (GMM). Let the joint
input density be

p(x(1), . . . ,x(m)) = p(y = +1)p(x(1), . . . ,x(m)|y = +1)

+ p(y = −1)p(x(1), . . . ,x(m)|y = −1),

and each conditional density takes a component-wise
factorized GMM form, e.g., for positive class,

p(x(1), . . . ,x(m)|y = +1) =
∑

c

π+
c

∏

j

N (x(j)|µ+(j)
c ,Σ+(j)

c ).
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Here µ
+(j)
c and Σ+(j)

c are the mean and covariance for
view j in component c, and π+

c > 0,
∑

c π+
c = 1 are

the mixture weights for the positive class. Note that
although the conditional density for each mixture com-
ponent is decoupled for different views, the joint condi-
tional density is not.3 Under this model, the joint den-
sity p(x(1), . . . ,x(m)) is also a GMM, and any marginal
(conditioned on y or not) density is still a GMM,
e.g., p(x(j)|y = +1) =

∑
c π+

c N (x(j)|µ+(j)
c ,Σ+(j)

c ).

Now it is easy to calculate p(x(j)
i |DO,y). Let x(O)

i be
the set of observed views for xi, we need to distinguish
two different settings. When the label yi is available,
e.g., yi = +1, we have

p(x(j)
i |DO,y) = p(x(j)

i |x(O)
i , yi = +1)

=
∑

c

π+(j)
c (x(O)

i ) · N (x(j)
i |µ+(j)

c ,Σ+(j)
c ), (6)

which is again a GMM model, with the mixing weights

π+(j)
c (x(O)

i ) = π+
c

∏
k∈O N (x(k)

i |µ+(k)
c ,Σ+(k)

c )

p(x(O)
i |yi = +1)

.

When the label yi is not available, we need to integrate
out the labeling uncertainty and compute

p(x(j)
i |DO,y) = p(x(j)

i |x(O)
i )

= p(yi = +1)p(x(j)
i |x(O)

i , yi = +1)

+ p(yi = −1)p(x(j)
i |x(O)

i , yi = −1),

which is a GMM model as well, as seen from (6).

4.4 Expectation Calculation

We are now ready to compute the expectation in (5).
The a posteriori precision matrix after one (sample,
view) pair x(j)

i is observed, ∆x(i,j)
post , is calculated as

∆x(i,j)
post = Φ + (Kx(i,j)

c )−1

= Φ + Ax(i,j)
j +

∑

k 6=j

Ak, (7)

where Kx(i,j)
c and Ax(i,j)

j are the new Kc and Aj ma-
trices after the new pair is observed. Based on (3),
to calculate Ax(i,j)

j we need to recalculate the kernel

for the jth view, Kj , after an additional pair x(j)
i is

observed. This is simply done by adding one more row
and column to the old Kj as:

Kx(i,j)
j =

[
Kj bj

b>j aj

]
,

3A straightforward EM algorithm can be derived to es-
timate all these parameters. When labels are only available
for a very limited number of samples, one might assume a
full generative GMM model neglecting the dependency on
labels (instead of a conditional GMM model).

where aj = κj(x
(j)
i ,x(j)

i ) ∈ R, and bj ∈ Rnj has the
`th entry as κj(x

(j)
` ,x(j)

i ). Then from (3), the non-zero
part of Ax(i,j)

j is calculated as

(
Kx(i,j)

j + σ2
j I

)−1

=
[
Kj + σ2

j I bj

b>j aj + σ2
j

]−1

(8)

=
[
Γj + λjΓjbjb>j Γj −λjΓjbj

−λjb>j Γj λj

]
,

using the block-matrix inverse formula, where Γj =
(Kj + σ2

j I)
−1 and λj = 1

aj+σ2
j−b>j Γjbj

.

As seen from (7) and (8), it is difficult to directly cal-
culate the expectation in (5). Since for any matrix
Q, E [log det(Q)] ≤ log det(E [Q]) due to the concav-
ity of log det(·), we alternatively take the upper bound
log det(E [∆x(i,j)

post ]) as the selection criteria. From (7)
and (8), this reduces to computing E[λj ],E[λjbj ] and
E[λjbjb>j ], where the expectations are with respect

to p(x(j)
i |DO,y), a GMM model (cf. Section 4.3). In

general one needs to calculate these expectations nu-
merically, as different kernel functions lead to different
integrals. As another approximation one might assume
each of the GMM component is a point-mass such that
the mean is used for the calculation.

