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Abstract

Robust tensor CP decomposition involves de-
composing a tensor into low rank and sparse
components. We propose a novel non-convex
iterative algorithm with guaranteed recovery.
It alternates between low-rank CP decompo-
sition through gradient ascent (a variant of
the tensor power method), and hard thresh-
olding of the residual. We prove convergence
to the globally optimal solution under natural
incoherence conditions on the low rank com-
ponent, and bounded level of sparse pertur-
bations. We compare our method with nat-
ural baselines, viz., which apply robust ma-
trix PCA either to the flattened tensor, or to
the matrix slices of the tensor. Our method
can provably handle a far greater level of per-
turbation when the sparse tensor is block-
structured. Thus, we establish that tensor
methods can tolerate a higher level of gross
corruptions compared to matrix methods.

1 Introduction

In this paper, we develop a robust tensor decom-
position method, which recovers a low rank tensor
subject to gross corruptions. Given an input tensor
T = L∗+S∗, we aim to recover both L∗ and S∗, where
L∗ is a low rank tensor and S∗ is a sparse tensor

T = L∗ + S∗, L∗ =
r∑

i=1

σ∗i ui ⊗ ui ⊗ ui (1)
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and T, L∗, S∗ ∈ Rn×n×n. The above form of L∗ is
known as the Candecomp/Parafac or the CP-form.
We assume that L∗ is a rank-r orthogonal tensor, i.e.,
〈ui, uj〉 = 1 if i = j and 0 otherwise. The above
problem arises in numerous applications such as im-
age and video denoising [17], multi-task learning, and
robust learning of latent variable models (LVMs) with
grossly-corrupted moments, for details see Section 1.2.

The matrix version of (1), viz., decomposing a matrix
into sparse and low rank matrices, is known as robust
principal component analysis (PCA). It has been stud-
ied extensively [6, 8, 15, 22]. Both convex [6, 8] as well
as non-convex [22] methods have been proposed with
provable recovery.

One can attempt to solve the robust tensor problem
in (1) using matrix methods. In other words, robust
matrix PCA can be applied either to each matrix slice
of the tensor, or to the matrix obtained by flatten-
ing the tensor. However, such matrix methods ignore
the tensor algebraic constraints or the CP rank con-
straints, which differ from the matrix rank constraints.
There are however a number of challenges to incorpo-
rating the tensor CP rank constraints. Enforcing a
given tensor rank is NP-hard [14], unlike the matrix
case, where low rank projections can be computed ef-
ficiently. Moreover, finding the best convex relaxation
of the tensor CP rank is also NP-hard [14], unlike the
matrix case, where the convex relaxation of the rank,
viz., the nuclear norm, can be computed efficiently.

1.1 Summary of Results

Proposed method: We propose a non-convex it-
erative method, termed RTD, that maintains low rank
and sparse estimates L̂, Ŝ, which are alternately up-
dated. The low rank estimate L̂ is updated through
the eigenvector computation of T − Ŝ, and the sparse
estimate is updated through (hard) thresholding of the
residual T − L̂.
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Tensor Eigenvector Computation: Computing
eigenvectors of T − Ŝ is challenging as the tensor can
have arbitrary “noise” added to an orthogonal tensor
and hence the techniques of [2] do not apply as they
only guarantee an approximation to the eigenvectors
up to the “noise” level. Results similar to the shifted
power method of [19] should apply for our problem,
but their results hold in an arbitrarily small centered
at the true eigenvectors, and the size of the ball is
typically not well-defined. In this work, we provide a
simple variant of the tensor power method based on
gradient ascent of a regularized variational form of the
eigenvalue problem of a tensor. We show that our
method converges to the true eigenvectors at a linear
rate when initialized within a reasonably small ball
around eigenvectors. See Theorem 2 for details.

Guaranteed recovery: As a main result, we
prove convergence to the global optimum {L∗, S∗} for
RTD under an incoherence assumption on L∗, and a
bounded sparsity level for S∗. These conditions are
similar to the conditions required for the success of
matrix robust PCA. We also prove fast linear con-
vergence rate for RTD, i.e. we obtain an additive ε-
approximation in O(log(1/ε)) iterations.

Superiority over matrix robust PCA: We com-
pare our RTD method with matrix robust PCA, car-
ried out either on matrix slices of the tensor, or on the
flattened tensor. We prove our RTD method is superior
and can handle higher sparsity levels in the noise ten-
sor S∗, when it is block structured. Intuitively, each
block of noise represents correlated noise which per-
sists for a subset of slices in the tensor. For example,
in a video if there is an occlusion then the occlusion
remains fixed in a small number of frames. In the sce-
nario of moment-based estimation, S∗ represents gross
corruptions of the moments of some multivariate dis-
tribution, and we can assume that it occurs over a
small subset of variables.

