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Abstract

Sketching and dimensionality reduction are
powerful techniques for speeding up algo-
rithms for massive data. However unlike
the rich toolbox available for the `22 dis-
tance, there are no robust results of this na-
ture known for most popular information-
theoretic measures.

In this paper we show how to embed in-
formation distances like the χ2 and Jensen-
Shannon divergences efficiently in low dimen-
sional spaces while preserving all pairwise
distances. We then prove a dimensionality
reduction result for the Hellinger, Jensen–
Shannon, and χ2 divergences that preserves
the information geometry of the distribu-
tions, specifically, by retaining the simplex
structure of the space. While our first re-
sult already implies these divergences can be
explicitly embedded in the Euclidean space,
retaining the simplex structure is important
because it allows us to do inferences in the
reduced space.

We also show that these divergences can be
sketched efficiently (i.e., up to a multiplica-
tive error in sublinear space) in the aggregate
streaming model. This result is exponen-
tially stronger than known upper bounds for
sketching these distances in the strict turn-
stile streaming model.

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 41. Copyright
2016 by the authors.

1 Introduction

The space of information distances includes many dis-
tances that are used extensively in data analysis, for
example, the well-known Bregman divergences, the α-
divergences, and the f -divergences. These divergences
are used in statistical tests and estimators [7], as well
as in image analysis [23], computer vision [16, 21], and
text analysis [11, 12]. They were introduced by Csiszár
[10], and, in the most general case, also include mea-
sures such as the Hellinger, Jensen–Shannon (JS), and
χ2 divergences. In this work we focus on a subclass of
the f -divergences that admits embeddings into some
(possibly infinite-dimensional) Hilbert space, with a
specific emphasis on the Jensen–Shannon (JS) diver-
gence.

To work with the geometry of these divergences ef-
fectively at scale and in high dimensions, we need al-
gorithmic tools that can provide provably high qual-
ity approximate representations of the geometry. The
techniques of sketching, embedding, and dimensional-
ity reduction have evolved as ways of dealing with this
problem.

A sketch for a set of points with respect to a prop-
erty P is a function that maps the data to a small
summary from which property P can be evaluated, al-
beit with some approximation error. In the context of
data streams, where information arrives online, linear
sketches are especially useful for estimating a derived
property in a fast and compact way.1 Complementing
sketching, embedding techniques are one-to-one map-
pings that transform a collection of points lying in a

1Indeed Li, Nguyen, and Woodruff [20] show that any
optimal one-pass streaming sketch algorithm in the turn-
stile model can be reduced to a linear sketch with logarith-
mic space overhead.
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space X to another (presumably easier) space Y , while
approximately preserving pairwise distances between
points. Dimensionality reduction is a special kind of
embedding where Y has two properties: it has much
smaller dimension than X and it has the same struc-
ture as X. These techniques can be used in an almost
“plug-and-play” fashion to speed up many algorithms
in data analysis: for example for near neighbor search
(and classification), clustering, and closest pair calcu-
lations.

Unfortunately, while these tools have been well de-
veloped for norms like `1 and `2, they are less stud-
ied for information distances. This is not just a the-
oretical concern: information distances are semanti-
cally more suited to many tasks in machine learn-
ing [11, 12, 16, 21, 23], and building the appropriate al-
gorithmic toolkit to manipulate them efficiently would
greatly expand the places where they can be used.

1.1 Our contributions

Dimensionality reduction. Our main result is a
structure-preserving dimensionality reduction for in-
formation distances, where we wish to preserve not
only the distances between pairs of points (distribu-
tions), but also the underlying simplicial structure of
the space, so that we can continue to interpret coor-
dinates in the new space as probabilities. The notion
of a structure-preserving dimensionality reduction is
implicit when dealing with normed spaces (since we
always map a normed space to another), but requires
an explicit mapping when dealing with more struc-
tured spaces. We prove an analog of the classical JL-
Lemma for JS, Hellinger, and χ2 divergences (Theo-
rem 5.6): given a set of n points in a d-dimensional
simplex, there is an explicit mapping of the points
to an O( 1

ε2 log n)-dimensional simplex that preserves
these divergences between every pair of points up to a
multiplicative factor of (1 + ε).

This result extends to “well-behaved” f -divergences
(See Section 5 for a precise definition). Moreover,
the dimensionality reduction is constructive for any di-
vergence with a finite-dimensional kernel (such as the
Hellinger divergence), or an infinite-dimensional Ker-
nel that can be sketched in finite space, as we show
is feasible for the JS and χ2 divergences. We note f -
divergences that are not well-behaved (e.g., `1) do not
admit a similar dimensionality reduction [4, 9, 19, 25].

