## A Bilinear Maximization Guarantees

Lemma 3.2. For any real $m \times n$, rank-r matrix $\widetilde{\mathbf{A}}$ and arbitrary norm-bounded sets $\mathcal{X} \subset \mathbb{R}^{m \times k}$ and $\mathcal{Y} \subset \mathbb{R}^{n \times k}$, let

$$
\left(\widetilde{\mathbf{X}}_{\star}, \tilde{\mathbf{Y}}_{\star}\right) \triangleq \underset{\mathbf{X} \in \mathcal{X}, \mathbf{Y} \in \mathcal{Y}}{\arg \max } \operatorname{Tr}\left(\mathbf{X}^{\top} \tilde{\mathbf{A}} \mathbf{Y}\right) .
$$

If there exist operators $\mathrm{P} \mathcal{X}: \mathbb{R}^{m \times k} \rightarrow \mathcal{X}$ such that

$$
\mathrm{P}_{\mathcal{X}}(\mathbf{L})=\underset{\mathbf{X} \in \mathcal{X}}{\arg \max } \operatorname{TR}\left(\mathbf{X}^{\top} \mathbf{L}\right)
$$

and similarly, $\mathrm{P}_{\mathcal{Y}}: \mathbb{R}^{n \times k} \rightarrow \mathcal{Y}$ such that

$$
\mathrm{P}_{\mathcal{Y}}(\mathbf{R})=\underset{\mathbf{Y} \in \mathcal{Y}}{\arg \max } \operatorname{Tr}\left(\mathbf{R}^{\top} \mathbf{Y}\right)
$$

with running times $\mathrm{T}_{\mathcal{X}}$ and $\mathrm{T}_{\mathcal{Y}}$, respectively, then Algorithm 1 outputs $\widetilde{\mathbf{X}} \in \mathcal{X}$ and $\widetilde{\mathbf{Y}} \in \mathcal{Y}$ such that
$\operatorname{Tr}\left(\widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{A}} \widetilde{\mathbf{Y}}\right) \geq \operatorname{Tr}\left(\widetilde{\mathbf{X}}_{\star}^{\top} \widetilde{\mathbf{A}} \tilde{\mathbf{Y}}_{\star}\right)-2 \epsilon \sqrt{k} \cdot\|\widetilde{\mathbf{A}}\|_{2} \cdot \mu_{\mathcal{X}} \cdot \mu_{\mathcal{Y}}$, where $\mu_{\mathcal{X}} \triangleq \max _{\mathbf{X} \in \mathcal{X}}\|\mathbf{X}\|_{\mathrm{F}}$ and $\mu_{\mathcal{Y}} \triangleq \max _{\mathbf{Y} \in \mathcal{Y}}\|\mathbf{Y}\|_{\mathrm{F}}$, in time $O\left((2 \sqrt{r} / \epsilon)^{r \cdot k} \cdot\left(\mathrm{~T}_{\mathcal{X}}+\mathrm{T}_{\mathcal{Y}}+(m+n) r\right)\right)+\mathrm{T}_{\text {svo }}(r)$.

Proof. In the sequel, $\widetilde{\mathbf{U}}, \widetilde{\boldsymbol{\Sigma}}$ and $\widetilde{\mathbf{V}}$ are used to denote the $r$-truncated singular value decomposition of $\widetilde{\mathbf{A}}$.
Without loss of generality, we assume that $\mu_{\mathcal{X}}=\mu_{\mathcal{Y}}=$ 1 since the variables in $\mathcal{X}$ and $\mathcal{Y}$ can be normalized by $\mu_{\mathcal{X}}$ and $\mu_{\mathcal{Y}}$, respectively, while simultaneously scaling the singular values of $\widetilde{\mathbf{A}}$ by a factor of $\mu_{\mathcal{X}} \cdot \mu_{\mathcal{Y}}$. Then, $\|\mathbf{Y}\|_{\infty, 2} \leq 1, \forall \mathbf{Y} \in \mathcal{Y}$, where $\|\mathbf{Y}\|_{\infty, 2}$ denotes the maximum of the $\ell_{2}$-norm of the columns of $\mathbf{Y}$.
Let $\widetilde{\mathbf{X}}_{\star}, \widetilde{\mathbf{Y}}_{\star}$ be the optimal pair on $\widetilde{\mathbf{A}}$, i.e.,

