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Abstract
The majority of data science and machine learning tutorials focus on generating models:
assembling a dataset; splitting the data into training, validation, and testing subsets; build-
ing the model; and demonstrating its generalizability. But when it’s time to repeat the
analogous steps when using the model in production, issues of high latency or low through-
put can arise. To an end user, the cost of too much time spent featurizing raw data and
evaluating a model over features can wind up erasing any gains a smarter prediction can
offer.

Exposing concurrency in these model-usage steps, and then capitalizing on that concur-
rency, can improve throughput. This paper describes how the actor framework can be used
to bring a predictive model to a real-time setting. Two case-study examples are described:
a live deployment built for the freelancing platform Upwork, a simple text classifier with
accompanying code for use as an introductory project.

1. The practice of machine learning

Imagine a firm has brought a specialist in machine learning onto a new project. The firm
wants a product which can provide a quality prediction about some regular event happening
in the course of the firm’s business. The specialist is handed a pile of relevant historical
data, and asked: Among the new customers seen for the first time today, who’s likeliest to
be a big spender? Or: of all the credit card transactions processed in the last hour, which
are likeliest to be fraudulent? Or: when a customer enters a query into our website’s Search
tool, what results should we be returning?

The specialist starts with the first of two phases of their project. They have to identify
a model that can be expected to fit predictions over both the historical data and in a way
that will generalize to new data. The familiar version of the steps involved in supervised
learning:

1. Identify raw source data, and break it down into distinct observations of the pattern
you’re trying to learn and predict.

2. For each raw observation, produce a p-dimensional vector of features and a scalar label.

3. Split this collection into disjoint training, validation, and testing sets.
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4. For each candidate model (and/or each of the model’s hyperparameters ), fit model
parameters to the training vectors and labels, and evaluate the goodness of fit by
performing prediction of the validation labels given the validation vectors

5. Select the model whose validation-set predictions came closest to the mark. Use it to
then make predictions over the test set. Report this test set performance to vouch for
the predictive model you’ve generated and selected.

Note that this first phase doesn’t carry an explicit component of time urgency. All else
equal, a typical specialist will prefer that the full sequence complete in six hours, and six
minutes is better still. But if it takes six days instead, nothing fundamental to this first
phase has been threatened. The task – finding a model that generates acceptably accurate
predictions on new data – is accomplished.

The second phase is to actually put the model’s capabilities to use. Given new events
and observation that need scoring by the model – is this new customer likely to be a big
spender? is this credit card legitimate? – the above featurization and scoring routines need
to be run. And in this real-world deployment, it’s likely that there are also some strict
constraints on how long it takes this sequence to run. All predictions go stale, and some use
cases need to act on a prediction within milliseconds of the event itself.

There are some cases where these latency constraints aren’t binding. The exact same
featurization and scoring routines used to generate and validate the model can be re-run
fast enough on new data to produce useful predictions. But this paper focuses on the cases
where timeliness requirements exclude the use of the same software developed in the first
phase as the backbone of the second phase. What can a lone machine learning specialist do
to retool their sequence to run in a production environment?

1.1. Moving to production

If the original software, used to generate and validate the predictive model, is suffering from
too-low throughput in producing new predictions, one path forward could be to incorporate
more concurrent processing. The three steps to prediction (gathering raw materials, featur-
izing those materials into vectors, scoring the vectors) can transition from a serial sequence
to a pipeline.

Figure 1 demonstrates a modification of the scoring task flow, producing predictions of
N events in a sequential and a concurrent pattern. This pipeline offers a few advantages.
Scores are produced with less delay after the raw material gathering (useful in case the
information in that material is at risk of going stale or out of date).

Most importantly, this redesign provides a clear path forward to speed-up in completing
all N scoring tasks. If a system can genuinely perform the concurrent tasks in parallel, as a
multicore system might, one can easily picture adding “clones” of this pipeline simultaneously
processing more and more partitions of the N events.

1.2. Complexity costs

It can be difficult to put together, from scratch, a high-performance concurrent computing
system. It’s easy to fall into traps of false sharing, deadlocking, and other difficulties. It’s
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Figure 1: (a) The scoring procedure performed serially. (b) The individual tasks for each
event to be scored performed in a concurrent pipeline.

not impossible, but it’s definitely tricky and time-consuming, and building a new concurrent
system for a single project might fail a cost-to-benefits ratio test.