We prove that our tensor methods can handle a much
higher level of block sparse perturbations, when the
overlap between the blocks is controlled (e.g. ran-
dom block sparsity). For example, for a rank-1 ten-
sor, our method can handle O(n17/12) corrupted en-
tries per fiber of the tensor (i.e. row/column of a slice
of the tensor). In contrast, matrix robust PCA meth-
ods only allows for O(n) corrupted entries, and this
bound is tight [22]. We prove that even better gains
are obtained for RTD when the rank r of L∗ increases,
and we provide precise results in this paper. Thus, our
RTD achieves best of both the worlds: better accuracy
and faster running times.

We conduct extensive simulations to empirically val-
idate the performance of our method and compare it

to various matrix robust PCA methods. Our synthetic
experiments show that our tensor method is 2-3 times
more accurate, and about 8-14 times faster, compared
to matrix decomposition methods. On the real-world
Curtain dataset, for the activity detection, our tensor
method obtains better recovery with a 10% speedup.

Overview of techniques: At a high level, the pro-
posed method RTD is a tensor analogue of the non-
convex matrix robust PCA method in [22]. However,
both the algorithm (RTD) and the analysis of RTD
is significantly challenging due to two key reasons: a)
there can be significantly more structure in the ten-
sor problem that needs to be exploited carefully using
structure in the noise,b) unlike matrices, tensors can
have an exponential number of eigenvectors [7].

We would like to stress that we need to establish con-
vergence to the globally optimal solution {L∗, S∗}, and
not just to a local optimum, despite the non-convexity
of the decomposition problem. Intuitively, if we are
in the basin of attraction of the global optimum, it
is natural to expect that the estimates {L̂, Ŝ} under
RTD are progressively refined, and get closer to the
true solution {L∗, S∗}. However, characterizing this
basin, and the conditions needed to ensure we “land”
in this basin is non-trivial and novel.

As mentioned above, our method alternates between
finding low rank estimate L̂ on the residual T − Ŝ and
viceversa. The main steps in our proof are as follows:
(i) For updating the low rank estimate, we propose
a modified tensor power method, and prove that it
converges to one of the eigenvectors of T − Ŝ. In ad-
dition, the recovered eigenvectors are “close” to the
components of L∗. (ii) When the sparse estimate Ŝ is
updated through hard thresholding, we prove that the
support of Ŝ is contained within that of S∗. (iii) We
make strict progress in each epoch, where L̂ and Ŝ are
alternately updated.

In order to prove the first part, we establish that the
proposed method performs gradient ascent on a reg-
ularized variational form of the eigenvector problem.
We then establish that the regularized objective sat-
isfies local strong convexity and smoothness. We also
establish that by having a polynomial number of ini-
tializations, we can recover vectors that are “reason-
ably” close to eigenvectors of T − Ŝ. Using the above
two facts, we establish a linear convergence to the true
eigenvectors of T − Ŝ, which are close to the compo-
nents of L∗.

For step (ii) and (iii), we show that using an intuitive
block structure in the noise, we can bound the affect
of noise on the eigenvectors of the true low-rank tensor
L∗ and show that the proposed iterative scheme refines
the estimates of L∗ and converge to L∗ at a linear rate.
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1.2 Applications

In addition to the standard applications of robust ten-
sor decomposition to video denoising [17], we propose
two applications in probabilistic learning.

Learning latent variable models using grossly
corrupted moments: Using tensor decomposition
for learning LVMs has been intensely studied in the
last few years, e.g. [1, 2, 18]. The idea is to learn
the models through CP decomposition of higher order
moment tensors.While the above works assume access
to empirical moments, we can extend the framework
to that of robust estimation, where the moments are
subject to gross corruptions. In this case, gross corrup-
tions on the moments can occur either due to adver-
sarial manipulations or systematic bias in estimating
moments of some subset of variables.

Multi-task learning of linear Bayesian net-
works: Let z(i) ∼ N (0,Σ(i)). The samples for
the ith Bayesian network are generated as x(i) =

Uh(i) + z(i), and E[x(i)x
>
(i)] = U diag(w(i))U

> + Σ(i),

where h(i) is the hidden variable for the ith network.
If the Bayesian networks are related, we can share pa-
rameters among them. In the above framework, we
share parameters U , which map the hidden variables to
observed ones. Assuming that all the covariances Σ(i)

are sparse, when they are stacked together, they form
a sparse tensor. Similarly U diag(w(i))U

> stacked con-
stitutes a low rank tensor. Thus, we can consider the
samples jointly, and learn the parameters by perform-
ing robust tensor decomposition.