Sketching information divergences. In estab-
lishing the above, we show how to embed information
distances into `22, which implies sketchability.

We first show that a set of points in the d-dimensional
simplex under the JS or χ2 divergences can be deter-

ministically embedded into Õ(d
2

ε ) dimensions under `22
with ε additive error (Theorem 4.4). Next, we show an
analogous embedding result for the multiplicative er-
ror case; however, the embedding is randomized (The-
orem 4.6). For both these results, applying the Eu-
clidean JL-Lemma can further reduce the target di-
mension. We also give the first results on sketching
of infinite-dimensional kernels, a challenge posed in
Avron, Nguyen, and Woodruff [6].

Applications to data streams. Data streams are
a standard model of computation for processing large
datasets in small space, in which data is revealed in-
crementally. The model comes in two flavors: the ag-
gregate model, where each element of the stream gives
the ith coordinate of a point, and the turnstile model
where each element of the stream serves to incremen-
tally increase the ith coordinate of a point. The pri-
mary difference in the two models is that in the former
a coordinate is updated exactly once, whereas in the
latter it may receiver multiple updates. See the books
by Muthukrishnan [22] or Aggarwal [2], or the arti-
cle by Wright [28] for more background on the field
and popular techniques. Previously Guha, Indyk, and
McGregor [15] showed that these divergences cannot
be sketched even up to a constant factor in sublinear
space under the turnstile model, and asked whether
the same lower bound holds in the aggregate model.

We resolve their question and show that a point set in
the d-dimensional simplex under the JS or χ2 diver-

gences can be deterministically embedded into Õ(d
2

ε )
dimensions under `22 with ε additive error (Corol-
lary 4.5).

Our techniques. The unifying approach of our
three results—sketching, embedding into `22, and di-
mensionality reduction—is to analyze carefully the
infinite-dimensional kernel of the information diver-
gences. Quantizing and truncating the kernel yields
the sketching result, sampling repeatedly from it pro-
duces an embedding into `22. Finally given such an
embedding, we show how to perform dimensionality
reduction by proving that each of the divergences ad-
mits a region of the simplex where it is similar to `22.
To the best of our knowledge, this is the first result
that explicitly uses the kernel representation of these
information distances to build approximate geomet-
ric structures. While the existence of a kernel for the
Jensen–Shannon distance was well-known, this struc-
ture had never been exploited to give algorithms with
robust theoretical guarantees.

We note that the results for the χ2 divergence are sim-
ilar to those for the JS divergence, and we defer the
details to the full version [1].
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2 Related Work

The works of Fuglede and Topsøe [13] and Vedaldi and
Zisserman [27] study embeddings of information diver-
gences into an infinite-dimensional Hilbert space by
representing them as integrals along a one-dimensional
curve in C. Vedaldi and Zisserman give an explicit
formulation of this kernel for JS and χ2 divergences,
for which a discretization (by quantizing and truncat-
ing) yields an additive error embedding into a finite-
dimensional `22. However, they do not obtain explicit
bounds on the target space dimension needed to derive
a sketching algorithm; furthermore, they do not get a
multiplicative approximation.

Kyng, Phillips, and Venkatasubramanian [18] show a
limited structure-preserving dimensionality reduction
result for the Hellinger distance. Their approach works
by showing that if the input points lie in a specific re-
gion of the simplex, then a standard random projection
will keep the points in a lower-dimensional simplex
while preserving the distances approximately. Unfor-
tunately, this region is a small ball centered in the
interior of the simplex, which shrinks with the dimen-
sion. This is in sharp contrast to our work here, where
the input points are unconstrained.

One can achieve a multiplicative approximation in the
aggregate streaming model for information divergences
that have a finite-dimensional embedding into `22. For
instance, Guha et al. [14] observe that for the Hellinger
distance that has a trivial such embedding, sketch-
ing is equivalent to sketching `22 and hence may be
done up to a (1 + ε)-multiplicative approximation in
1
ε2 log n space. This immediately implies a constant-
factor approximation of JS and χ2 divergences in the
same space, but no bounds were known prior to our
work for a (1+ε)-sketching result for JS and χ2 diver-
gences in any streaming model.

