A Bipartite Maximization Guarantees

Lemma 3.2. For any real \(m \times n \), rank-\(r \) matrix \(\tilde{A} \) and arbitrary norm-bounded sets \(\mathcal{X} \subset \mathbb{R}^{m \times k} \) and \(\mathcal{Y} \subset \mathbb{R}^{n \times k} \), let

\[
(\tilde{X}_*, \tilde{Y}_*) \triangleq \arg \max_{X \in \mathcal{X}, Y \in \mathcal{Y}} \text{Tr}(X^\top \tilde{A} Y).
\]

If there exist operators \(P_X : \mathbb{R}^{m \times k} \to \mathcal{X} \) such that \(P_X(L) = \arg \max_{X \in \mathcal{X}} \text{Tr}(X^\top L) \)

and similarly, \(P_Y : \mathbb{R}^{n \times k} \to \mathcal{Y} \) such that

\[
P_Y(R) = \arg \max_{Y \in \mathcal{Y}} \text{Tr}(R^\top Y)
\]

with running times \(T_X \) and \(T_Y \), respectively, then Algorithm 1 outputs \(\tilde{X} \in \mathcal{X} \) and \(\tilde{Y} \in \mathcal{Y} \) such that

\[
\text{Tr}(\tilde{X}^\top \tilde{A} \tilde{Y}) \geq \text{Tr}(\tilde{X}_*^\top \tilde{A} \tilde{Y}_*) - 2\epsilon \sqrt{k} \cdot \|\tilde{A}\|_2 \cdot \mu_X \cdot \mu_Y,
\]

where \(\mu_X \triangleq \max_{X \in \mathcal{X}} \|X\|_F \) and \(\mu_Y \triangleq \max_{Y \in \mathcal{Y}} \|Y\|_F \).

Proof. In the sequel, \(\tilde{U} \), \(\tilde{\Sigma} \) and \(\tilde{V} \) are used to denote the \(\epsilon \)-truncated singular value decomposition of \(\tilde{A} \).

Without loss of generality, we assume that \(\mu_X = \mu_Y = 1 \) since the variables in \(\mathcal{X} \) and \(\mathcal{Y} \) can be normalized by \(\mu_X \) and \(\mu_Y \), respectively, while simultaneously scaling the singular values of \(\tilde{A} \) by a factor of \(\mu_X \cdot \mu_Y \).

Then \(\|Y\|_{\infty,2} \leq 1, \forall Y \in \mathcal{Y} \), where \(\|Y\|_{\infty,2} \) denotes the maximum of the \(\ell_2 \)-norm of the columns of \(Y \).

Let \(\tilde{X}_*, \tilde{Y}_* \) be the optimal pair on \(\tilde{A} \), i.e.,

\[
(\tilde{X}_*, \tilde{Y}_*) \triangleq \arg \max_{X \in \mathcal{X}, Y \in \mathcal{Y}} \text{Tr}(X^\top \tilde{A} Y)
\]

and define the \(r \times k \) matrix \(\tilde{C}_* \triangleq \tilde{V}^\top \tilde{Y}_* \). Note that

\[
\|\tilde{C}_*\|_{\infty,2} = \|\tilde{V}^\top \tilde{Y}_*\|_{\infty,2} = \max_{1 \leq i \leq k} \|\tilde{V}^\top [\tilde{Y}_*]_i\|_2 \leq 1,
\]

with the last inequality following from the facts that \(\|Y\|_{\infty,2} \leq 1, \forall Y \in \mathcal{Y} \) and the columns of \(\tilde{V} \) are orthonormal. Alg. 1 iterates over the points in \((\mathbb{B}_2^{-1})^\otimes k \).

The latter is used to describe the set of \(r \times k \) matrices whose columns have \(\ell_2 \) norm at most equal to 1. At each point, the algorithm computes a candidate solution.

By (14), the \(\epsilon \)-net contains an \(r \times k \) matrix \(C \) such that

\[
\|C - \tilde{C}_*\|_{\infty,2} \leq \epsilon.
\]

Let \(X_*, Y_* \) be the candidate pair computed at \(C \) by the two step maximization, i.e.,

\[
X_* \triangleq \arg \max_{X \in \mathcal{X}} \text{Tr}(X^\top \tilde{U} \tilde{\Sigma} C)
\]

and

\[
Y_* \triangleq \arg \max_{Y \in \mathcal{Y}} \text{Tr}(X_*^\top \tilde{A} Y).
\]

We show that the objective values achieved by the candidate pair \(X_*, Y_* \) satisfies the inequality of the lemma implying the desired result.