Fortunately, lots of great work has produced platforms to take this plan to a truly wide
scale implementation. Apache Storm (The Apache Software Foundation, 2015b), Apache
Spark (especially its Spark Streaming library) (The Apache Software Foundation, 2015a),
and Twitter’s Heron (Kulkarni et al., 2015) all try to distribute this kind of event-driven
computing across multiple machines to ensure the highest possible throughput.

Unfortunately, they’re complicated systems. Familiarizing oneself with the API, and
managing the underlying infrastructure, requires considerably more expertise above and
beyond that of our original model in Figure 1(a). If spreading the load over multiple machines
is the only way to meet the required service level of the prediction system, this additional
complexity will have to be met with additional resources: maybe the firm will have to start
allocating more engineers in addition to more hardware, to what originally was a project of
just the single machine learning specialist.

This paper is here to specifically recommend a midpoint between a from-scratch con-
current framework and the mega-scale offerings. The actor framework offers a simple way
to reason through concurrent problems, while still being flexible enough to accommodate a
variety of approaches to any one problem.

From here, this paper presents a case study where an actor framework was key to bringing
a predictive model to production. It interleaves this story with a summary of what an actor
framework entails, as well as a description of the framework implementation in the Scala
library Akka. It concludes with a reiteration of the advantages (and disadvantages) the actor
framework offers and a discussion of why comfort with actors can help machine learning
specialists with their work and careers.
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2. Case Study: Predicting worker availability at Upwork

Upwork is an online labor platform, connecting freelancers and clients for internet-enabled
remote work. There are several patterns for how these work arrangements are struck1, but
one important avenue involves a client using the platform’s search engine to discover new
freelancers they think would be well suited to the project the client has in mind.

When the client issues a query, e.g., “java developer”, “restaurant menu design”, “par-
alegal”, they expect to see a result set filled with freelancers with relevant experience who
are likely to perform well on a new assignment. The client can then invite any of these
freelancers to interview for an open position.2

This adds a third requirement to the query’s result set: listed freelancers should not only
be relevant and high-performing, they should also be receptive to an interview invitation
at the time of the query. If the system returns a list of the same ten excellent freelancers
for every search for “wordpress template,” it’s likely that those ten freelancers will wind
up deluged with opportunities they’re too busy to fill, and for the freelancers ranked just
outside that top ten being disproportionately starved for job invitations.

There was an existing heuristic in place to try and capture this, but it was felt a learned
model trained on historical data could easily provide higher accuracy.

2.1. Building the predictive model

If the system should only show freelancers available to interview, how should we estimate
freelancer availability? This question can be gently reformulated into a question of binary
classification: “If Freelancer X were to receive an invitation to interview right now, does
their recent use of the site suggest they would accept that invitation, or would they instead
reject or ignore it?”

A logistic regression model can help answer this question. Each invitation sent from a
client to a freelancer was treated as an example event, labeled as a positive class member
if it was accepted and negative otherwise. (There were roughly one million such examples
within a relevant and recent time frame.) The goal would be to link the freelancer’s recent
site activity – within the month prior to receiving the invitation – to the outcome of an
acceptance or rejection of the invite.

The raw materials, and derived features, came in four main varieties:

Job application/invitation history In the previous day, how many job applications did
Freelancer X create? How many invitations did X receive? How many of each were
cancelled by the client, or by the freelancer? How many of each led to filled jobs?
Answer these questions again for the time periods: two days, four days, seven days,
14 days, and 30 days.

1. Freelancers can send proposals for a client’s publicly posted job opening; groups of freelancers form
agencies to share many client workloads; clients and freelancers, already working together outside the
platform, moving their relationship onto Upwork to take advantage of the site’s payment processing,
escrow, or other services

2. Upwork sees the two actions happen in both orders. Sometimes, clients post a job opening, then go
searching for freelancers to invite to interview; other times, the client starts by searching and browsing
freelancer profiles, and creates the job post once they see someone they’d like to work with.
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Hours worked How many hours has Freelancer X billed to any client in the preceding
day? two days? ... thirty days?