$$
\left(\widetilde{\mathbf{X}}_{\star}, \widetilde{\mathbf{Y}}_{\star}\right) \triangleq \underset{\mathbf{X} \in \mathcal{X}, \mathbf{Y} \in \mathcal{Y}}{\arg \max } \operatorname{Tr}\left(\mathbf{X}^{\top} \widetilde{\mathbf{A}} \mathbf{Y}\right)
$$

and define the $r \times k$ matrix $\widetilde{\mathbf{C}}_{\star} \triangleq \widetilde{\mathbf{V}}^{\top} \widetilde{\mathbf{Y}}_{\star}$. Note that

$$
\begin{align*}
\left\|\widetilde{\mathbf{C}}_{\star}\right\|_{\infty, 2} & =\left\|\widetilde{\mathbf{V}}^{\top} \widetilde{\mathbf{Y}}_{\star}\right\|_{\infty, 2} \\
& =\max _{1 \leq i \leq k}\left\|\tilde{\mathbf{V}}^{\top}\left[\widetilde{\mathbf{Y}}_{\star}\right]_{; i, i}\right\|_{2} \leq 1, \tag{14}
\end{align*}
$$

with the last inequality following from the facts that $\|\mathbf{Y}\|_{\infty, 2} \leq 1 \forall \mathbf{Y} \in \mathcal{Y}$ and the columns of $\widetilde{\mathbf{V}}$ are orthonormal. Alg. 1 iterates over the points in $\left(\mathbb{B}_{2}^{r-1}\right)^{\otimes k}$. The latter is used to describe the set of $r \times k$ matrices whose columns have $\ell_{2}$ norm at most equal to 1 . At each point, the algorithm computes a candidate solution. By (14), the $\epsilon$-net contains an $r \times k$ matrix $\mathbf{C}_{\#}$ such that

$$
\left\|\mathbf{C}_{\sharp}-\widetilde{\mathbf{C}}_{\star}\right\|_{\infty, 2} \leq \epsilon .
$$

Let $\mathbf{X}_{\sharp}, \mathbf{Y}_{\sharp}$ be the candidate pair computed at $\mathbf{C}_{\sharp}$ by the two step maximization, i.e.,

$$
\mathbf{X}_{\sharp} \triangleq \underset{\mathbf{X} \in \mathcal{X}}{ } \underset{\arg \max }{\operatorname{ar}} \operatorname{Tr}\left(\mathbf{X}^{\top} \tilde{\mathbf{U}} \tilde{\Sigma} \mathbf{C}_{\sharp}\right)
$$

and

$$
\begin{equation*}
\mathbf{Y}_{\sharp} \triangleq \underset{\mathbf{Y} \in \mathcal{Y}}{\arg \max } \operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \tilde{\mathbf{A}} \mathbf{Y}\right) . \tag{15}
\end{equation*}
$$

We show that the objective values achieved by the candidate pair $\mathbf{X}_{\sharp}, \mathbf{Y}_{\sharp}$ satisfies the inequality of the lemma implying the desired result.
By the definition of $\widetilde{\mathbf{C}}_{\star}$ and the linearity of the trace,

