
Bipartite Correlation Clustering: Maximizing Agreements

A Bilinear Maximization Guarantees

Lemma 3.2. For any real m⇥ n, rank-r matrix eA
and arbitrary norm-bounded sets X ⇢ Rm⇥k and
Y ⇢ Rn⇥k, let

� eX?, eY?

�
, argmax

X2X ,Y2Y
Tr

�
X> eAY

�
.

If there exist operators PX : Rm⇥k ! X such that

PX (L) = argmax
X2X

Tr

�
X>L

�

and similarly, PY : Rn⇥k ! Y such that

PY(R) = argmax
Y2Y

Tr

�
R>Y

�

with running times TX and TY , respectively, then Al-
gorithm 1 outputs eX 2 X and eY 2 Y such that

Tr

� eX> eA eY
�
� Tr

� eX>
?
eA eY?

�
� 2✏

p
k · keAk

2

· µX · µY ,

where µX,max
X2X kXk

F

and µY,max
Y2Y kYk

F

,

in time O
��
2
p
r/✏

�r·k ·
�
TX+TY+(m+n)r

��
+TSVD(r).

Proof. In the sequel, eU, e⌃ and eV are used to denote
the r-truncated singular value decomposition of eA.

Without loss of generality, we assume that µX = µY =
1 since the variables in X and Y can be normalized by
µX and µY , respectively, while simultaneously scaling
the singular values of eA by a factor of µX · µY . Then,
kYk1,2  1, 8Y 2 Y, where kYk1,2 denotes the
maximum of the `

2

-norm of the columns of Y.

Let eX?, eY? be the optimal pair on eA, i.e.,
� eX?, eY?

�
, argmax

X2X ,Y2Y
Tr

�
X> eAY

�

and define the r ⇥ k matrix eC?,eV> eY?. Note that

keC?k1,2 = keV> eY?k1,2

= max
1ik

keV>[ eY?]:,ik2  1, (14)

with the last inequality following from the facts that
kYk1,2  1 8 Y 2 Y and the columns of eV are or-
thonormal. Alg. 1 iterates over the points in (Br�1

2

)⌦k.
The latter is used to describe the set of r⇥ k matrices
whose columns have `

2

norm at most equal to 1. At
each point, the algorithm computes a candidate solu-
tion. By (14), the ✏-net contains an r ⇥ k matrix C]

such that

kC] � eC?k1,2  ✏.

Let X],Y] be the candidate pair computed at C] by
the two step maximization, i.e.,

X], argmax
X2X

Tr

�
X> eUe⌃C]

�

and

Y], argmax
Y2Y

Tr

�
X>

]
eAY

�
. (15)

We show that the objective values achieved by the can-
didate pairX],Y] satisfies the inequality of the lemma
implying the desired result.

By the definition of eC? and the linearity of the trace,

Tr

� eX>
?
eA eY?

�

= Tr

� eX>
?
eUe⌃eC?

�

= Tr

� eX>
?
eUe⌃C]

�
+Tr

� eX>
?
eUe⌃

�eC? �C]

��

 Tr

�
X>

]
eUe⌃C]

�
+Tr

� eX>
?
eUe⌃

�eC? �C]

��
. (16)

The inequality follows from the fact that (by defini-
tion (15)) X] maximizes the first term over all X 2 X .
We compute an upper bound on the right hand side
of (16). Define

bY, argmin
Y2Y

keV >Y �C]k1,2.

(We note that bY is used for the analysis and is never
explicitly calculated.) Further, define the r⇥k matrix
bC,eV> bY. By the linearity of the trace operator

Tr

�
X>

]
eUe⌃C]

�

= Tr

�
X>

]
eUe⌃bC

�
+Tr

�
X>

]
eUe⌃

�
C] � bC

��

= Tr

�
X>

]
eUe⌃eV> bY

�
+Tr

�
X>

]
eUe⌃

�
C] � bC

��

 Tr

�
X>

]
eUe⌃eV>Y]

�
+Tr

�
X>

]
eUe⌃

�
C] � bC

��

= Tr

�
X>

]
eAY]

�
+Tr

�
X>

]
eUe⌃

�
C] � bC

��
. (17)

The inequality follows from the fact that (by defini-
tion (15)) Y] maximizes the first term over all Y 2 Y.
Combining (17) and (16), and rearranging the terms,
we obtain

Tr

� eX>
?
eA eY?