1.3 Related Work

Robust matrix decomposition: In the ma-
trix setting, the above problem of decomposition into
sparse and low rank parts is popularly known as ro-
bust PCA, and has been studied in a number of works
([8],[6]). The popular method is based on convex re-
laxation, where the low rank penalty is replaced by
nuclear norm and the sparsity is replaced by the `1
norm. However, this technique is not applicable in the
tensor setting, when we consider the CP rank. There
is no convex surrogate available for the CP rank.

Recently a non convex method for robust PCA is pro-
posed in [22]. It involves alternating steps of PCA
and thresholding of the residual. Our proposed tensor
method can be seen as a tensor analogue of the method
in [22]. However, the analysis is very different, since
the optimization landscape for tensor decomposition
differs significantly from that of the matrix.

Convex Robust Tucker decomposition: Previ-
ous works which employ convex surrogates for tensor
problems employ a different notion of rank, known as

the Tucker rank or the multi-rank, e.g. [10, 12, 16, 20,
25]. However, the notion of a multi-rank is based on
ranks of the matricization or flattening of the tensor,
and thus, this method does not exploit the tensor alge-
braic constraints. The problem of robust tensor PCA
is specifically tackled in [11, 13]. In [11], convex and
non-convex methods are proposed based on Tucker
rank, but there are no guarantees on if it yields the
original tensors L∗ and S∗ in (1). In [13], they prove
success under restricted eigenvalue conditions. How-
ever, these conditions are opaque and it is not clear
regarding the level of sparsity that can be handled.

Sum of squares: Barak et al [5] recently consider
CP-tensor completion using algorithms based on the
sum of squares hierarchy. However, these algorithms
are expensive. In contrast, in this paper, we consider
simple iterative methods based on the power method
that are efficient and scalable for large datasets. It
is however unclear if the sum of squares algorithm im-
proves the result for the block sparse model considered
here.

Robust tensor decomposition: Shah et al [23]
consider robust tensor decomposition method using
a randomized convex relaxation formulation. Under
their random sparsity model, their algorithm provides
guaranteed recovery as long as the number of non-zeros
per fibre is O(

√
n). This is in contrast to our method

which potentially tolerates upto O(n17/12) non-zero
sparse corruptions per fibre.

2 Proposed Algorithm

Notations: Let [n] := {1, 2, . . . , n}, and ‖v‖ denote
the `2 norm of vector v. For a matrix or a tensor
M , ‖M‖ refers to spectral norm and ‖M‖∞ refers to
maximum absolute entry.

Tensor preliminaries: A real third order tensor
T ∈ Rn×n×n is a three-way array. The different di-
mensions of the tensor are referred to as modes. In ad-
dition, fibers are higher order analogues of matrix rows
and columns. A fiber is obtained by fixing all but one
of the indices of the tensor. For example, for a third
order tensor T ∈ Rn×n×n, the mode-1 fiber is given
by T (:, j, l). Similarly, slices are obtained by fixing all
but two of the indices of the tensor. For example, for
the third order tensor T , the slices along third mode
are given by T (:, :, l). A flattening of tensor T along
mode k is a matrix M whose columns correspond to
mode-k fibres of T .

We view a tensor T ∈ Rn×n×n as a multilinear form.
In particular, for vectors u, v, w ∈ Rn, let

T (I, v, w) :=
∑

j,l∈[n]
vjwlT (:, j, l) ∈ Rn, (2)
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Algorithm 1 (L̂, Ŝ) = RTD (T, δ, r, β): Tensor Ro-
bust PCA
1: Input: Tensor T ∈ Rn×n×n, convergence crite-

rion δ, target rank r, thresholding scale parameter
β. Pl(A) denote estimated rank-l approximation
of tensor A, and let σl(A) denote the estimated
lth largest eigenvalue using Procedure 1. HTζ(A)
denotes hard-thresholding, i.e. Hζ(A))ijk = Aijk
if |Aijk| ≥ ζ and 0 otherwise.

2: Set initial threshold ζ0 ← βσ1(T ) and estimates
S(0) = Hζ0(T − L(0)).

3: for Stage l = 1 to r do
4: for t = 0 to τ = 10 log

(
nβ
∥∥T − S(0)

∥∥
2
/δ
)

do

5: L(t+1) = Pl(T − S(t)).
6: S(t+1) = Hζ(T − L(t+1)).

7: ζt+1=β(σl+1(T−S(t+1))+
(
1
2

)t
σl(T−S(t+1))).