There has been a wide range of work done on em-
bedding in other spaces as well. Rahimi and Recht
[24] embed shift-invariant kernels into `22 via random
Fourier features; however their result does not hold
for the more general kernels we consider in this pa-
per. Avron, Nguyen, and Woodruff [6] give a sketch-
ing technique for the polynomial kernel and pose the
open question of obtaining similar results for infinite-
dimensional kernels; we address this question in this
paper. One of the most famous results in dimension
reduction is the Johnson–Lindenstrauss (JL) Lemma,
which states that any set of n points in `22 can be em-

bedded into O
(

logn
ε2

)
dimensions in the same space

while preserving pairwise distances to within (1 ± ε).
The general literature on sketching and embeddability
in normed spaces is too extensive to be reviewed here;

see, for example, Andoni et al. [5].

3 Background

In this section, we define precisely the class of informa-
tion divergences that we work with, and their specific
properties that allow us to obtain sketching, embed-
ding, and dimensionality results. For what follows ∆d

denotes the d-simplex :

∆d = {(x1, . . . , xd) |
∑

i

xi = 1 and xi ≥ 0,∀i}.

We will assume in this paper that all distributions are
defined over a finite ground set [n] = {1, . . . , n}.
Definition 3.1. The Jensen–Shannon (JS),
Hellinger, and χ2 divergences between distributions p
and q are defined as JS(p, q) =

∑
i pi log 2pi

pi+qi
+

qi log 2qi
pi+qi

, He(p, q) =
∑
i(
√
pi − √qi)2 and

χ2(p, q) =
∑
i

(pi−qi)2
pi+qi

respectively.

Definition 3.2 (Regular distance). On domain X, we
call a distance function D : X×X → R regular if there
exists a feature map φ : X → V , where V is a (possibly
infinite-dimensional) Hilbert space, such that:

D(x, y) = ‖φ(x)− φ(y)‖2 ∀x, y ∈ X.

The work of [13] and [27] prove that the JS diver-
gence is regular: they give a feature map φ(x) =∫ +∞
−∞ Ψx(ω) dω, where Ψx(ω) : R→ C is given by

Ψx(ω) = exp(iω lnx)

√
2x sech(πω)

(ln 4)(1 + 4ω2)
. (3.1)

Hence we have for x, y ∈ R, JS(x, y) = ‖φ(x) −
φ(y)‖2 =

∫ +∞
−∞ ‖Ψx(ω) − Ψy(ω)‖2 dω. The infinite-

dimensional “embedding” for a given distribution p ∈
∆d is then the concatenation of the functions φ(pi),
i.e., φ(p) = (φp1 , . . . , φpd).

4 Embedding JS into `22

We present two algorithms for embedding JS into `22.
The first is deterministic and gives an additive error
approximation whereas the second is randomized but
yields a multiplicative approximation in an offline set-
ting. The advantage of the first algorithm is that it
can be realized in the streaming model, and if we make
the standard assumption of polynomial precision in the
streaming input, yields a (1+ε)-multiplicative approx-
imation as well in this setting.

We derive some terms in the kernel representation of
JS(x, y) that will be convenient. First, the explicit
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formulation in (3.1) yields that for x, y ∈ R:

JS(x, y) =

∫ +∞

−∞

∥∥∥∥∥e
iω ln x

√
2x sech(πω)

(ln 4)(1 + 4ω2)

− eiω ln y

√
2y sech(πω)

(ln 4)(1 + 4ω2)

∥∥∥∥∥

2

dω

=

∫ +∞

−∞

(
2 sech(πω)

(ln 4)(1 + 4ω2)

)

· ‖√xeiω ln x −√yeiω ln y‖2 dω.

For convenience, we now define

h(x, y, ω) = ‖√xeiω ln x −√yeiω ln y‖2

= (
√
x cos(ω lnx)−√y cos(ω ln y))2

+ (
√
x sin(ω lnx)−√y sin(ω ln y))2,

and κ(ω) = 2 sech(πω)
(ln 4)(1+4ω2) .

We can then write JS(p, q) =
∑d
i=1 fJ(pi, qi) where

fJ(x, y) =

∫ ∞

−∞
h(x, y, ω)κ(ω) dω

= x log

(
2x

x+ y

)
+ y log

(
2y

x+ y

)
.

It is easy to verify that κ(ω) is a distribution, i.e.,∫∞
−∞ κ(ω)dω = 1.

4.1 Deterministic embedding

We will produce an embedding φ(p) = (φp1 , . . . , φpd),
where each φpi is an integral that can be discretized
by quantizing and truncating carefully.

Algorithm 1: Embed p ∈ ∆d under JS into `22.

