Bipartite Correlation Clustering: Maximizing Agreements

A Bilinear Maximization Guarantees

Lemma 3.2. For any real m X n, rank-r matrix A
and arbitrary norm-bounded sets X C R™** and
Y C R et

(X*, {f*) e arg max TR(XTKY) .
XeX,Yey

If there exist operators Py : R™** — X such that

Px(L) = argmax TR(X 'L)
XeXx

and similarly, Py : R"™* — Y such that

Py(R) = argmax TR(R'Y)
Yey
with running times Tx and Ty, respectively, then Al-
gorithm 1 outputs X € X and Y € Y such that
Tr(XTAY) > Tr(X]AY,) — 2eVk - [|All2 - v - iy,

where ﬂXémaXXeXkHXHF and py=maxyey | Y],
in time O((2y/r/€)" " - (Ta+Ty+(m+n)r)) +Tsuo(r).

Proof. In the sequel, fj, > and V are used to denote
the r-truncated singular value decomposition of A.

Without loss of generality, we assume that py = uy =
1 since the variables in X and ) can be normalized by
px and py, respectively, while simultaneously scaling
the singular values of A by a factor of py - puy. Then,
Y]loo2 < 1, VY € ), where ||Y|lco,2 denotes the
maximum of the /5-norm of the columns of Y.

Let )NC*, Y, be the optimal pair on ./N&, i.e.,

(i*, ?*)é arg max TR(XTIXY)
XeX,Yey

and define the r x k matrix C,2VTY,. Note that
[Clloo,2

||{7T? ||002

max ||V [ X):
1<i<k

ilz <1, (14)
with the last inequality following from the facts that
[Y]looo <1V Y €Y and the columns of V are or-
thonormal. Alg. 1 iterates over the points in (B}~ *)®*.
The latter is used to describe the set of r x k matrices
whose columns have £5 norm at most equal to 1. At
each point, the algorithm computes a candidate solu-
tion. By (14), the e-net contains an r x k matrix Cy
such that

IC; = Culloo2 < e

Let X4, Yy be the candidate pair computed at Cy by
the two step maximization, i.e.,

X;£ arg max TR(XTfJiCﬁ)
Xex

and

Yﬁ* arg max TR(Xﬁ AY)
Yey

(15)

We show that the objective values achieved by the can-
didate pair Xy, Yy satisfies the inequality of the lemma
implying the desired result.

By the definition of C, and the linearity of the trace,
TrR(XTAY.)
_ TR(XTTEE,)
_ TR(XIUEC,) + Tr(X] UE(E, - C,))

< Tr(X; UZCy) + Tr(X,]UZ(C, - Cy)). (16)

The inequality follows from the fact that (by defini-
tion (15)) X4 maximizes the first term over all X € X.
We compute an upper bound on the right hand side
of (16). Define

Y2 arg min vy — Cilloo,2-
Yey

(We note that Y is used for the analysis and is never
explicitly calculated.) Further, define the r X k matrix
C2VTY. By the linearity of the trace operator
T
Tr(X, UZCy)
= Tr(X; UZC) + Tr(X; UZ(C; - C))
= TrR(X; UZV'Y) + Tr(X; UZ(C; -
< TrR(X, USV'Y;) + Tr(X] UZ(Cy -
= Tr(X] AY;) + Tr(X] UZ(C; - C)).

C))
C))

(17)

The inequality follows from the fact that (by defini-
tion (15)) Yy maximizes the first term over all Y € V.
Combining (17) and (16), and rearranging the terms,
we obtain

Tr(X,]AY,) - Tr(X] AY;)
< TrR(X]UZ(C, - C;)) + Tr(X] UZ(C; - C)).
(18)
By Lemma C.10,
[ TR(X[UZ(C. - Cy))
< X[ Ul [Z]2- |Cs — Csllr
<Xl o1(A) -V €
< %aXHXHF-Ul(A) Vk-e
<o1(A)-VEk-e (19)
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Similarly,

TR(XTUS(C, - ©))] < X, Ulle - Sz - [C: — Clle
< ) A) . )
< wax || X 1(A) - VE e
<o1(A) - Vk-e (20)

The second inequality follows from the fact that by the
definition of C,

IC = Cillooz = [VTY = Ciloe2 < V7Y = Ci 1o 2
=G ~Cillw2 <
which implies that
|IC—Cillp < VEk-e.
Continuing from (18) under (19) and (20),
TR(X[AY)) > TR(XTAY:) = 2-¢- V- 01(A).