8: If βσl+1(L(t+1)) < δ
2n , then return L(τ), S(τ),

else reset S(0) = S(τ)

9: Return: L̂ = L(τ), Ŝ = S(τ)

which is a multilinear combination of the tensor mode-
1 fibers. Similarly T (u, v, w) ∈ R is a multilinear com-
bination of the tensor entries.

A tensor T ∈ Rn×n×n has a CP rank at most r if it
can be written as the sum of r rank-1 tensors as

T =
∑

i∈[r]
σ∗i ui ⊗ ui ⊗ ui, ui ∈ Rn, ‖ui‖ = 1, (3)

where notation ⊗ represents the outer product. We
sometimes abbreviate a ⊗ a ⊗ a as a⊗3. Without loss
of generality, σ∗i > 0, since −σ∗i u⊗3i = σ∗i (−ui)⊗3.

RTD method: We propose non-convex algorithm
RTD for robust tensor decomposition, described in Al-
gorithm 1. The algorithm proceeds in stages, l =
1, . . . , r, where r is the target rank of the low rank
estimate. In lth stage, we consider alternating steps of
low rank projection Pl(·) and hard thresholding of the

residual, H(·). For computing Pl(L̃), that denotes the

l leading eigenpairs of L̃, we execute gradient ascent
on a function f(v) = L̃(v, v, v) − λ‖v‖4 with multiple
restarts and deflation (see Procedure 1).

Computational complexity: In RTD, at the
lth stage, the l-eigenpairs are computed using Proce-
dure 1, whose complexity is O(n3lN1N2). The hard
thresholding operation Hζ(T −L(t+1)) requires O(n3)

time. We have O
(

log
(
n‖T‖
δ

))
iterations for each

stage of the RTD algorithm and there are r stages.
By Theorem 2, it suffices to have N1 = Õ

(
n1+c

)

and N2 = Õ (1), and where Õ(·) represents O(·) up
to polylogarithmic factors and c is a small constant.
Hence, the overall computational complexity of RTD

Procedure 1 {L̂l, (ûj , λj)j∈[l]} = Pl(T ): GradAscent
(Gradient Ascent method)

1: Input: Symmetric tensor T ∈ Rn×n×n, target
rank l, exact rank r, N1 number of initializations
or restarts, N2 number of power iterations for each
initialization. Let T1 ← T.

2: for j = 1, . . . , r do
3: for i = 1, . . . , N1 do
4: θ ∼ N (0, In). Compute top singular vector

u of Tj(I, I, θ). Initialize v
(1)
i ← u. Let λ =

Tj(u, u, u).
5: repeat

6: v
(t+1)
i ← Tj(I, v

(t)
i , v

(t)
i )/‖Tj(I, v(t)i , v

(t)
i )‖2

{Run power method to land in spectral
ball}

7: λ
(t+1)
i ← Tj(v

(t+1)
i , v

(t+1)
i , v

(t+1)
i )

8: until t = N2

9: Pick the best: reset i ←
arg maxi∈[N1] Tj(v

(t+1)
i , v

(t+1)
i , v

(t+1)
i ) and

λi = λ
(t+1)
i and vi = v

(t+1)
i .

10: Deflate: Tj ← Tj − λivi ⊗ vi ⊗ vi.
11: for j = 1, . . . , r do
12: repeat
13: Gradient Ascent iteration: v

(t+1)
j ← v

(t)
j +

1
4λ(1+λ/

√
n)
·
(
T (I, v

(t)
j , v

(t)
j )− λ‖v(t)j ‖2v

(t)
j

)
.

14: until convergence (linear rate, refer Lemma 3).

15: Set ûj = v
(t+1)
j , λj = T (v

(t+1)
j , v

(t+1)
j , v

(t+1)
j )

16: return Estimated top l out of all the top r eigen-
pairs (ûj , λj)j∈[l], and low rank estimate L̂l =∑
i∈[l] λiûj ⊗ ûj ⊗ ûj .

is Õ
(
n4+cr2

)
.

3 Theoretical Guarantees

In this section, we provide guarantees for the RTD
proposed in the previous section for RTD in (1). Even
though we consider a symmetric L∗ and S∗ in (1), we
can extend the results to asymmetric tensors, by em-
bedding them into symmetric tensors, on lines of [24].