Server log history In the previous one/two/.../thirty days, how many times has Free-
lancer X visited pages under the “Job Search,” “Message Center,” and “View Contractor
Profile” sections of Upwork.com?

User profile How many jobs has the freelancer worked in each of Upwork’s job categories
(e.g., Web Development, Graphic Design, Data Entry)? What is their stated preference
for receiving more invitations at this time (“I am available,” vs. “I’m not currently
available”)?

These raw materials (along with a few other sources) could be harvested from three
services: a Greenplum relational database for assembling job application and hours-worked
data, and an Amazon S3 bucket for the server logs. The user-profile information was an
interesting case: the historical state of the profile was logged to a table in Greenplum with
each invitation, but a freelancer’s present profile state required a call to an internal service’s
REST API.

Assembling these feature vectors and performing a training-validation-testing split led to
a model with a test-set AUC metric of around 0.81. This sufficiently outperformed the ex-
isting heuristic’s accuracy, and the model was deemed ready for production use. Freelancers
would start receiving scores from the model, putting them into buckets of low, medium, and
high availability (i.e., high propensity to accept an invitation to interview at this time).

2.2. Throughput constraints in production

An interesting aspect of this modeling task is that hour to hour, any individual freelancer’s
availability score might swing considerably. Someone who looked dormant three hours ago
could decide to log back onto Upwork and start engaging in eager-for-work behavior, sending
out job applications and polishing their profile. Another freelancer’s behavior might cause
a sudden transition from looks-available to looks-overbooked. The more frequently each
freelancer could be scored, the more faith Upwork could have that the bucketing used by
the search engine was using reliable information. Keeping freshness of the raw material data
under four hours was considered a reasonable goal.

Generating those scores meant providing the routine with those four families of raw ma-
terial. When developing the model using historical data, all four could be gathered and
processed in bulk, in advance of the featurization and scoring routines. In a production set-
ting, this remained the case for data from S3 and Greenplum: all that relevant information,
for all registered freelancers, could be collected in under an hour.

However, user profiles posed a challenge: given other demands placed on it by other
Upwork.com systems, the internal user profile service could only afford to return one user
profile every 20 milliseconds to the availability scorer. Any more rapid than that threatened
the health of the service. That placed a maximum of 4.3 million scores to be produced per
day, one for each up-to-date profile request. With six million total registered freelancers,
this put the squeeze on the preliminary goal of every-freelancer, every-four-hours.
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2.3. Concurrency under the actor model

A direct re-use of the routines in the model generation software would involve:

1. bulk collection of the job application and worked-hours data,

2. bulk collection of the server log data,

3. bulk collection of as many user profiles as possible before the data from (1) and (2)
could be considered stale,

4. featurization and scoring of each freelancer whose profile was collected in step (3).

Steps (1) and (2) combine to a total of about 40 hours of collection and processing time
when performed sequentially. Keeping a buffer of 5 minutes aside for Step (4)’s vectorization
and scoring (and saving those scores to disc), that means a 4 hour cycle will involve 195
minutes of harvesting user profiles in Step (3). That means an amortized rate of 146,250
scores produced per hour.

The fastest rate possible (one every 20 ms, as limited by the necessary contributions
from the user profile service) would mean 180,000 scores per hour. That leaves room for a
potential 23% improvement in throughput by moving to a system where user profiles are
harvested concurrently alongside the other routines. This potential upside increases as the
stringency of the data-freshness guarantee is increased from four hours, to two hours, to one.

2.3.1. The actor model

The actor model makes it easy to architect a concurrent version of the availability system.
An actor framework involves three components:

The Actors A collection of objects, each holding a message queue, some private state, and
some private methods. This state can only be updated, and these methods can only
be called, by the actor object itself, and in response to receiving a message from some
other actor. The response an actor takes to each message is fully completed before it
begins its response to the next message.

The Messages Simple, immutable objects that contain information or instructions one
actor wants another actor to notice.

The Execution Context The harness which ensures that each dispatched message reaches
the right actor queue, the computation each actor calls for is completed in order, and
that the overall workload is balanced as evenly as possible over the available hardware
resources. This system also provides methods for creating new actors, as well as for
setting up a timed schedule to dispatch messages at regular intervals to any actor.