Recalling that the singular values of A have been
scaled by a factor of px - 1y yields the desired result.

The runtime of Alg. 1 follows from the cost per iter-
ation and the cardinality of the e-net. Matrix mul-
tiplications can exploit the truncated singular value
decomposition of A which is performed only once. [

Lemma A.6. For any A,A € R™ " and norm-
boudned setst C R™ >k and ) C R"*K, et

(X-,Y)! argmax TR(XTAY),
Xex,Yey

and

(X-- , Y ) I arg max TR(XTAY) .
XeX,Yey

For any (X,Y) € X x ) such that

TrR(XTAY) >~ TR(XTAY:) - C
for some 0 < v < 1, we have

TrR(XTAY) > v TR(XAY) — C
—2- A=Al px - iy,
where py! maxxer || X||r and py! maxyey ||Y]r.
Proof. By the optimality of X- , Y. for 11, we have
Tr(XTAY") > TR(XAY).

In turn, for any ()N(,?) € X x Y such that

TrR(XTAY) > TR(XAY:) - C
for some 0 < vy < 1 (if such pairs exist), we have

Tr(XTAY) >y TR(XTAY:) - C. (21)

By the linearity of the trace operator,

Tr(XTAY)
= TR(XTAY) - TR(X (A — A)Y)
< Tr(XTAY) +|Tr(X"(A - A)Y)[. (22)
By Lemma C.10,
ITR(XT(A - A)Y)
< |X|le - [ Yle - [|A = All2
<||A - Al max || X||p - max |[Y]|p! R (23)
Xex Yey
Continuing from (22),
TR(XTAY) < TrR(XTAY)+R.  (24)
Similarly,
Tr(XTAY")
= Tr(XAY") - TR(X (A — A)Y")
> Tr(XAY:) — |[TR(XT (A - A)Y")]
> Tr(X.AY") — R. (25)

Combining the above, we have
Tr(XTAY) > Tr(XTAY) - R
>y TR(X!TAY:) - R—-C
>~ (TR(XAY.) —R) —R-C
=7 -TrR(X'AY") - (1+7)-R-C
>~ TR(XJAY-) —2-R-C,
where the first inequality follows from (24) the second

from (21), the third from (25), and the last from the
fact that R > 0. This concludes the proof. O

Lemma 3.3. For any A € R™*" et

(X, Y+)! argmax Tr(X'AY),
XeXx, Yey

where ¥ C R™*k and Y C R"* are sets satisfying
the conditions of Lemma 3.2. Let A be a rank+ ap-
proximation of A, and X € &, Y € Y be the output
of Alg. 1 with input A and accuracye. Then,

Tr(XAY") - TR(XTAY)
<2 (k- [Al2+ A ~Al2) - px -y,
Where,uX! maxxexy ”XHF and ,uy! maxyecy HYHF

Proof. The proof follows the approximation guaran-
tees of Alg. 1 in Lemma 3.2 and Lemma A.6. O
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B Correctness of Algorithm 2

In the sequel, we use || X]|c0,1 to denote the maximum
of the ¢; norm of the rows of X. When X € {0, 1}9**,
the constraint || X||s,1 = 1 effectively implies that each
row of X has exactly one nonzero entry.

Lemma 4.4. Let Y£{X € {0, 1}"* : [|X[|oc,1 = 1}.
For any d x k real matriz L, Algorithm 2 outputs

X = arg max TR(XTL) ,
Xex

in time O(k - d)

Proof. By construction, each row of X has exactly one
nonzero entry. Let j; € [k] denote the index of the
nonzero entry in the ith row of X. For any X € X,

k
TrR(X'L) = Z Z Yoo,
j=1 Jj=1iesupp(x;)
d d
= z:: < gré?ﬁlj (26)

Algorithm 2 achieves equality in (26) due to the choice
of j; in line 3. Finally, the running time follows imme-
diately from the O(k) time required to determine the
maximum entry of each of the d rows of L. O

C Auxiliary Lemmas

Lemma C.7. Let aq,...,a, andby,...,b, be 2n real
numbers and let p and q be two numbers such that
1/p+1/¢g=1 and p> 1. We have

n 1/p n 1/q
($u) " ($3)
i=1 i=1

Lemma C.8. For any A,B € R"*F,
[(A,B)|2|TR(ATB)| < |Ar|Bll-

Proof. Treating A and B as vectors, the lemma follows
immediately from Lemma C.7 for p = ¢ = 2. O