By the definition of \(\tilde{C}_* \) and the linearity of the trace,

\[
\text{Tr}(\tilde{X}_*^\top \tilde{A} \tilde{Y}_*)
\]

\[
= \text{Tr}(\tilde{X}_*^\top \tilde{U} \tilde{\Sigma} \tilde{C}_*)
\]

\[
= \text{Tr}(\tilde{X}_*^\top \tilde{U} \tilde{\Sigma} \tilde{C}_*) + \text{Tr}(\tilde{X}_*^\top \tilde{U} \tilde{\Sigma} (\tilde{C}_* - \tilde{C}))
\]

\[
\leq \text{Tr}(\tilde{X}_*^\top \tilde{U} \tilde{\Sigma} \tilde{C}_*) + \text{Tr}(\tilde{X}_*^\top \tilde{U} \tilde{\Sigma} (\tilde{C}_* - \tilde{C})).
\]

The inequality follows from the fact that (by definition (15)) \(X_* \) maximizes the first term over all \(X \in \mathcal{X} \).

We compute an upper bound on the right hand side of (16). Define

\[
\bar{Y} \triangleq \arg \min_{Y \in \mathcal{Y}} \|\bar{V}^\top Y - C - \tilde{C}\|_{\infty,2}.
\]

(We note that \(\bar{Y} \) is used for the analysis and is never explicitly calculated.) Further, define the \(r \times k \) matrix \(\tilde{C} \triangleq \tilde{V}^\top \bar{Y} \). By the linearity of the trace operator

\[
\text{Tr}(X_\dagger^\top \tilde{U} \tilde{\Sigma} C_\dagger)
\]

\[
= \text{Tr}(X_\dagger^\top \tilde{U} \tilde{\Sigma} \tilde{C}_\dagger) + \text{Tr}(X_\dagger^\top \tilde{U} \tilde{\Sigma} (C_\dagger - \tilde{C}))
\]

\[
= \text{Tr}(X_\dagger^\top \tilde{U} \tilde{\Sigma} \tilde{Y}_\dagger) + \text{Tr}(X_\dagger^\top \tilde{U} \tilde{\Sigma} (C_\dagger - \tilde{C}))
\]

\[
\leq \text{Tr}(X_\dagger^\top \tilde{U} \tilde{\Sigma} \bar{Y} + \text{Tr}(X_\dagger^\top \tilde{U} \tilde{\Sigma} (C_\dagger - \tilde{C}))
\]

\[
= \text{Tr}(X_\dagger^\top \tilde{A} \bar{Y} + \text{Tr}(X_\dagger^\top \tilde{U} \tilde{\Sigma} (C_\dagger - \tilde{C})).
\]

(17)

The inequality follows from the fact that (by definition (15)) \(Y_\dagger \) maximizes the first term over all \(Y \in \mathcal{Y} \).

Combining (17) and (16), and rearranging the terms, we obtain

\[
\text{Tr}(X_\dagger^\top \tilde{A} \tilde{Y}_\dagger) - \text{Tr}(X_\dagger^\top \tilde{A} \bar{Y}_\dagger)
\]

\[
\leq \text{Tr}(X_\dagger^\top \tilde{U} \tilde{\Sigma} (\tilde{C}_\dagger - \bar{C}_\dagger)) + \text{Tr}(X_\dagger^\top \tilde{U} \tilde{\Sigma} (C_\dagger - \tilde{C})).
\]

(18)

By Lemma C.10,

\[
\text{Tr}(X_\dagger^\top \tilde{U} \tilde{\Sigma} (C_\dagger - \tilde{C}))
\]

\[
\leq \|X_\dagger^\top \tilde{U}\|_F \cdot \|\tilde{\Sigma}\|_2 \cdot \|\tilde{C}_\dagger - \tilde{C}\|_F
\]

\[
\leq \|X_\dagger\|_F \cdot \sigma_1(\tilde{A}) \cdot \sqrt{k} \cdot \epsilon
\]

\[
\leq \max_{X \in \mathcal{X}} \|X\|_F \cdot \sigma_1(\tilde{A}) \cdot \sqrt{k} \cdot \epsilon
\]

\[
\leq \sigma_1(\tilde{A}) \cdot \sqrt{k} \cdot \epsilon.
\]