In general, it is impossible to have a unique recovery of
low-rank and sparse components. Instead, we assume
the following conditions to guarantee uniqueness:

(L) L∗ is a rank-r orthogonal tensor in (1), i.e.,
〈ui, uj〉 = δi,j , where δi,j = 1 iff i = j and 0 o.w.
L∗ is µ-incoherent, i.e., ‖ui‖∞ ≤ µ

n1/2 and σ∗i > 0,
∀1 ≤ i ≤ r.
The above conditions of having an incoherent low rank
tensor L∗ are similar to the conditions for robust ma-
trix PCA. For tensors, the assumption of an orthog-
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onal decomposition is limiting, since there exist ten-
sors whose CP decomposition is non-orthogonal [2].
We later discuss how our analysis can be extended to
non-orthogonal tensors. We now list the conditions for
sparse tensor S∗.

The tensor S∗ is block sparse, where each block has
at most d non-zero entries along any fibre and the
number of blocks is B. Let Ψ be the support tensor
that has the same sparsity pattern as S∗, but with
unit entries, i.e. Ψi,j,k = 1 iff. S∗i,j,k 6= 0 for all
i, j, k ∈ [n]. We now make assumptions on sparsity
pattern of Ψ. Let η be the maximum fraction of over-
lap between any two block fibres ψi and ψj . In other
words, maxi 6=j〈ψi, ψj〉 < ηd. (S) Let d be the spar-
sity level along any fibre of a block and let B be the
number of blocks. We require

Ψ =

B∑

i=1

ψi ⊗ ψi ⊗ ψi, ‖ψi‖0 ≤ d, ψi(j) = 0 or 1

∀i ∈ [B], j ∈ [n], (4)

d = O(n/rµ3)2/3, B = O(min(n2/3r1/3, η−1.5)). (5)

We assume a block sparsity model for S∗ above. Under
this model, the support tensor Ψ which encodes spar-
sity pattern, has rank B, but not the sparse tensor S∗

since the entries are allowed to be arbitrary. We also
note that we set d to be n2/3 for ease of exposition and
show one concrete example where our method signifi-
cantly outperforms matrix robust PCA methods.

As discussed in the introduction, it may be advanta-
geous to consider tensor methods for robust decompo-
sition only when sparsity across the different matrix
slices are aligned/structured in some manner, and a
block sparse model is a natural structure to consider.
We later demonstrate the precise nature of superiority
of tensor methods under block sparse perturbations.

For the above mentioned sparsity structure, we set
β = 4µ3r/n3/2 in our algorithm. Under the above
conditions, our proposed algorithm RTD establishes
convergence to the globally optimal solution.

Theorem 1 (Convergence to global optimum for

RTD). Let L∗, S∗ satisfy (L) and (S), and β = 4 µ3r
n3/2 .

The outputs L̂ (and its parameters ûi and λ̂i) and Ŝ
of Algorithm 1 satisfy w.h.p.:

‖ûi − ui‖∞ ≤ δ/µ2rn1/2σ∗min,

|λ̂i − σ∗i | ≤ δ, ∀i ∈ [n],∥∥∥L̂− L∗
∥∥∥
F
≤ δ, ‖Ŝ − S∗‖∞ ≤ δ/n3/2,

and supp Ŝ ⊆ suppS∗.

Comparison with matrix methods: We now
compare with the matrix methods for recovering the
sparse and low rank tensor components in (1). Ro-
bust matrix PCA can be performed either on all the
matrix slices of the input tensor Mi := T (I, I, ei), for
i ∈ [n], or on the flattened tensor T (see the definition
in Section 2). We can either use convex relaxation
methods [6, 8, 15] or non-convex methods [22] for ro-
bust matrix PCA.

Recall that η measures the fraction of overlapping
entries between any two different block fibres, i.e.
maxi6=j〈ψi, ψj〉 < ηd, where ψi are the fibres of the
block components of tensor Ψ in (4) which encodes
the sparsity pattern of S∗ with 0-1 entries. A short
proof is given in Appendix B.1.

Corollary 1 (Superiority of tensor methods). The
proposed tensor method RTD can handle perturbations
S∗ at a higher sparsity level compared to performing
matrix robust PCA on either matrix slices or the flat-
tened tensor using guaranteed methods in [15, 22] when
the (normalized) overlap between different blocks sat-
isfies η = O(r/n)2/9.

Simplifications under random block sparsity:
We now obtain transparent results for a random

block sparsity model, where the components ψi in
(4) for the support tensor Ψ are drawn uniformly
among all d-sparse vectors. In this case, the incoher-

ence η simplifies as η
w.h.p

= O( dn ) when d >
√
n and

η
w.h.p

= O (1/
√
n), o.w. Thus, the condition on B in

(5) simplifies as B = O(min(n2/3r1/3, (n/d)1.5)) when
d >
√
n and B = O(min(n2/3r1/3, n0.75)) o.w. Recall

that as before, we require sparsity level of a fibre in any
block as d = O(n/rµ3)2/3. For simplicity, we assume
that µ = O(1) for the remaining section.