Input: p = {p1, . . . , pd} where coordinates are
ordered by arrival, ε

Output: A vector of length O
(
d2

ε log d
ε

)

J ← d 32d
ε ln

(
8d
ε

)
e

for −J ≤ j ≤ J do wj ← j × ε/32d
for 1 ≤ i ≤ d,−J ≤ j ≤ J do

ap(2J+1)i+j ←
√
pi cos(ωj ln pi)

√∫ ωj+1

ωj
κ(ω)dω

bp(2J+1)i+j ←
√
pi sin(ωj ln pi)

√∫ ωj+1

ωj
κ(ω)dω

return ap concatenated with bp

To analyze Algorithm 1, we first obtain bounds on the
function h and its derivative.

Lemma 4.1. For 0 ≤ x, y,≤ 1, we have 0 ≤
h(x, y, ω) ≤ 2 and

∣∣∣∂h(x,y,ω)
∂ω

∣∣∣ ≤ 16.

Proof. Clearly h(x, y, ω) ≥ 0. Furthermore, since 0 ≤
x, y ≤ 1, we have

h(x, y, ω) ≤
∣∣√xeiω ln x

∣∣2 +
∣∣√yeiω ln y

∣∣2 = x+ y ≤ 2.

Next,

∣∣∣∣
∂h(x, y, ω)

∂ω

∣∣∣∣
=

∣∣2
(√
x cos(ω lnx)−√y cos(ω ln y)

)
(
−√x sin(ω lnx) lnx+

√
y sin(ω ln y) ln y

)

+2
(√
x sin(ω lnx)−√y sin(ω ln y)

)
(√
x cos(ω lnx) lnx−√y cos(ω ln y) ln y

)∣∣
≤

∣∣2
(√
x+
√
y
) (√

x lnx+
√
y ln y

)∣∣
+2
∣∣(√x+

√
y
) (√

x lnx+
√
y ln y

)∣∣ ≤ 16,

where the last inequality follows since
max0≤x≤1 |

√
x lnx| < 1.

The next two steps are useful to approximate the
infinite-dimensional continuous representation by a
finite-dimensional discrete representation by appropri-
ately truncating and quantizing the integral.

Lemma 4.2 (Truncation). For t ≥ ln(4/ε),

fJ(x, y) ≥
∫ t
−t h(x, y, ω)κ(ω)dω ≥ fJ(x, y)− ε .

Proof. The first inequality follows since h(x, y, ω) ≥ 0.
For the second inequality, we use h(x, y, ω) ≤ 2:

∫ −t

−∞
h(x, y, ω)κ(ω)dω +

∫ ∞

t

h(x, y, ω)κ(ω)dω

≤ 4

∫ ∞

t

κ(ω)dω < 4

∫ ∞

t

4e−πω

ln 4
dω < 4e−t ≤ ε,

where the last line follows if t ≥ ln(4/ε).

Define ωi = εi/16 for i ∈ ±Z and h̃(x, y, ω) =
h(x, y, ωi) where i = max{j | ωj ≤ ω}.
Lemma 4.3 (Quantization). For any a, b,∫ b
a
h(x, y, ω)κ(ω)dω =

∫ b
a
h̃(x, y, ω)κ(ω)dω ± ε .

Proof. First note that

|h̃(x, y, ω)−h(x, y, ω)| ≤
( ε

16

)
· max
x,y∈[0,1],ω

∣∣∣∣
∂h(x, y, ω)

∂ω

∣∣∣∣ ≤ ε .

Hence,
∣∣∣
∫ b
−a h̃(x, y, ω)κ(ω)dω −

∫ b
−a h(x, y, ω)κ(ω)dω

∣∣∣ ≤∣∣∣
∫ b
−a εκ(ω)dω

∣∣∣ ≤ ε.

Given a real number z, define vectors vz and uz in-
dexed by i ∈ {−i∗, . . . ,−2,−1, 0, 1, 2, . . . i∗} where
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i∗ = d16ε−1 ln(4/ε)e by:

vz =
√
z cos(ωi ln z)

√∫ ωi+1

ωi

κ(ω)dω,

uz =
√
z sin(ωi ln z)

√∫ ωi+1

ωi

κ(ω)dω,

and note that
(vxi − vyi )2 + (uxi − uyi )2 = h(x, y, ωi)

∫ ωi+1

ωi
κ(ω)dω.