(19)
Similarly,
\[
\| \text{Tr}(X^T_{\sigma} U \Sigma (C_{\sigma} - \hat{C})) \| \leq \| X_{\sigma} U \|_F \cdot \| \Sigma \|_2 \cdot \| C_{\sigma} - \hat{C} \|_F
\]
\[
\leq \max_{X \in \mathcal{X}} \| X \|_F \cdot \sigma_1(A) \cdot \sqrt{k} \cdot \epsilon
\]
\[
\leq \sigma_1(A) \cdot \sqrt{k} \cdot \epsilon.
\]
(20)

The second inequality follows from the fact that by the definition of \(C \),
\[
\| \hat{C} - C_{\sigma} \|_{\infty, 2} = \| \tilde{V}^T \tilde{Y} - C_{\sigma} \|_{\infty, 2} \leq \| \tilde{V}^T \tilde{Y} - C_{\sigma} \|_{\infty, 2} = \| \hat{C} - C_{\sigma} \|_{\infty, 2} \leq \epsilon,
\]
which implies that
\[
\| \hat{C} - C_{\sigma} \|_F \leq \sqrt{k} \cdot \epsilon.
\]
Continuing from (18) under (19) and (20),
\[
\text{Tr}(X^T_{\sigma} A Y_{\sigma}) \geq \text{Tr}(\tilde{X}^T \tilde{A} \tilde{Y}_*) - 2 \cdot \epsilon \cdot \sqrt{k} \cdot \sigma_1(A).
\]
Recalling that the singular values of \(\hat{A} \) have been scaled by a factor of \(\mu_x \cdot \mu_y \) yields the desired result.

The runtime of Alg. 1 follows from the cost per iteration and the cardinality of the \(\epsilon \)-net. Matrix multiplications can exploit the truncated singular value decomposition of \(\hat{A} \) which is performed only once.

Lemma A.6. For any \(A, \tilde{A} \in \mathbb{R}^{m \times n} \), and norm-bounded sets \(\mathcal{X} \subseteq \mathbb{R}^{m \times k} \) and \(\mathcal{Y} \subseteq \mathbb{R}^{n \times k} \), let
\[
(X_*, Y_*) \triangleq \arg \max_{X \in \mathcal{X}, Y \in \mathcal{Y}} \text{Tr}(X^T A Y),
\]
and
\[
(\tilde{X}_*, \tilde{Y}_*) \triangleq \arg \max_{X \in \mathcal{X}, Y \in \mathcal{Y}} \text{Tr}(X^T \tilde{A} Y).
\]
For any \((\tilde{X}, \tilde{Y}) \in \mathcal{X} \times \mathcal{Y}\) such that
\[
\text{Tr}(\tilde{X}^T \tilde{A} \tilde{Y}) \geq \gamma \cdot \text{Tr}(\tilde{X}_*^T \tilde{A} \tilde{Y}_*) - C
\]
for some \(0 < \gamma \leq 1\), we have
\[
\text{Tr}(\tilde{X}^T \tilde{A} \tilde{Y}) \geq \gamma \cdot \text{Tr}(X_*^T A Y_*) - C
\]
\[
- 2 \cdot \| A - \tilde{A} \|_2 \cdot \mu_x \cdot \mu_y,
\]
where \(\mu_x \triangleq \max_{X \in \mathcal{X}} \| X \|_F \) and \(\mu_y \triangleq \max_{Y \in \mathcal{Y}} \| Y \|_F \).

Proof. By the optimality of \(\tilde{X}_*, \tilde{Y}_* \) for \(\tilde{A} \), we have
\[
\text{Tr}(\tilde{X}_*^T \tilde{A} \tilde{Y}_*) \geq \text{Tr}(X_*^T A Y_*)
\]
In turn, for any \((\tilde{X}, \tilde{Y}) \in \mathcal{X} \times \mathcal{Y}\) such that
\[
\text{Tr}(\tilde{X}^T \tilde{A} \tilde{Y}) \geq \gamma \cdot \text{Tr}(\tilde{X}_*^T \tilde{A} \tilde{Y}_*) - C
\]
for some \(0 < \gamma < 1\) (if such pairs exist), we have
\[
\text{Tr}(\tilde{X}^T \tilde{A} \tilde{Y}) \geq \gamma \cdot \text{Tr}(X_*^T A Y_*) - C.
\]