We now explicitly compute the sparsity level of S∗

allowed by our method and compare it to the level
allowed by matrix based robust PCA.

Corollary 2 (Superiority of tensor methods under
random sparsity). Let DRTD be the number of non-
zeros in S∗ (‖S∗‖0) allowed by RTD under the analysis
of Theorem 1 and let Dmatrix be ‖So‖0 allowed using
the standard matrix robust PCA analysis. Also, let S∗

be sampled from the block sparsity model. Then, the
following holds:

DRTD

Dmatrix
=





Ω
(
n1/6r4/3

)
, for r < n0.25, (6)

Ω
(
n5/12r1/3

)
, o.w. (7)

Unstructured sparse perturbations S∗: If we
do not assume block sparsity in (S), but instead as-
sume unstructured sparsity at level D, i.e. the num-
ber of non zeros along any fibre of S∗ is at most D,
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then the matrix methods are superior. In this case,

for success of RTD, we require that D = O
(√

n
rµ3

)

which is worse than the requirement of matrix methods
D = O( n

rµ2 ). Our analysis suggests that if there is no
structure in sparse patterns, then matrix methods are
superior. This is possibly due to the fact that finding a
low rank tensor decomposition requires more stringent
conditions on the noise level. Meanwhile, when there
is no block structure, the tensor algebraic constraints
do not add significantly new information. However,
in the experiments, we find that our tensor method
RTD is superior to matrix methods even in this case,
in terms of both accuracy and running times.

3.1 Analysis of Procedure 1

Our proof of Theorem 1 depends critically on an as-
sumption that Procedure 1 indeed obtains the top-
r eigen-pairs. We now concretely prove this claim.
Let L̃ be a symmetric tensor which is a perturbed
version of an orthogonal tensor L∗, L̃ = L∗ + E ∈
Rn×n×n, L∗ =

∑
i∈[r] σ

∗
i u
⊗3
i , where σ∗1 ≥ σ∗2 . . . σ∗r >

0 and {u1, u2, . . . , ur} form an orthonormal basis.

Recall that N1 is the number of initializations to seed
the power method, N2 is the number of power iter-
ations, and δ is the convergence criterion. For any
ξ ∈ (0, 1), and l ≤ r, assume the following

‖E‖ ≤ O(σ∗l /
√
n), N1 = O(n1+c log(1/ξ)),

N2 ≥ Ω(log (k) + log log(σ∗max/‖E‖)),

where c is a small constant. We now state the main
result for recovery of components of L∗ when Proce-
dure 1 is applied to L̃.

Theorem 2 (Gradient Ascent method). Let L̃ =
L∗ + E be as defined above with ‖E‖ ≤ O(σ∗r/

√
n).

Then, applying Procedure 1 with deflations on L̃ with
target rank l ≤ r, yields l eigen-pairs of L̃, given by
(λ1, û1), (λ2, û2), . . . , (λl, ûl), up to arbitrary small er-
ror δ > 0 and with probability at least 1−ξ. Moreover,
there exists a permutation π on [l] such that: ∀j ∈ [l],

|σ∗π(j) − λj | ≤ O (‖E‖+ δ) ,

‖uπ(j) − ûj‖ ≤ O((‖E‖/σ∗π(j)) + δ).

While [2, Thm. 5.1] considers power method, here
we consider the power method followed by a gradient
ascent procedure. With both methods, we obtain out-
puts (λi, ûi) which are “close” to the original eigen-
pairs of (σ∗i , ui) of L∗. However, the crucial differ-
ence is that Procedure 1 outputs (λi, ûi) correspond
to specific eigen-pairs of input tensor L̃, while the out-
puts of the usual power method have no such property
and only guarantees accuracy upto O(‖E‖2) error. We

critically require the eigen property of the outputs in
order to guarantee contraction of error in RTD be-
tween alternating steps of low rank decomposition and
thresholding.

The analysis of Procedure 1 has two phases. In the
first phase, we prove that with N1 initializations and
N2 power iterations, we get close to true eigenpairs of
L∗, i.e. (σ∗i , ui) for i ∈ [l]. After this, in the second

phase, we prove convergence to eigenpairs of L̃.

The proof for the first phase is on lines of proof in [2],
but with improved requirement on error tensor E
in (8). This is due to the use of SVD initializations
rather than random initializations to seed the power
method, and its analysis is given in [3].