�
�Tr

�
X>

]
eAY]

�

 Tr

� eX>
?
eUe⌃

�eC? �C]

��
+Tr

�
X>

]
eUe⌃

�
C] � bC

��
.

(18)

By Lemma C.10,

��
Tr

� eX>
?
eUe⌃

�eC? �C]

����

 keX>
?
eUk

F

· ke⌃k
2

· keC? �C]kF
 keX?kF · �

1

(eA) ·
p
k · ✏

 max
X2X

kXk
F

· �
1

(eA) ·
p
k · ✏

 �
1

(eA) ·
p
k · ✏. (19)
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Similarly,
��
Tr

�
X>

]
eUe⌃

�
C] � bC

����  kX]
eUk

F

· ke⌃k
2

· kC] � bCk
F

 max
X2X

kXk
F

· �
1

(eA) ·
p
k · ✏

 �
1

(eA) ·
p
k · ✏. (20)

The second inequality follows from the fact that by the
definition of bC,

kbC�C]k1,2 = keV > bY �C]k1,2  keV > eY? �C]k1,2

= keC? �C]k1,2  ✏,

which implies that

kbC�C]kF 
p
k · ✏.

Continuing from (18) under (19) and (20),

Tr

�
X>

]
eAY]

�
� Tr

� eX>
?
eA eY?

�
� 2 · ✏ ·

p
k · �

1

(eA).

Recalling that the singular values of eA have been
scaled by a factor of µX · µY yields the desired result.

The runtime of Alg. 1 follows from the cost per iter-
ation and the cardinality of the ✏-net. Matrix mul-
tiplications can exploit the truncated singular value
decomposition of eA which is performed only once.

Lemma A.6. For any A, eA 2 Rm⇥n, and norm-
boudned sets X ✓ Rm⇥k and Y ✓ Rn⇥k, let

�
X?,Y?

�
, argmax

X2X ,Y2Y
Tr

�
X>AY

�
,

and � eX?, eY?

�
, argmax

X2X ,Y2Y
Tr

�
X> eAY

�
.

For any (eX, eY) 2 X ⇥ Y such that

Tr

� eX> eA eY
�
� � ·Tr

� eX>
?
eA eY?

�
� C

for some 0 < �  1, we have

Tr

� eX>A eY
�
� � ·Tr

�
X>

? AY?

�
� C

� 2 · kA� eAk
2

· µX · µY .

where µX,max
X2X kXk

F

and µY,max
Y2Y kYk

F

.

Proof. By the optimality of eX?, eY? for eA, we have

Tr

� eX>
?
eA eY?

�
� Tr

�
X>

?
eAY?

�
.

In turn, for any (eX, eY) 2 X ⇥ Y such that

Tr

� eX> eA eY
�
� � ·Tr

� eX>
?
eA eY?

�
� C

for some 0 < � < 1 (if such pairs exist), we have

Tr

� eX> eA eY
�
� � ·Tr

�
X>

?
eAY?

�
� C. (21)

By the linearity of the trace operator,

Tr

� eX> eA eY
�

= Tr

� eX>A eY
�
�Tr

� eX>(A� eA) eY
�

 Tr

� eX>A eY
�
+
��
Tr

� eX>(A� eA) eY
���. (22)

By Lemma C.10,

��
Tr

� eX>(A� eA) eY
���

 keXk
F

· k eYk
F

· kA� eAk
2

 kA� eAk
2

·max
X2X

kXk
F

·max
Y2Y

kYk
F

, R. (23)

Continuing from (22),

Tr

� eX> eA eY
�
 Tr

� eX>A eY
�
+R. (24)

Similarly,

Tr

�
X>

?
eAY?

�

= Tr

�
X>

? AY?

�
�Tr

�
X>

? (A� eA)Y?

�

� Tr

�
X>

? AY?

�
�

��
Tr

�
X>

? (A� eA)Y?

���

� Tr

�
X>

? AY?

�
�R. (25)

Combining the above, we have

Tr

� eX>A eY
�
� Tr

� eX> eA eY
�
�R

� � ·Tr

�
X>

?
eAY?