This message-passing version of concurrency avoids the race conditions and other diffi-
culties that can arise from many execution tasks sharing mutable state. Anything mutable is
isolated inside individual actors, who only share with each other immutable message objects.

The actor model rose to prominence in an artificial intelligence context thanks to work
from Hewitt, Bishop, and Stieger. (Hewitt et al., 1973) It’s true that compared to classical
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imperative programming “it imposes a major mind shift in software design.” (Korland, 2011)
But it’s decidedly less intense than the large-scale, distributed alternatives described above,
and lets novice or over-worked developers avoid the easy pitfalls of writing one’s own stateful
multithreading routines.

2.3.2. The concurrent availability system

The family of actors defined for a concurrent availability prediction system uses a hub-and-
spoke arrangement, with a single lynchpin actor in charge of featurization from a freelancer’s
raw data. Three “historian” actors are in charge of polling the higher-bandwidth Greenplum
and S3 sources, and another is in charge of (rapidly) polling the user profile service; all
four send their findings back to the central featurizer for storage as state variables. A sixth
actor receives (freelancer ID, feature vector) pairs from the featurizer, applies the model,
and stages these scores to be bulk uploaded back to Greenplum, where the rest of Upwork’s
freelancer search systems can make use of it.

In more detail:

The featurizer The central hub of the actor system: the featurizer keeps track of each
freelancer’s worked-hours, job application, and server log information, updating this
background data whenever an update is received from a Historian. Whenever a free-
lancer’s information is received from the User Profile Fetcher – that profile holding the
final piece of information needed for a complete feature set – the featurizer sends the
freelancer’s feature vector to the scorer-exporter.

The historians Each is responsible for polling a different kind of raw material resource.
The execution context is given a timing schedule for each, and periodically sends them
“poll for new data now.”

Worked-hours historian Fetches worked-hours records from Greenplum at a sched-
ule of once per hour, forwarding the results found to the featurizer.

Job applications historian Fetches the job application record from Greenplum at
a schedule of once per hour, forwarding.

S3 historian Fetches the latest server logs at a schedule of once per hour, forwarding
them to the featurizer.

User profile fetcher Every 20 milliseconds, requests and processes user profile data
from Upwork’s internal service, passing the results back to the featurizer.

The scorer-exporter Waits to receive from the featurizer a freelancer ID, and a vector of
features capturing that freelancer’s recent use of the Upwork platform. It then applies
the (previously trained) logistic regression model to the features, generating a “odds-of-
accepting-an-interview-invitation” score for that freelancer. The scorer-exporter stores
as many of these as it receives in one hour, then uploads the large collection all at
once to a table in Greenplum where it can be read by the rest of the Upwork backend
systems and incorporated into search rankings.

This family of actors, along with arrows indicating the principal flow of information from
raw material, to feature vector, to availability score, is depicted in Figure 2.
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Figure 2: The actor system for freelancer availability scoring. Each actor can be thought
of as a mailbox, queuing up messages, with a little brain, holding memories and
reacting to those messages one by one.

By dividing responsibility for the full scoring pipeline across several distinct workers,
the execution context is able to take their concurrent operations and schedule them for the
operating system to perform. When the underlying machine offers multiple CPUs, this can
mean the actors operate simultaneously, allowing for the latency-reducing speed ups we were
hoping for. With single-file processing of messages we avoid problems where, e.g., one step
in the scoring procedure tries to read its stored worked-hours data at the same time another
step is updating that same data – trying to square this circle from scratch can easily result
in code that deadlocks, livelocks, or just plain drops data.

Figure 3(a) depicts the order of operations from our original, sequential scoring system,
where raw material gathering, vectorization, and scoring happen one after another, repeating
once an hour. Time spent gathering the Greenplum and S3 resources takes away from the
rate-limited use of the user profile service.

Figure 3(b) demonstrates the concurrent availability scorer run on a four core machine.
The execution context is able to provide parallel execution of actor routines, meaning the
user profile historian never 3 needs to take a break to let the other raw material harvesters
use the execution thread. The rate of availability score production can be maxed out by
taking full, round-the-clock advantage of the rate-limited resource.