By the linearity of the trace operator,
\[
\text{Tr}(\tilde{X}^T \tilde{A} \tilde{Y})
\]
\[
= \text{Tr}(\tilde{X}^T \tilde{A} \tilde{Y}) - \text{Tr}(\tilde{X}^T (A - \tilde{A}) \tilde{Y})
\]
\[
\leq \text{Tr}(X_*^T A Y_*) + |\text{Tr}(\tilde{X}^T (A - \tilde{A}) \tilde{Y})|.
\]
(22)

By Lemma C.10,
\[
|\text{Tr}(\tilde{X}^T (A - \tilde{A}) \tilde{Y})|
\]
\[
\leq \| \tilde{X} \|_F \cdot \| \tilde{Y} \|_F \cdot \| A - \tilde{A} \|_2
\]
\[
\leq \| A - \tilde{A} \|_2 \cdot \max_{X \in \mathcal{X}} \| X \|_F \cdot \max_{Y \in \mathcal{Y}} \| Y \|_F \triangleq R.
\]
(23)

Continuing from (22),
\[
\text{Tr}(\tilde{X}^T \tilde{A} \tilde{Y}) \leq \text{Tr}(\tilde{X}^T \tilde{A} \tilde{Y}) + R.
\]
(24)

Similarly,
\[
\text{Tr}(X_*^T A Y_*)
\]
\[
= \text{Tr}(X_*^T A Y_*) - \text{Tr}(X_*^T (A - \tilde{A}) \tilde{Y}_*)
\]
\[
\geq \text{Tr}(X_*^T A Y_*) - |\text{Tr}(X_*^T (A - \tilde{A}) \tilde{Y}_*)|
\]
\[
\geq \text{Tr}(X_*^T A Y_*) - R.
\]
(25)

Combining the above, we have
\[
\text{Tr}(\tilde{X}^T \tilde{A} \tilde{Y}) \geq \text{Tr}(\tilde{X}^T \tilde{A} \tilde{Y}) - R
\]
\[
\geq \gamma \cdot \text{Tr}(X_*^T A Y_*) - R - C
\]
\[
\geq \gamma \cdot (\text{Tr}(X_*^T A Y_*) - R) - R - C
\]
\[
= \gamma \cdot \text{Tr}(X_*^T A Y_*) - (1 + \gamma) \cdot R - C
\]
\[
\geq \gamma \cdot \text{Tr}(X_*^T A Y_*) - 2 \cdot R - C,
\]
where the first inequality follows from (24) the second from (21), the third from (25), and the last from the fact that \(R \geq 0 \). This concludes the proof.

Lemma 3.3. For any \(A \in \mathbb{R}^{m \times n} \), let
\[
(X_*, Y_*) \triangleq \arg \max_{X \in \mathcal{X}, Y \in \mathcal{Y}} \text{Tr}(X^T A Y),
\]
where \(\mathcal{X} \subseteq \mathbb{R}^{m \times k} \) and \(\mathcal{Y} \subseteq \mathbb{R}^{n \times k} \) are sets satisfying the conditions of Lemma 3.2. Let \(\tilde{A} \) be a rank-\(r \) approximation of \(A \), and \(\tilde{X} \in \mathcal{X}, \tilde{Y} \in \mathcal{Y} \) be the output of Alg. 1 with input \(A \) and accuracy \(\epsilon \). Then,
\[
\text{Tr}(X_*^T A Y_*) - \text{Tr}(\tilde{X}^T \tilde{A} \tilde{Y})
\]
\[
\leq 2 \cdot (\epsilon \sqrt{k} \cdot \| \tilde{A} \|_2 + \| A - \tilde{A} \|_2) \cdot \mu_x \cdot \mu_y,
\]
where \(\mu_X \triangleq \max_{X \in \mathcal{X}} \| X \|_F \) and \(\mu_Y \triangleq \max_{Y \in \mathcal{Y}} \| Y \|_F \).

Proof. The proof follows the approximation guarantees of Alg. 1 in Lemma 3.2 and Lemma A.6.
B Correctness of Algorithm 2

In the sequel, we use \(\|X\|_{\infty,1} \) to denote the maximum of the \(\ell_1 \) norm of the rows of \(X \). When \(X \in \{0,1\}^{d \times k} \), the constraint \(\|X\|_{\infty,1} = 1 \) effectively implies that each row of \(X \) has exactly one nonzero entry.

Lemma C.7. Let \(\mathcal{X} \triangleq \{X \in \{0,1\}^{d \times k} : \|X\|_{\infty,1} = 1\} \).