4.5 Discussion

The mutual information based approach directly mea-
sures the expected information gain for every (sample,
view) pair. A different (and simpler) approach is based
on the predictive uncertainty, in which the most uncer-
tain sample (after the current classifier is trained) is
selected for view acquisition (see also (Melville et al.,
2004)). This uncertainty (i.e., predictive variance) is
estimated as the diagonal entries of the a posteriori co-
variance matrix (∆post)−1, as seen from (4). However
it is not clear what view to acquire for this sample (if
more than one view is missing for the sample). The
advantage of this approach is that no density modeling
is necessary for unobserved views.

5 Empirical Study

For the following experiments we are given a classifica-
tion task with missing views. At each iteration we are
allowed to select an unobserved (sample, view) pair
for sensing (i.e., feature acquisition). We compare the
classification performance on unlabeled data using the
following three sensing approaches:

• Active Sensing MI: The pair is selected based on
the mutual information criteria (5).
• Active Sensing VAR: A sample is selected first
which has the maximal predictive variance and has
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Figure 3: Toy example for active sensing (left). Big red-square/blue-triangular markers denote +1/− 1 labeled
points; remaining points are unlabeled. Data are sampled from two Gaussians with mean (2,−2), (−2, 2) and
unit variance. After “hiding” some of the features the data look like (middle) with removed features replaced
with 0. Comparison of active sensing with random sensing is shown on the right.

missing views, and then one of the missing views is
randomly selected for sensing.
• Random Sensing: A random unobserved (sample,
view) pair is selected for sensing.

After the pair is acquired in each iteration, learning
is done using the Bayesian co-training model. Note
that for all the three approaches, the acquired (sam-
ple, view) pair will affect all the samples in the next
iteration (via the co-training kernel). In active sens-
ing with MI, we use EM algorithm to learn the GMM
structure with missing entries, and the GMM model
is re-estimated after each pair is selected and filled in
(this is fast thanks to the incremental updates in the
EM algorithm).

5.1 Toy Data

We first illustrate active sensing with a toy example.
Fig. 3 (left) shows a well separated two-class prob-
lem which was used in (Yu et al., 2008), with big
squares and triangles representing the labeled positive
and negative samples, and black dots denoting unla-
beled points. To simulate our active sensing experi-
ment, we randomly “hide” one of the two features of
each sample with 40% probability each, and with 20%
probability observe both features. The final incom-
plete training data are shown in Fig. 3 (middle) with
the incomplete samples shown along the first or second
axis. It can be seen that only 2 fully observed positive
and negative samples are available. For active sensing
MI we use the Gaussian kernel with width 0.5, and let
the GMM choose the number of clusters automatically.
Standard transductive setting is applied where all the
unlabeled data are available for co-training kernel cal-
culation. In Fig. 3 (right) we compare active sensing
with random sensing, using the Area Under the ROC
Curve (AUC) for the unlabeled data. The x-axis la-

bels each acquired pair in order. This indicates that
active sensing is much better than random sensing in
improving the classification performance. The Bayes
optimal accuracy (reachable when there is no missing
data) is reached by the 16th query by active sensing
whereas random sensing improves much slower with
the number of acquired pairs. The two active sensing
algorithms show similar results.

5.2 Survival Prediction for Lung Cancer

We consider 2-year survival prediction for advanced
non-small cell lung cancer (NSCLC) patients treated
with (chemo-)radiotherapy. This is currently a very
challenging problem in clinical research, since the
prognosis of this group of patients is very poor (less
than 40% survive two years). Currently most mod-
els in the literature rely on various clinical factors of
the patient such as gender and the WHO performance
status. Very recently, imaging-related factors such
as the size of the tumor and the number of positive
lymph node stations are shown to be better predictors
(Dehing-Oberije et al., 2009). However, it is expensive
to obtain the images and to manually measure these
factors. Therefore we study how to select the best set
of patients to go through imaging to get additional fea-
tures. All the relevant factors are listed in Fig. 4 (left)
with short descriptions. These factors are all known
to be predictive (Dehing-Oberije et al., 2009). From
Bayesian co-training point of view we have 2 views,
with 3 features in the first (clinical feature) view and
2 features in the second (imaging-based feature) view.

Our study contains 233 advanced NSCLC patients
treated at the MAASTRO Clinic in the Netherlands
from 2002 to 2006, among which 77 survived 2 years
(labeled +1). All the features are available for these
patients, and are normalized to have zero mean and
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Features for NSCLC 2-years Survival Prediction

Feature Description View

GENDER 1-Male, 2-Female 1st
WHO WHO performance status 1st

FEV1
Forced expiratory volume

1st
in 1 second

GTV Gross tumor volume 2nd

NPLN
Number of positive

2nd
lymph node stations
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Figure 4: Experiments on NSCLC survival prediction. The features for the 2 views are listed in the left table,
and the performance comparison of active sensing and random sensing is shown in the right figure. As baselines,
training with full features (i.e., no sensing needed) yields 0.73; training with mean imputation (i.e., using the
mean of each feature to fill in the missing entries) yields 0.62.