�
�R� C

� � ·
�
Tr

�
X>

? AY?

�
�R

�
�R� C

= � ·Tr

�
X>

? AY?

�
� (1 + �) ·R� C

� � ·Tr

�
X>

? AY?

�
� 2 ·R� C,

where the first inequality follows from (24) the second
from (21), the third from (25), and the last from the
fact that R � 0. This concludes the proof.

Lemma 3.3. For any A 2 Rm⇥n, let

�
X?,Y?

�
, argmax

X2X ,Y2Y
Tr

�
X>AY

�
,

where X ✓ Rm⇥k and Y ✓ Rn⇥k are sets satisfying
the conditions of Lemma 3.2. Let eA be a rank-r ap-
proximation of A, and eX 2 X , eY 2 Y be the output
of Alg. 1 with input eA and accuracy ✏. Then,

Tr

�
X>

? AY?

�
�Tr

� eX>A eY
�

 2 ·
⇣
✏
p
k · keAk

2

+ kA� eAk
2

⌘
· µX · µY ,

where µX,max
X2X kXk

F

and µY,max
Y2Y kYk

F

.

Proof. The proof follows the approximation guaran-
tees of Alg. 1 in Lemma 3.2 and Lemma A.6.
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B Correctness of Algorithm 2

In the sequel, we use kXk1,1 to denote the maximum
of the `

1

norm of the rows of X. When X 2 {0, 1}d⇥k,
the constraint kXk1,1 = 1 e↵ectively implies that each
row of X has exactly one nonzero entry.

Lemma 4.4. Let X,
�
X 2 {0, 1}d⇥k : kXk1,1 = 1

 
.

For any d⇥ k real matrix L, Algorithm 2 outputs

eX = argmax
X2X

Tr

�
X>L

�
,

in time O(k · d)

Proof. By construction, each row of X has exactly one
nonzero entry. Let ji 2 [k] denote the index of the
nonzero entry in the ith row of X. For any X 2 X ,

Tr

�
X>L

�
=

kX

j=1

x>
j lj =

kX

j=1

X

i2supp(xj)

1 · Lij

=
dX

i=1

Liji 
dX

i=1

max
j2[k]

Lij . (26)

Algorithm 2 achieves equality in (26) due to the choice
of ji in line 3. Finally, the running time follows imme-
diately from the O(k) time required to determine the
maximum entry of each of the d rows of L.

C Auxiliary Lemmas

Lemma C.7. Let a
1

, . . . , an and b
1

, . . . , bn be 2n real
numbers and let p and q be two numbers such that
1/p+ 1/q = 1 and p > 1. We have

�����

nX

i=1

aibi

����� 
 

nX

i=1

|ai|p
!

1/p

·
 

nX

i=1

|bi|q
!

1/q

.

Lemma C.8. For any A,B 2 Rn⇥k,
��hA,Bi

��,
��
Tr

�
A>B

���  kAk
F

kBk
F

.

Proof. TreatingA andB as vectors, the lemma follows
immediately from Lemma C.7 for p = q = 2.

Lemma C.9. For any two real matrices A and B of
appropriate dimensions,

kABk
F

 min
�
kAk

2

kBk
F

, kAk
F

kBk
2

 
.

Proof. Let bi denote the ith column of B. Then,

kABk2
F

=
X

i

kAbik2
2


X

i

kAk2
2

kbik2
2

= kAk2
2

X

i

kbik2
2

= kAk2
2

kBk2
F

.

Similarly, using the previous inequality,

kABk2
F

= kB>A>k2
F

 kB>k2
2

kA>k2
F

= kBk2
2

kAk2
F

.

The desired result follows combining the two upper
bounds.

Lemma C.10. For any real m⇥ k matrix X, m⇥ n
matrix A, and n⇥ k matrix Y,

��
Tr

�
X>AY

���  kXk
F

· kAk
2

· kYk
F

.

Proof. We have

��
Tr

�
X>AY

���  kXk
F

· kAYk
F

 kXk
F

· kAk
2

· kYk
F

,

with the first inequality following from Lemma C.8 on
|hX, AYi| and the second from Lemma C.9.