For any \(d \times k \) real matrix \(X \), Algorithm 2 outputs

\[
\hat{X} = \arg \max_{X \in \mathcal{X}} \text{Tr}(X^T L),
\]

in time \(O(k \cdot d) \)

Proof. By construction, each row of \(X \) has exactly one nonzero entry. Let \(j_i \in [k] \) denote the index of the nonzero entry in the \(i \)-th row of \(X \). For any \(X \in \mathcal{X} \),

\[
\text{Tr}(X^T L) = \sum_{j=1}^{k} X_{ji}^T 1_j = \sum_{j=1}^{k} \sum_{i \in \supp(x_j)} 1 \cdot L_{ij} \leq \sum_{i=1}^{d} L_{ij} \leq \sum_{i=1}^{d} \max_{j \in [k]} L_{ij}. \tag{26}
\]

Algorithm 2 achieves equality in (26) due to the choice of \(j_i \) in line 3. Finally, the running time follows immediately from the \(O(k) \) time required to determine the maximum entry of each of the \(d \) rows of \(L \).

C Auxiliary Lemmas

Lemma C.8. For any \(A, B \in \mathbb{R}^{n \times k} \),

\[
|\langle A, B \rangle| \triangleq |\text{Tr}(A^T B)| \leq \|A\|_F \cdot \|B\|_F.
\]

Proof. Treating \(A \) and \(B \) as vectors, the lemma follows immediately from Lemma C.7 for \(p = q = 2 \).

Lemma C.9. For any two real matrices \(A \) and \(B \) of appropriate dimensions,

\[
\|AB\|_F \leq \min\{\|A\|_2 \cdot \|B\|_F, \|A\|_F \cdot \|B\|_2\}.
\]

Proof. Let \(b_i \) denote the \(i \)-th column of \(B \). Then,

\[
\|AB\|_F^2 = \sum_i \|Ab_i\|_2^2 \leq \sum_i \|A\|_2^2 \cdot \|b_i\|_2^2 = \|A\|_2^2 \cdot \|B\|_2^2.
\]

Similarly, using the previous inequality,

\[
\|AB\|_2^2 = \|B^T A^T\|_F^2 \leq \|B\|_2^2 \cdot \|A^T\|_2^2 = \|B\|_2^2 \cdot \|A\|_2^2.
\]

The desired result follows combining the two upper bounds.

Lemma C.10. For any real \(m \times k \) matrix \(X \), \(mn \) matrix \(A \), and \(n \times k \) matrix \(Y \),

\[
|\text{Tr}(X^T AY)| \leq \|X\|_F \cdot \|A\|_2 \cdot \|Y\|_F.
\]

Proof. We have

\[
|\text{Tr}(X^T AY)| \leq \|X\|_F \cdot \|AY\|_F \leq \|X\|_F \cdot \|A\|_2 \cdot \|Y\|_F,
\]

with the first inequality following from Lemma C.8 on \(|\langle X, AY \rangle| \) and the second from Lemma C.9.

Lemma C.11. For any real \(m \times n \) matrix \(A \), and pair of \(m \times k \) matrix \(X \) and \(n \times k \) matrix \(Y \) such that \(X^T X = I_k \) and \(Y^T Y = I_k \) with \(k \leq \min\{m, n\} \), the following holds:

\[
|\text{Tr}(X^T AY)| \leq \sqrt{k} \cdot (\sum_{i=1}^{k} \sigma_i^2(A))^{1/2}.
\]

Proof. By Lemma C.8,

\[
|\langle X, AY \rangle| = |\text{Tr}(X^T AY)| \leq \|X\|_F \cdot \|AY\|_F = \sqrt{k} \cdot \|AY\|_F.
\]

where the last inequality follows from the fact that \(\|X\|_F^2 = \text{Tr}(X^T X) = \text{Tr}(I_k) = k \). Further, for any \(Y \) such that \(Y^T Y = I_k \),

\[
\|AY\|_F^2 \leq \max_{Y \in \mathbb{R}^{n \times k}} \|AY\|_F^2 = \sum_{i=1}^{k} \sigma_i^2(A). \tag{27}
\]

Combining the two inequalities, the result follows.