unit variance before training. We randomly choose
30% of the patients as training samples (with labels
known), and the rest 70% as unlabeled samples. We
use linear kernel for each view, and let the GMM al-
gorithm automatically choose the number of clusters.
As the active sensing setup, the first view is available
for all the patients, and the second view is available
only for randomly chosen 50% patients. So our goal
is to sequentially select patients to acquire features in
view 2, such that the overall classifier performance is
maximized. Fig. 4 (right) shows the test AUC scores
(with error-bars) of active sensing and random sensing,
with different number of acquired pairs. Performance
is averaged over 20 runs with randomly chosen 50%
patients at the start. Active sensing in general yields
better performance, and is significantly better after 5
first pairs. Active sensing based on MI and VAR again
yield very similar results. We have also tested other
experimental settings, and the comparison is not sen-
sitive to this setup.

5.3 Pathological Complete Response (pCR)
Prediction for Rectal Cancer

Our second example is to predict tumor response after
chemo-radiotherapy for locally advanced rectal can-
cer. This is important in individualizing treatment
strategies, since patients with a pathologic complete
response (pCR) after therapy, i.e., with no evidence
of viable tumor on pathologic analysis, would need
less invasive surgery or another radiotherapy strat-
egy instead of resection. Most available models com-
bine clinical factors such as gender and age, and pre-
treatment imaging-based factors such as tumor length
and SUVmax (from CT/PET imaging), but it is ex-
pected that adding imaging data collected after ther-

apy would lead to a better predictive model (though
with a higher cost). In this study we show how to
effectively select patients to go through pre-treatment
and post-treatment imaging to better predict pCR.

We use the data from (Capirci et al., 2007) which con-
tains 78 prospectively collected rectal cancer patients.
All patients underwent a CT/PET scan before treat-
ment and 42 days after treatment, and 21 of them had
pCR (labeled +1). We split all the features into 3
views (clinical, pre-treatment imaging, post-treatment
imaging), and the features are listed in Fig. 5 (left).
For active sensing, we assume that all the (labeled or
unlabeled) patients have view 1 features available, 70%
of the patients have view 2 features available, and 40%
of the patients have view 3 features available. This is
to account for the fact that view 3 features are most
expensive to get. All the other settings are the same
as the NSCLC survival prediction study. Fig. 5 (right)
shows the performance comparison of active sensing
with random sensing, and it is seen that after about
18 pair acquisitions, active sensing is significantly bet-
ter than random sensing. Active sensing MI and VAR
share a similar trend, and the MI based active sensing
is overall better than VAR based active sensing. The
difference is however not statistically significant. The
optimal AUC (when there are no missing features) is
shown as a dotted line, and we see that with around
34 actively acquired pairs, active sensing can almost
achieve the optimum. It takes however much longer
for random sensing to reach this performance.

6 Conclusion and Future Work

This paper makes two primary contributions. First
of all, for the purpose of active sensing we extend
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Features for pCR Prediction in Rectal Cancer

Feature Description View

GENDER 1-Male, 2-Female 1st
AGE Age in years 1st
STAGE Staging of cancer 1st

LENGTH Max diameter of the tumor 2nd
SUVPre SUVmax before treatment 2nd

∆SUV
Absolute difference of SUVmax 3rd
before and after treatment

RI Response Index, ∆SUV in % 3rd
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Figure 5: Experiments on pCR prediction for rectal cancer. The features for the 3 views are listed in the left
table, and the performance comparison of active sensing and random sensing is shown in the right figure. As
baselines, training with full features (i.e., no sensing needed) yields 0.74 (shown as a dotted line); training with
mean imputation (i.e., using the mean of each feature to fill in the missing entries) yields 0.55 (not shown).

the Bayesian co-training framework to handle real-life
data where objects are often incompletely character-
ized, i.e., only a subset of views are available for cer-
tain samples. Second, we introduce two approaches
for active sensing, based on mutual information and
predictive variance, respectively, which automatically
decides which (sample, view) pair should be acquired
further to get the most benefit. Note that one actively
acquired pair would improve the overall multi-view
classification performance for all the unlabeled sam-
ples. Experimental results on two real medical classi-
fication problems indicate that the proposed approach
is indeed more accurate than randomly acquiring un-
observed (sample, view) pairs.

As part of the future work, we will take into account
the actual cost involved in the view acquisition for bet-
ter decision making. This might be important, for
instance, in medical diagnosis where Ultrasound and
MRI induce quite different costs. Another step is to
combine active sensing with active learning, such that
one can query both an unobserved (sample, view) pair,
and an unobserved label.
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