Lemma C.11. For any real m ⇥ n matrix A, and
pair of m⇥ k matrix X and n⇥ k matrix Y such that
X>X = Ik and Y>Y = Ik with k  min{m, n}, the
following holds:

��
Tr

�
X>AY

��� 
p
k ·
� kX

i=1

�2

i

�
A
��

1/2
.

Proof. By Lemma C.8,

|hX, AYi| =
��
Tr

�
X>AY

���

 kXk
F

· kAYk
F

=
p
k · kAYk

F

.

where the last inequality follows from the fact that
kXk2

F

= Tr

�
X>X

�
= Tr

�
Ik
�
= k. Further, for any

Y such that YTY = Ik,

kAYk2
F

 max
b
Y2Rn⇥k

b
Y

> b
Y=Ik

kA bYk2
F

=
kX

i=1

�2

i (A). (27)

Combining the two inequalities, the result follows.

Lemma C.12. For any real m⇥n matrix A, and any
k  min{m, n},

max
Y2Rn⇥k

Y

>
Y=Ik

kAYk
F

=

 
kX

i=1

�2

i (A)

!
1/2

.

The above equality is realized when the k columns of Y
coincide with the k leading right singular vectors of A.
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Proof. Let U⌃V> be the singular value decomposi-
tion of A, with ⌃jj = �j being the jth largest singular
value of A, j = 1, . . . , d, where d,min{m,n}. Due
to the invariance of the Frobenius norm under unitary
multiplication,

kAYk2
F

= kU⌃V>Yk2
F

= k⌃V>Yk2
F

. (28)

Continuing from (28),

k⌃V>Yk2
F

= Tr

�
Y>V⌃2V>Y

�

=
kX

i=1

y>
i

0

@
dX

j=1

�2

j · vjv
>
j

1

Ayi

=
dX

j=1

�2

j ·
kX

i=1

�
v>
j yi

�
2

.

Let zj,
Pk

i=1

�
v>
j yi

�
2

, j = 1, . . . , d. Note that each
individual zj satisfies

0  zj,
kX

i=1

�
v>
j yi

�
2  kvjk2 = 1,

where the last inequality follows from the fact that the
columns of Y are orthonormal. Further,

dX

j=1

zj =
dX

j=1

kX

i=1

�
v>
j yi

�
2

=
kX

i=1

dX

j=1

�
v>
j yi

�
2

=
kX

i=1

kyik2 = k.

Combining the above, we conclude that

kAYk2
F

=
dX

j=1

�2

j · zj  �2

1

+ . . .+ �2

k. (29)

Finally, it is straightforward to verify that if yi = vi,
i = 1, . . . , k, then (29) holds with equality.

Lemma C.13. For any real m ⇥ n matrix A, let
�i(A) be the ith largest singular value. For any r, k 
min{m,n},

r+kX

i=r+1

�i(A)  kp
r + k

kAk
F

.

Proof. By the Cauchy-Schwartz inequality,

r+kX

i=r+1

�i(A) =
r+kX

i=r+1

|�i(A)| 
 

r+kX

i=r+1

�2

i (A)

!
1/2

k1kk2

=
p
k ·
 

r+kX

i=r+1

�2

i (A)

!
1/2

.

Note that �r+1

(A), . . . ,�r+k(A) are the k smallest
among the r + k largest singular values. Hence,

r+kX

i=r+1

�2

i (A)  k

r + k

r+kX

i=1

�2

i (A)  k

r + k

lX

i=1

�2

i (A)

=
k

r + k
kAk2

F

.

Combining the two inequalities, the desired result fol-
lows.

Corollary 1. For any real m ⇥ n matrix A, the
rth largest singular value �

r

(A) satisfies �
r

(A) 
kAk

F

/
p
r.

Proof. It follows immediately from Lemma C.13.

First, we define the k · k1,2 norm of a matrix as the l
2

norm of the column with the maximum l
2

norm, i.e.,
for an r ⇥ k matrix C

kCk1,2 = max
1ik

kcik2.

Note that

kCk2
F

=
kX

i=1

kcik2
2

 k · max
1ik

kcik2
2

= k ·
✓
max
1ik

kcik2
◆

2

= k · kCk1,2. (30)