Thus, ‖vx − vy‖22 + ‖ux − uy‖22 =∫ wi∗+1

w−i∗
h̃(x, y, ω)κ(ω)dω =

∫ wi∗+1

w−i∗
h(x, y, ω)κ(ω)dω± ε

=
∫∞
−∞ h(x, y, ω)κ(ω)dω ± 2ε = fJ(x, y) ± 2ε, where

the second to last equality follows from Lemma 4.3
and the last equality follows from Lemma 4.2, since
min(|w−i∗ |, wi∗+1) ≥ ln(4/ε).

Define the vector ap to be the vector generated by
concatenating vpi and upi for i ∈ [d]. Then it fol-
lows that ‖ap − aq‖22 = JS(p, q)± 2εd. Hence we have
reduced the problem of estimating JS(p, q) to `2 es-
timation. Rescaling ε ← ε/(2d) ensures the additive
error is ε while the length of the vectors ap and aq is

O
(
d2

ε log d
ε

)
.

Theorem 4.4. Algorithm 1 embeds a set P of points

in ∆d under JS into O
(
d2

ε log d
ε

)
dimensions under `22

with ε additive error.

Note that using the JL-Lemma, the dimensionality of

the target space can be reduced to O
(

log |P |
ε2

)
. The-

orem 4.4, along with the AMS sketch of [3], and the
standard assumption of polynomial precision immedi-
ately implies:

Corollary 4.5. There is an algorithm that works
in the aggregate streaming model to approximate
JS to within (1 + ε)-multiplicative factor using
O
(

1
ε2 log 1

ε log d
)

space.

As noted earlier, this is the first algorithm in the aggre-
gate streaming model to obtain a (1+ε)-multiplicative
approximation to JS, which contrasts against linear
space lower bounds for the same problem in the turn-
stile streaming model [15].

4.2 Randomized embedding

In this section we show the following result for multi-
plicative error.

Theorem 4.6. A set P of points under the JS or χ2

divergence can be embedded into `d̄2 with d̄ = O
(
n2d3

ε2

)

with (1 + ε) multiplicative error.

This can be reduced further to O( logn
ε2 ) dimensions by

simply applying the Euclidean JL-Lemma. Further-
more, if we ignore precision constraints on sampling

from a continuous distribution in a streaming algo-
rithm, then this also would yield a sketching bound of
O(d3ε−2) for a (1 + ε) multiplicative approximation.

Our approach is to sample from the kernel repeatedly
to obtain each coordinate of the embedding so that
the final `22 distance is an unbiased estimate of the di-
vergence. While this is similar in spirit to Rahimi and
Recht [24], proving this estimate is sufficiently concen-
trated is our main technical challenge.

For fixed x, y,∈ [0, 1], we consider the random variable
T that takes the value h(x, y, ω) with probability κ(ω).
(Recall that κ(·) is a distribution.) We compute the
first and second moments of T .

Theorem 4.7. E[T ] = fJ(x, y), var[T ] ≤ 36(E[T ])2.

Proof. The expectation follows immediately from the
definition, E[T ] =

∫∞
−∞ h(x, y, ω)κ(ω)dω = fJ(x, y).

To bound the variance it will be useful to define the
function fH(x, y) = (

√
x−√y)2 corresponding to the

one-dimensional Hellinger distance that is related to
fJ(x, y). We now state two claims regarding fH(x, y)
and fχ(x, y):

Claim 4.1. For all x, y ∈ [0, 1], fH(x, y) ≤ 2fJ(x, y).

Proof. Let fχ(x, y) = (x−y)2

x+y correspond to the one-

dimensional χ2 distance. Then, we have

fχ(x, y)

fH(x, y)
=

(x− y)2

(x+ y)(
√
x−√y)2

=
(
√
x+
√
y)2

x+ y

=
x+ y + 2

√
xy

x+ y
≥ 1 .

This shows that fH(x, y) ≤ fχ(x, y). To show
fχ(x, y) ≤ 2fJ(x, y) we refer the reader to [26, Sec-
tion 3]. Combining these two relationships gives us
our claim.

Claim 4.2. For all x, y ∈ [0, 1], ω ∈ R, h(x, y, ω) ≤
fH(x, y)(1 + 2|ω|)2.

Proof. Without loss of generality, assume x ≥ y.