The actually-implemented availability system, now running as a service on Upwork’s
backend, achieves this same rate of freelancer score production.

3. This may be a little generous: the Java runtime environment itself may preempt the execution of one
or more actor’s operations in order to execute services like garbage collection.
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(a) Sequential operation

(b) Parallel operation

Figure 3: The computation cycle for availability in its sequential and concurrent formula-
tions, on a four-CPU system. When data is kept to within one hour of freshness,
the actor model provides an approximately 3.75-fold increase in throughput.
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3. Case study: a text classification API

As a hands-on demonstration of powering a machine learning service with the actor frame-
work, a repository of code has been put online as a companion to this paper at https:
//github.com/bgawalt/papis-akka-demo. (Gawalt, 2015) The project is an online learner,
a text classifier trained one example at a time to distinguish between positive and negative
class documents (e.g., spam versus valid messages).

It is implemented in Scala, making use of the Akka library (Typesafe, Inc., 2015) to
handle the execution context and actor classes, and the Spray library (The Spray project,
2015) to connect that execution context with HTTP requests from the outside world.

3.1. Scala, Akka, and Spray

Scala is a high level language, designed to allow for easy productivity when developing in
both functional programming and object-oriented styles. The Scala language allows devel-
opers to define traits, ways to partially define class features. Declared attributes can be
implemented right along with the trait definition itself, or they can defer the implementa-
tion until the trait is finally used to build a legitimate class.

They’re much like Java’s interfaces, with the added benefit of mixin capabilities – sev-
eral traits can be defined independently with their own methods and fields, then combined
arbitrarily to create new subclasses sharing the union of their attributes.

The Akka library provides a trait called Actor. To define an actor, declare a new
class which extends Actor, which will require you to implement the method receive. This
method is of type PartialFunction[Any, Unit], exactly as we’d expect: the actor can
receive any kind of message, and then does something. The match keyword makes it easy
to encode reactions to different expected message types, and provide a default “unexpected
command” behavior.

Spray then builds on Akka by offering a trait of Actor which can handle HTTP requests
and responses in the same asynchronous, message-passing style. It’s a convenient way to
interact with an actor system.

3.2. Text classification servers

The demo project involves two approaches to the same binary classification task, imple-
mented as two separate API servers: LoneLearnerServer and PackLearnerServer. These
APIs are backed by two types of actor: the request parser and the learner.

The request parser, one per server, inherits from Spray’s HttpServiceActor, whereby
HTTP requests to a particular socket can be forwarded to the parser’s receive method as
a RequestContext object. This request context contains useful information, like the URL
of the resource requested, and has a complete method which should be invoked to send a
response to the client via Spray’s HTTP mechanisms.

The parser can decode the requested URL and then forward instructions, along with
the context to be completed, to the second actor in the system: the learner. Via this API,
the learner can perform six tasks: score a new document based on the current model state;
update the model state when given a document and a positive or negative class label; report
its current state as a string; reset itself to it’s original, zero-observations state; synchro-
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nize with fellow learners by transmitting information about recently-seen observations, or
incorporating that information received from another learner.

The LoneLearnerServer has only two actors: one parser, listening to HTTP on a partic-
ular socket, and a learner, waiting to receive new documents to judge or labelled documents
to learn from. Figure 4 lays out the basic execution flow. There’s a risk that too many re-
quests received in rapid succession could cause steadily longer delays between client request
and response.4

Figure 4: A text classifier system with a lone learner. The learner, with its more compu-
tationally intensive tasks, is a potential bottleneck, and latencies can increase as
requests pile up.

To break this bottleneck, PackLearnerServer has a single parser working with N learner
actors. Each HTTP request parsed can be routed to a single learner, selected in a one-after-
the-other sequence, or selected pseudorandomly (such as by taking the request’s hash value
modulo N), spreading the computational load and increasing the odds that the selected
learner fielding the request will be unoccupied and ready to work at the time of the request.

The drawback is that when a new labelled document is observed, it can only update the
model housed in the selected learner’s state. Predictions made by the other learners in the
pack won’t be able to benefit from the knowledge gained from the update. To patch this,
learners are able to send each other update messages after a certain number of observations.
This synchronization pulls them offline, unable to respond to new requests until the updates
are incorporated.