Lemma C.9. For any two real matrices A and B of
appropriate dimensions,

|AB|[r < min{[|Al2[|Bllr, [|Allr|B]2}.
Proof. Let b; denote the ith column of B. Then,
IABJE = > [[Ab[l3 <> [Al3]Ibil3

= A3 D IIbil3 = IA[ZIBI

Similarly, using the previous inequality,
TAT T T
IAB|f = BTAT[: < [BTFIAT[E = IBISIA[G

The desired result follows combining the two upper
bounds. O

Lemma C.10. For any real m x k matriz X, m X n
matrix A, and n X k matriz Y,

| TR(XTAY)| < [IX][r - [|All2 - [Y]e-
Proof. We have
ITR(XTAY)| < [X[lr - |AY[[p < [X[r - [|All2- [Y]F,

with the first inequality following from Lemma C.8 on
|{X, AY)| and the second from Lemma C.9. O

Lemma C.11. For any real m x n matrix A, and
pair of m X k matriz X and n X k matrix Y such that
XX =1, and Y'Y = I with k < min{m, n}, the
following holds:

k
[TR(XTAY)| < VE- (3 02(A))""
i=1
Proof. By Lemma C.8,
(X, AY)| = |TR(XTAY)|
< IX[r - |AY[p = VE - |AY .

where the last inequality follows from the fact that
[X||z = TR(X"X) = TrR(I;) = k. Further, for any
Y such that YTY = I,

|AY |2 < max

”AYHF = ZU (27)

~<>»<>

Combining the two inequalities, the result follows. [

Lemma C.12. For any real m xn matriz A, and any
k < min{m, n},

max

L 1/2
NAY|r = (Z Jf(A)> :
i=1

YTY_Ik

The above equality is realized when the k columns of Y
coincide with the k leading right singular vectors of A.
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Proof. Let UXVT be the singular value decomposi-
tion of A, with 3;; = o; being the jth largest singular
value of A, j = 1,...,d, where d2 min{m,n}. Due
to the invariance of the Frobenius norm under unitary
multiplication,

IAY [ = [[USVTY|§ = [EV Y. (28)
Continuing from (28),

!
IZVTY|Z =Tr YT$VE2VTY

#k
_ T . )
= yi 70 05" VijVvy Yi

&

i=1 j=1

Let zjé ( le' V;r}’i

individual z; satisfies

, 7 =1,...,d. Note that each

. #k | - u2 )
0<z=  wvjyi  <[vl"=1,
i=1
where the last inequality follows from the fact that the
columns of Y are orthonormal. Further,

#d B Hk o ## "
A ViYi = ViYi
j=1 j=1i=1 i=1 j=1
#k
= |yil* =«
i=1

Combining the above, we conclude that

#d
||AY||12; = a?-zj gaf—l—...—s—ai. (29)

j=1

Finally, it is straightforward to verify that if y; = v;,
i =1,...,k, then (29) holds with equality. O

Lemma C.13. For any real m X n matriz A, let
o;(A) be the ith largest singular value. For any r,k <
min{m,n},

#k k

i=r+1

Proof. By the Cauchy-Schwartz inequality,

g g ) g "2
oi(A) = loi(A)] < o (A) |1%]]2
i=r+1 i=r+1 1=r+1
) gk * 12
=Vk- o; (A)
1=r+1

Note that o,41(A),...,004%(A) are the k smallest
among the r + k largest singular values. Hence,

#tk o HE o #
)< T gay < T )
i=r41 TR TR
k
= ——||A||3.
RN

Combining the two inequalities, the desired result fol-
lows. O

Corollary 1. For any real m x n matriz A, the
rth largest singular value o.(A) satisfies o,(A) <

[Allp/Vr.

Proof. 1t follows immediately from Lemma C.13. O

First, we define the || - [|oo,2 norm of a matrix as the Iy
norm of the column with the maximum [ norm, i.e.,
for an r x k£ matrix C

1Clloc.2 = max fleill2.

1<i
Note that
#k
IC1E = el < k-, el
+ ' 2

=k- max |2

1<i<k =k- HC”oo,Q- (30)