√
h(x, y, ω)

= |√x · eiω ln x −√y · eiω ln y|
≤ |√x · eiω ln x −√y · eiω ln x|

+|√y · eiω ln x −√y · eiω ln y|
= |√x−√y|+√y · |eiω ln x − eiω ln y|
= |√x−√y|+√y · 2 · | sin(ω ln(x/y)/2)|
≤

√
fH(x, y) +

√
y · 2 · |ω ln(

√
x/y)|

≤
√
fH(x, y) +

√
y · 2 · |

√
x/y − 1| · |ω|

=
√
fH(x, y) + 2

√
fH(x, y) · |ω|.
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These claims allow us to bound the variance:

var[T ] ≤ E[T 2] ≤ fH(x, y)2

∫ ∞

−∞
(1 + 2|ω|)4κ(ω)dω

= fH(x, y)2 · 8.94 < 36fJ(x, y)2.

Algorithm 2: Embeds point p ∈ ∆d under JS into `22.

Input: p = {p1, . . . , pd}, ε
Output: A vector of length O

(
n2d3ε−2

)

s← d36n2d2ε−2e
for 1 ≤ j ≤ s do ωj ∼ κ(ω)
for 1 ≤ i ≤ d, 1 ≤ j ≤ s do

aps(i−1)+j ←
(√
pi cos(ωj ln pi)/

√
s
)

bps(i−1)+j ←
(√
pi sin(ωj ln pi)/

√
s
)

return ap concatenated with bp

Let ω1, . . . , ωs be s independent samples chosen ac-
cording to κ(ω). For any distribution p on [d], define
vectors vp,up ∈ Rsd where, for i ∈ [d], j ∈ [s],

vpi,j =
√
pi·cos(ωj ln pi)/

√
s; upi,j =

√
pi·sin(ωj ln pi)/

√
s.

Let vpi be a concatenation of vpi,j and upi,j over all

j ∈ [s]. Then note that E[‖vpi −vqi ‖22] = fJ(pi, qi) and
var[‖vpi − vqi ‖22] ≤ 36(fJ(pi, qi))

2/s. Hence, for s =
36n2d2ε−2, by the Chebyshev bound,

Pr[|‖vpi−vqi ‖22−fJ(pi, qi)| ≥ εfJ(x, y)] ≤ 36

ε2s
= (nd)−2.

By a union bound over all pairs of points,

Pr
[
∃i, p, q ∈ P | ‖vpi − vqi ‖22 − fJ(pi, qi)| ≥ εfJ(pi, qi)

]

is at most 1/d. And hence, if vp is a concatenation of
vpi over all i ∈ [d], then with probability at least 1−1/d
it holds for all p,q ∈ P that (1 − ε)JS(p, q) ≤ ‖vp −
vq‖ ≤ (1 + ε)JS(p, q). The final length of the vectors
is then sd = 36n2d3ε−2 for approximately preserving
distances between every pair of points with probability
at least 1− 1

d .

5 Dimensionality Reduction

The JL-Lemma has been instrumental for improving
the speed and approximation ratios of learning al-
gorithms. In this section, we give a proof of the
JL-analogue for a general class of divergences that
includes the information divergences studied here.
Specifically, we show that a set of n points lying on
a high-dimensional simplex can be embedded to a
k = O(log n/ε2)-dimensional simplex, while approxi-
mately preserving the information distances between
all pairs of points. This dimension reduction amounts

to reducing the support of the distribution from d to
k, while approximately maintaining the divergences.

Our proof uses `22 as an intermediate space. On a high
level, we first embed the points into a high (but finite)
dimensional `22 space, using the techniques we devel-
oped in Section 4.2. We then use the Euclidean JL-
Lemma to reduce the dimensionality, and remap the
points into the interior of a simplex. Finally, we show
that far away from the simplex boundaries, this class of
divergences has the same structure as `22, hence the em-
bedding back into information spaces can be done with
a simple translation and rescaling. Note that for diver-
gences that have an embedding into finite-dimensional
`22, the proof is constructive.

Definition 5.1 (f -divergence). Let p and q be two
distributions on [n]. A convex function f : [0,∞)→ R
such that f(1) = 0 gives rise to an f -divergence
Df : ∆d → R as:

Df (p, q) =
∑d
i=1 pi · f

(
qi
pi

)
,

where we define 0 · f(0/0) = 0, a · f(0/a) = a ·
limu→0 f(u), and 0 · f(a/0) = a · limu→∞ f(u)/u.

Definition 5.2 (Well-behaved divergence). A well-
behaved f -divergence is a regular f -divergence such
that f(1) = 0, f ′(1) = 0, f ′′(1) > 0, and f ′′′(1) exists.