The machine learning specialist can judge how to trade more frequent updates (and po-
tentially longer delays between request and response) for greater fidelity to the full collection
of observed documents. Figure 5 depicts an example of this system’s execution of requests.

4. In practice, it seems fairly rapid even with this obvious bottleneck – on a two-core machine, the system
was able to process 20,000 predict-then-update cycles in around 60 seconds, or about 1.5 milliseconds
per instruction to the learner.
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Figure 5: A text classifier system with multiple learners. Request latency can be reduced
by sharing the load, though a trade-off has to be made: learners can stay in
the dark about recent observations for longer periods (possibly issuing noisier
predictions), or more time can be spent synchronizing models between learners
(possibly delaying new requests). Note the order in which requests are completed
may not match the order in which they were issued.

4. Conclusion

Data science and machine learning are growing as fields and professions, expanding into
new domains. That necessarily means engaging firms who find the whole field unfamiliar;
and unfamiliarity can inspire risk aversion. These firms in particular are going to greatly
appreciate it when a specialist demonstrates a production-ready model at minimal cost,
including infrastructure costs, engineering person-hour costs, and maintenance costs.

Exposing concurrency yields efficiencies and reduces costs for any service. Machine learn-
ing and data science products benefit especially from the actor framework. It is straightfor-
ward to take the standard procedure – gather raw data, produce features from that data,
and score those features – and define a collection of actors. That simplicity generates savings
in engineering and maintenance efforts.

Upwork was able to take an underperforming sequential software routine, port the par-
ticular components to one actor each, and build a system which achieves the maximum
possible scoring throughput with much-improved “freshness” guarantees.

The true benefit of the actor framework is its simplicity. The LoneLearnerServer text
classification API, built on the well-designed Spray and Akka libraries, is under 250 lines of
code. And other languages offer their own actor libraries.
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For Java, there’s the Quasar platform (Parallel Universe Software Co., 2015), as well as a
Java API for Akka. For C++, there’s CAF, The C++ Actor Framework (Charousset et al.,
2014). For Python, Pykka (Jodal, 2015) (though to take advantage of parallelism, your
program may benefit from Jython (Python Software Foundation, Corporation for National
Research Initiatives, 2015) and it’s lack of global interpreter lock). For Ruby, consider
Celluloid (Arcieri and Keme, 2015) (as with Python, consider JRuby (Nutter et al., 2015)
or Rubinius (Phoenix and Shirai, 2015) to enable thread-level parallelism).

Having the simple version of a predictive API up and running makes it easy to expose
and capitalize on greater amounts of concurrency:

• Which actor routines can swap their I/O library for a non-blocking equivalent (freeing
thread resources for another actor to use)?

• Can the workload be smoothed by managing duplicate actors (as with PackLearnerServer
in our example), or by spawning new actors on-demand?

• More ambitiously, can we start building distributed networks of actors, passing info
and sharing tasks?

For smaller scale operations, where the actor framework and its concurrency is overkill.
Some machine learning applications will need only produce new predictions infrequently
enough – a new batch overnight, say – to allow for the exact same routines to be used “in
the wild” as were used for designing, validating, and testing the model “in the lab.” The
machine learning specialist might be of more use moving on to generate a new better model
in a new domain, than to rig up a highly concurrent solution.

As the load increases on an actor framework increases, greater care and maintenance
is required. Without backpressure, overstuffed mailboxes can cause fatal out-of-memory
errors. Timed-out operations need to recover gracefully. As these problems mount, the
value proposition of large-scale platforms like Spark and Storm become more compelling.

But for that wide and intermediate range of problems between these scenarios, the actor
framework helps the machine learning specialist deliver great results. It is capable enough
to support medium-scale applications, especially given the affordability and ubiquity of
four, eight, sixteen core systems. It is simple enough that the specialist can assemble the
concurrent solution on their own: a production deployment from the same person who
designed the model.

Empowered, self-sufficient data scientists are going to continue to push the frontiers of
their profession. They should consider adding the actor framework to their toolkit.
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