Lemma C.12. For any real \(m \times n \) matrix \(A \), and any \(k \leq \min\{m, n\} \),

\[
\max_{Y \in \mathbb{R}^{n \times k}} \|AY\|_F = \left(\sum_{i=1}^{k} \sigma_i^2(A)\right)^{1/2}.
\]

The above equality is realized when the \(k \) columns of \(Y \) coincide with the \(k \) leading right singular vectors of \(A \).
Lemma C.13. Finally, it is straightforward to verify that if

\[\|AY\|_F^2 = \|U\Sigma V^T Y\|_F^2 = \|\Sigma V^T Y\|_F^2. \]

(28)

Continuing from (28),

\[
\|\Sigma V^T Y\|_F^2 = \text{Tr}(Y^T V \Sigma^2 V^T Y) \\
= \sum_{i=1}^{k} y_i^T \left(\sum_{j=1}^{d} \sigma_j^2 \cdot v_j v_j^T \right) y_i \\
= \sum_{j=1}^{d} \sigma_j^2 \cdot \sum_{i=1}^{k} (v_j^T y_i)^2.
\]

Let \(z_j \triangleq \sum_{i=1}^{k} (v_j^T y_i)^2, \ j = 1, \ldots, d. \) Note that each individual \(z_j \) satisfies

\[0 \leq z_j = \sum_{i=1}^{k} (v_j^T y_i)^2 \leq \|v_j\|^2 = 1, \]

where the last inequality follows from the fact that the columns of \(Y \) are orthonormal. Further,

\[
\sum_{j=1}^{d} z_j = \sum_{j=1}^{k} \sum_{i=1}^{d} (v_j^T y_i)^2 = \sum_{i=1}^{k} \sum_{j=1}^{d} (v_j^T y_i)^2 \\
= \sum_{i=1}^{k} \|y_i\|^2 = k.
\]

Combining the above, we conclude that

\[\|AY\|_F^2 = \sum_{j=1}^{d} \sigma_j^2 \cdot z_j \leq \sigma_1^2 + \ldots + \sigma_k^2. \]

(29)

Finally, it is straightforward to verify that if \(y_i = v_i, \ i = 1, \ldots, k, \) then (29) holds with equality. \(\square \)

Lemma C.13. For any real \(m \times n \) matrix \(A, \) let \(\sigma_i(A) \) be the \(i \)th largest singular value. For any \(r, k \leq \min\{m, n\}, \)

\[\sum_{i=r+1}^{r+k} \sigma_i(A) \leq \frac{k}{\sqrt{r}+k} \|A\|_F. \]

Proof. By the Cauchy-Schwartz inequality,

\[
\sum_{i=r+1}^{r+k} \sigma_i(A) = \sum_{i=r+1}^{r+k} |\sigma_i(A)| \leq \left(\sum_{i=r+1}^{r+k} \sigma_i^2(A) \right)^{1/2} \|1_k\|_2 \\
= \sqrt{k} \cdot \left(\sum_{i=r+1}^{r+k} \sigma_i^2(A) \right)^{1/2}.
\]

Note that \(\sigma_{r+1}(A), \ldots, \sigma_{r+k}(A) \) are the \(k \) smallest among the \(r+k \) largest singular values. Hence,

\[
\sum_{i=r+1}^{r+k} \sigma_i^2(A) \leq \frac{k}{r+k} \sum_{i=1}^{r+k} \sigma_i^2(A) \leq \frac{k}{r+k} \sum_{i=1}^{l} \sigma_i^2(A) \\
= \frac{k}{r+k} \|A\|_F^2.
\]

Combining the two inequalities, the desired result follows. \(\square \)

Corollary 1. For any real \(m \times n \) matrix \(A, \) the \(r \)th largest singular value \(\sigma_r(A) \) satisfies \(\sigma_r(A) \leq \|A\|_F/\sqrt{r}. \)

Proof. It follows immediately from Lemma C.13. \(\square \)

First, we define the \(\| \cdot \|_{\infty,2} \) norm of a matrix as the \(l_2 \) norm of the column with the maximum \(l_2 \) norm, i.e., for an \(r \times k \) matrix \(C \)

\[\|C\|_{\infty,2} = \max_{1 \leq i \leq k} \|c_i\|_2. \]

Note that

\[
\|C\|_F^2 = \sum_{i=1}^{k} \|c_i\|_2^2 \leq k \cdot \max_{1 \leq i \leq k} \|c_i\|_2^2 \\
= k \cdot \left(\max_{1 \leq i \leq k} \|c_i\|_2 \right)^2 = k \cdot \|C\|_{\infty,2}. \]

(30)