Algorithm 3: Dimension Reduction for Df

Input: Set P = {p1, . . . , pn} of points on ∆d, error
parameter ε, constant c0(ε, f)

Output: A set P̄ of points on ∆k where

k = O
(

logn
ε2

)

1. Embed P into `22 to obtain P1 with error
parameter ε/4.

2. Apply Euclidean JL–Lemma with error ε
4 to

obtain P2 in dimension k = O
(

logn
ε2

)
.

3. Remap P2 to the plane
L = {x ∈ Rk+1 |∑i xi = 0} to obtain P3.

4. Scale P3 to a ball of radius c0 · ε
k+1 and center at

the centroid of ∆k+1 to obtain P̄ .

To analyze the above algorithm, we recall the JL–
Lemma [8, 17]:

Lemma 5.3 (JL Lemma). For any set P of points in a
(possibly infinite-dimensional) Hilbert space H, there
exists a randomized map f : H → Rk, k = O( logn

ε2 )
such that whp, ∀p, q ∈ P
(1− ε)‖p− q‖22 ≤ ‖f(p)− f(q)‖22 ≤ (1 + ε)‖p− q‖22.

Corollary 5.4. For any set of points P in H there ex-
ists a constant t and a randomized map f : H → ∆k+1,
k = O( logn

ε2 ) such that ∀p, q ∈ P :
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(1− ε)‖p− q‖22 ≤ t‖f(p)− f(q)‖22 ≤ (1 + ε)‖p− q‖22.
Furthermore for any small enough constant r, we may
bound the domain of f to be a ball B of radius r cen-
tered at the simplex centroid, (1/k+1, . . . , 1/k+1).

Proof. Consider first the map of Lemma 5.3 from
Rd → Rk . Now note that any set of points in Rk

can be isometrically embedded into the hyperplane
L = {x ∈ Rk+1 | ∑i xi = 0}. This follows by remap-
ping the basis vectors of Rk to those of L. Finally since
L is parallel to the simplex plane, the entire point set
may be scaled by some factor t and then translated to
fit in ∆k+1, or indeed in any ball of radius r centered
at the simplex centroid.

We now show that any well-behaved f divergence is
nearly Euclidean near the simplex centroid.

Lemma 5.5. Consider any well-behaved f divergence
Df , and let Br be a ball of radius r such that Br ⊂
∆k and Br is centered at the simplex centroid. Then
for any fixed 0 < ε < 1, there exists a choice of r
and scaling factor t (both dependent on k) such that
∀p, q ∈ B:

(1− ε)‖p− q‖22 ≤ tDf (p, q) ≤ (1 + ε)‖p− q‖22.

Proof. We consider arbitrary p, q ∈ Br and note that
the assumptions imply each coordinate lies in the inter-
val I = [ 1

k−r, 1
k+r]. Let rk = ε′, then I = [ 1−ε′

k , 1+ε′

k ].
We now prove the lemma for p, q ∈ I, the main re-
sult follows by considering Df and ‖ · ‖2 coordinate
by coordinate. By the definition of well-behaved f -
divergences and Taylor’s theorem, there exists a neigh-
borhood N of 1, and function φ with limx→1 φ(1) = 0
such that for all x ∈ N :

f(x) =f(1) + (x− 1)f ′(1) +
(x− 1)2

2
f ′′(1)+

(x− 1)3φ(x)

=
(x− 1)2

2
f ′′(1) + (x− 1)3φ(x). (5.1)

Therefore:

Df (p, q)

‖p− q‖22
=
p · f

(
q
p

)

(p− q)2

=

p

((
q−p
p

)2
f ′′(1)

2 +
(
q−p
p

)3

φ
(
q
p

))

(q − p)2

=
f ′′(1)

2p
+
q − p
p2

φ

(
q

p

)
.

Recall again that p ∈ [ 1−ε′
k , 1+ε′

k ] so the first term
converges to the constant 2kf ′′(1) as r grows smaller
(and hence ε′ decreases). Note also that the second

term goes to 0 with r, i.e., given a suitably small choice
of r we can make the term smaller than any desired
constant. Hence, for every dimension k and 0 < ε < 1,
there exists a radius of convergence r such that for all
p, q ∈ Br:

(1−ε)‖p−q‖22 ≤
1

2kf ′′(1)
Df (p, q) ≤ (1+ε)‖p−q‖22.

We note that the required value of r can be computed
easily for the Hellinger and χ2 divergence, and that r
behaves as 1

k · c where c = c(f, ε) is a sufficiently small
constant depending only on ε and the function f and
not on k or n .