Proof of the second phase follows using two observa-
tions: a) Procedure 1 is just a simple gradient ascent

of the following program: f(v) = L̃(v, v, v) − 3
4λ‖v‖42,

b) with-in a small distance to the eigenvectors of L̃,
f(v) is strongly concave and as well as strongly smooth
with appropriate parameters. See below lemma for a
detailed proof of the above claim. Hence, using our ini-
tialization guarantee from the phase-one, Procedure 1
converges to a δ approximation to eigen-pair of L̃ in
time O(log(1/δ)) and hence, Theorem 2 holds.
Lemma 3. Let f(v) = L̃(v, v, v) − 3

4λ‖v‖42. Then, f

is σ∗i (1 − 300σ∗r√
n

)-strongly concave and σ∗i (1 +
300σ∗r√

n
)

strongly smooth at all points (v, λ) s.t. ‖v − ui‖ ≤ 10√
n

and |λ− σ∗i | ≤ 10σ∗r√
n

, for some 1 ≤ i ≤ r. Procedure 1

converges to an eigenvector of L̃ at a linear rate.

Proof. Consider the gradient and Hessian of f w.r.t.
v:

∇f = 3L̃(I, v, v)− 3λ‖v‖2v, (8)

H = 6L̃(I, I, v)− 6λvv> − 3λ‖v‖2I. (9)

We first note that the stationary points of f indeed cor-
respond to eigenvectors of L̃ with eigenvalues λ‖v‖2.

Moreover, when |λ − σ∗i | ≤ 10σ∗r√
n

and ‖v − ui‖ ≤ 10√
n

,

we have:

‖H − (−3σ∗i I)‖2 ≤ 30
σ∗r√
n

+ 180
σ∗r√
n
.

Recall that L̃ = L∗ + E, where L∗ is an orthogonal
tensor and ‖E‖2 ≤ σ∗r/

√
n. Hence, there exists one

eigenvector in each of the above mentioned set, i.e.,

set of (v, λ) s.t. |λ − σ∗i | ≤ 10σ∗r√
n

and ‖v − ui‖ ≤ 10√
n

.

Hence, the standard gradient ascent procedure on f
would lead to convergence to an eigenvector of L̃. �
Extending to non-orthogonal low rank tensors:

In (L), we assume that the low rank tensor L∗ in (1)
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Figure 1: (a) Error comparison of different methods with deterministic sparsity, rank 5, varying d. (b) Error comparison
of different methods with deterministic sparsity, rank 25, varying d. (c) Error comparison of different methods with
block sparsity, rank 5, varying d. (d) Error comparison of different methods with block sparsity, rank 25, varying d.
Error = ‖L∗ − L‖F /‖L∗‖F . The curve labeled ‘T-RPCA-W(slice)’ refers to considering recovered low rank part from
a random slice of the tensor T by using matrix non-convex RPCA method as the whiten matrix, ‘T-RPCA-W(true)’
is using true second order moment in whitening, ‘M-RPCA(slice)’ treats each slice of the input tensor as a non-convex
matrix-RPCA(M-RPCA) problem, ‘M-RPCA(flat)’ reshapes the tensor along one mode and treat the resultant as a
matrix RPCA problem. All four sub-figures share same curve descriptions.

d

10 20 30 40

T
im

e
(s

)

50

100

150

200

Figure

d

10 20 30 40

T
im

e
(s

)

10
2

10
3

Figure

d

10 20 30 40
T

im
e
(s

)

10
2

Figure

Nonwhiten

Whiten(random)

Whiten(true)

Matrix(slice)

Matrix(flat)

d

10 20 30 40

T
im

e
(s

)

10
2

10
3

Figure

(a) (b) (c) (d)

Figure 2: (a) Running time comparison of different methods with deterministic sparsity, rank 5, varying d. (b) Running
time comparison of different methods with deterministic sparsity, rank 25, varying d. (c) Running time comparison of
different methods with block sparsity, rank 5, varying d. (d) Running time comparison of different methods with block
sparsity, rank 25, varying d. Curve descriptions are same as in Figure 1.

is orthogonal. We can also extend to non-orthogonal
tensors L∗, whose components ui are linearly indepen-
dent. Here, there exists an invertible transformation
W known as whitening that orthogonalizes the ten-
sors [2]. We can incorporate whitening in Procedure 1
to find low rank tensor decomposition, within the it-
erations of RTD.

4 Experiments

We now present an empirical study of our method.
The goal of this study is three-fold: a) establish that
our method indeed recovers the low-rank and sparse
parts correctly, without significant parameter tuning,
b) demonstrate that whitening during low rank de-
composition gives computational advantages, c) show
that our tensor methods are superior to matrix based
RPCA methods in practice.

Our pseudo-code (Algorithm 1) prescribes the thresh-
old ζ in Step 5, which depends on the knowledge of
the singular values of the low rank component L∗. In-
stead, in the experiments, we set the threshold at the
(t + 1) step of lth stage as ζ = µσl+1(T − S(t))/n3/2.
We found that the above thresholding, in the tensor
case as well, provides exact recovery while speeding up
the computation significantly.

Synthetic datasets: The low-rank part L∗ =∑
i∈[k] λiu

⊗3
i is generated from a factor matrix U ∈

Rn×k whose entries are i.i.d. samples from N (0, 1).
For deterministic sparsity setting, supp(S∗) is gener-
ated by setting each entry of [n]× [n]× [n] to be non-
zeros with probability d/n and each non-zero value
S∗ijk is drawn i.i.d. from the uniform distribution over

[r/(2n3/2), r/n3/2]. For block sparsity setting, we ran-
domly select B numbers of [n]×[1] vectors vi, i = 1...B
in which each entry is chosen to be non-zero with prob-
ability d/n. The value of non-zero entry is assigned
similar to the one in deterministic sparsity case. Each
of this vector will form a subtensor(v⊗3i ) and those
subtensors form the whole S. For increasing incoher-
ence of L∗, we randomly zero-out rows of U and then
re-normalize them. For the CP-decomposition, we use
the alternating least squares (ALS) method available
in the tensor toolbox [4]. Note that we use the ALS
procedure in practice since we found that empirically,
ALS performs quite well and is convenient to use. For
whitening, we use two different whitening matrices:
a) the true second order moment from the true low-
rank part, b) the recovered low rank part from a ran-
dom slice of the tensor T by using matrix non-convex
RPCA method. We compare our RTD with matrix
non-convex RPCA in two ways: a) treat each slice of
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(a) (b) (c)

Figure 3: Foreground filtering or activity detection in the Curtain video dataset. (a): Original image frame. (b):
Foreground filtered (sparse part estimated) using tensor method; time taken is 5.1s. (c): Foreground filtered
(sparse part estimated) using matrix method; time taken is 5.7s.

the input tensor as a matrix RPCA problem, b) re-
shape the tensor along one mode and treat the resul-
tant as a matrix RPCA problem.

We vary sparsity of S∗ and rank of L∗ for RTD with
a fixed tensor size. We investigate performance of
our method, both with and without whitening, and
compare with the state-of-the-art matrix non-convex
RPCA algorithm. Our results for synthetic datasets is
averaged over 5 runs. In Figure 1, we report relative
error (‖L∗−L‖F /‖L∗‖F ) by each of the methods allow-
ing maximum number of iterations up to 100. Com-
paring (a) and (b) in Figure 1, we can see that with
block sparsity, RTD is better than matrix based non-
convex RPCA method when d is less than 20. If we
use whitening, the advantage of RTD is more signifi-
cant. But when rank becomes higher, the whitening
method is not helpful. In Figure 2, we illustrate the
computational time of each methods. We can see that
whitening simplifies the problem and give us compu-
tational advantage. Besides, the running time for the
one using tensor method is similar to the one using ma-
trix method when we reshape the tensor as one matrix.
Doing matrix slices increases the running time.

Real-world dataset: To demonstrate the advan-
tage of our method, we apply our method to activ-
ity detection or foreground filtering [21]. The goal of
this task is to detect activities from a video cover-
age, which is a set of image frames that form a tensor.
In our robust decomposition framework, the moving
objects correspond sparse (foreground) perturbations
which we wish to filter out. The static ambient back-
ground is of lesser interest since nothing changes.

We selected one of datasets, namely the Curtain video
dataset wherein a person walks in and out of the room
between the frame numbers 23731 and 23963. We com-
pare our tensor method with the state-of-the-art ma-
trix method in [22] on the set of 233 frames where the
activity happens. In our tensor method, we preserve
the multi-modal nature of videos and consider the set

of image frames without vectorizing them. For the ma-
trix method, we follow the setup of [22] by reshaping
each image frame into a vector and stacking them to-
gether. We set the convergence criterion to 10−3 and
run both the methods. Our tensor method yields a
10% speedup and obtains a better visual recovery for
the same convergence accuracy as shown in Figure 3.

5 Conclusion

We proposed a non-convex alternating method for de-
composing a tensor into low rank and sparse parts.
We established convergence to the globally optimal
solution under natural conditions such as incoherence
of the low rank part and bounded sparsity levels for
the sparse part. We prove that our proposed tensor
method can handle perturbations at a much higher
sparsity level compared to robust matrix methods.
Our simulations show superior performance of our ten-
sor method, both in terms of accuracy and compu-
tational time. Some future directions are analyzing:
(1) our method with whitening (2) the setting where
grossly corrupted samples arrive in streaming manner.
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