To conclude the proof observe that the overall distor-
tion is bounded by the combination of errors due to
the initial embedding into P1, the application of JL-
Lemma, and the final reinterpretation of the points
in ∆k+1. The overall error is thus bounded by,
(1 + ε/4)3 ≤ 1 + ε.

Theorem 5.6. Consider a set P ∈ ∆d of n points un-
der a well-behaved f -divergence Df . Then there exists
a (1 + ε) distortion embedding of P into ∆k under Df

for some choice of k bounded as O
(

logn
ε2

)
.

Furthermore this embedding can be explicitly com-
puted even for a well-behaved f -divergence with an
infinite-dimensional kernel, if the kernel can be ap-
proximated in finite dimensions within a multiplicative
error as we show for JS and χ2.

6 Experiments

We analyze the empirical performance of our algo-
rithms and demonstrate the effect that each parameter
has on the quality of the final solution. We show there
is minute loss incurred both in sampling from the ker-
nel (embedding the points into `22), and in remapping
the points to lie on the d-dimensional simplex.

Recall that the dimension reduction procedure in Algo-
rithm 3 has three parameters: s, the number of sam-
ples used to embed the points into `22, k, the target
dimension of the Euclidean JL-Lemma, and c0, the
scaling parameter used to embed the points in the fi-
nal simplex.

Synthetic data. To study the quality of the em-
bedding with respect to these three parameters, we
generated distributions on d = 100, 1000, and 10, 000
dimensions. We used the Cauchy distribution and the
Log-Factorial distribution2 as the seeds. To generate
a point in the dataset, we randomly permuted the co-
ordinates in one of these distributions.

2Defined on [d], the pdf is given by Pr[i] ∝ log(1 + i).
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Figure 1: The breakdown of error due to the number of samples, the JL-Lemma, and the simplex embedding.

Spoken Fiction Popular Newspaper Academic
Spoken - 1.5% 3.3% 1.87% 0.3%
Fiction - - 1.4% 3.75% 2.95%
Popular - - - 5.2% 5.15%
Newspaper - - - - 1.25%

Table 1: Relative error of the JS divergence after embedding into 300 dimensions.

To explore the dependence on the parameters, we set
the defaults to s = 100, k = 300, and c0 = 0.1. Note
that the value of s is far lower than that implied by
the analysis (the value of c0 is far higher). In the three
panels in Figure 1 we vary one of the parameters while
keeping the others fixed; all of these are averaged over
100 pairwise computations. We track the error intro-
duced by embedding into `22, reducing the dimension
to d, and re-embedding back into the simplex ∆d. As
expected, we observe that the overall error decreases
with increasing the number of samples, and with lower-
ing c0. These contributions are on the order of 0.075%
to 0.3%, and are far outweighed by the error intro-
duced by the JL-Lemma step itself, which is on the
order of 9–10% and forms the core of the reduction.

Baselines. The only known method for dimension
reduction in the simplex is due to [18], which es-
sentially eschews the kernel embedding into `22 and
proceeds to apply the JL-lemma directly on the dis-
tribution points. While it provably works only in a
limited domain, we nevertheless investigate its perfor-
mance. While the error of our method on the synthetic
dataset ranges from 5–30% depending on the value of
the target dimension, the error produced by the base-
line method ranges from 95–430%.

Real data. To further demonstrate the efficacy of
our approach we create a dataset where each point
is the word distributions found in a specific book
genre, as gathered from the free sample on www.

wordfrequency.info. We then compute the pair-
wise divergences between the distributions on the full

dataset and on the embedded dataset. We use Algo-
rithm 3 to reduce the dimensionality twenty-fold from
6000 to just 300 dimensions. Using the same fixed
set of parameters, we show the average (over 10 runs)
error between the different genres in Table 1. Even
as we reduce the dimensionality of the space 20-fold
while maintaining the simplicial structure, the aver-
age distortion remains very small, only between 0.3%
and 5.15%.

7 Conclusions

We present a simple, practical, and theoretically sound
dimension reduction algorithm for information spaces.
Our algorithm reduces the dimensionality of the space
while maintaining the simplicial structure, and can be
used in a black-box manner to speed up algorithms
that operate in information divergence spaces.

The embedding and sketching algorithmic results we
show here complement the known impossibility results
for sketching information distances in the strict turn-
stile model, thus providing a more complete picture of
how these distances can be estimated in a stream.

Notice that the mappings that we present are contrac-
tive, i.e., forced to be near the center of the simplex.
We conjecture that for non-contractive mappings, the
Hellinger distance will not admit a (1 + ε) dimension
reduction.
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