$$
\begin{align*}
& \operatorname{Tr}\left(\widetilde{\mathbf{X}}_{\star}^{\top} \widetilde{\mathbf{A}} \widetilde{\mathbf{Y}}_{\star}\right) \\
& =\operatorname{Tr}\left(\widetilde{\mathbf{X}}_{\star}^{\top} \widetilde{\mathbf{U}} \widetilde{\boldsymbol{\Sigma}} \widetilde{\mathbf{C}}_{\star}\right) \\
& =\operatorname{Tr}\left(\widetilde{\mathbf{X}}_{\star}^{\top} \widetilde{\mathbf{U}} \widetilde{\boldsymbol{\Sigma}} \mathbf{C}_{\sharp}\right)+\operatorname{Tr}\left(\widetilde{\mathbf{X}}_{\star}^{\top} \widetilde{\mathbf{U}} \widetilde{\boldsymbol{\Sigma}}\left(\widetilde{\mathbf{C}}_{\star}-\mathbf{C}_{\sharp}\right)\right) \\
& \leq \operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \widetilde{\mathbf{U}} \widetilde{\boldsymbol{\Sigma}} \mathbf{C}_{\sharp}\right)+\operatorname{Tr}\left(\widetilde{\mathbf{X}}_{\star}^{\top} \widetilde{\mathbf{U}} \widetilde{\boldsymbol{\Sigma}}\left(\widetilde{\mathbf{C}}_{\star}-\mathbf{C}_{\sharp}\right)\right) . \tag{16}
\end{align*}
$$

The inequality follows from the fact that (by definition (15)) $\mathbf{X}_{\sharp}$ maximizes the first term over all $\mathbf{X} \in \mathcal{X}$. We compute an upper bound on the right hand side of (16). Define

$$
\widehat{\mathbf{Y}} \triangleq \underset{\mathbf{Y} \in \mathcal{Y}}{ } \underset{\arg \min }{ }\left\|\widetilde{V}^{\top} \mathbf{Y}-\mathbf{C}_{\sharp}\right\|_{\infty, 2} .
$$

(We note that $\widehat{\mathbf{Y}}$ is used for the analysis and is never explicitly calculated.) Further, define the $r \times k$ matrix $\widehat{\mathbf{C}} \triangleq \widetilde{\mathbf{V}}^{\top} \widehat{\mathbf{Y}}$. By the linearity of the trace operator

$$
\begin{align*}
& \operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \tilde{\mathbf{U}} \widetilde{\boldsymbol{\Sigma}} \mathbf{C}_{\sharp}\right) \\
& =\operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \tilde{\mathbf{U}} \widetilde{\boldsymbol{\Sigma}} \widehat{\mathbf{C}}\right)+\operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \tilde{\mathbf{U}} \widetilde{\boldsymbol{\Sigma}}\left(\mathbf{C}_{\sharp}-\widehat{\mathbf{C}}\right)\right) \\
& =\operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \tilde{\mathbf{U}} \tilde{\boldsymbol{\Sigma}} \tilde{\mathbf{V}}^{\top} \widehat{\mathbf{Y}}\right)+\operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \tilde{\mathbf{U}} \widetilde{\boldsymbol{\Sigma}}\left(\mathbf{C}_{\sharp}-\widehat{\mathbf{C}}\right)\right) \\
& \leq \operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \tilde{\mathbf{U}} \tilde{\Sigma} \tilde{\mathbf{V}}^{\top} \mathbf{Y}_{\sharp}\right)+\operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \tilde{\mathbf{U}} \widetilde{\Sigma}\left(\mathbf{C}_{\sharp}-\widehat{\mathbf{C}}\right)\right) \\
& =\operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \widetilde{\mathbf{A}} \mathbf{Y}_{\sharp}\right)+\operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \widetilde{\mathbf{U}} \tilde{\boldsymbol{\Sigma}}\left(\mathbf{C}_{\sharp}-\widehat{\mathbf{C}}\right)\right) . \tag{17}
\end{align*}
$$

The inequality follows from the fact that (by definition (15)) $\mathbf{Y}_{\sharp}$ maximizes the first term over all $\mathbf{Y} \in \mathcal{Y}$. Combining (17) and (16), and rearranging the terms, we obtain

$$
\begin{align*}
& \operatorname{Tr}\left(\widetilde{\mathbf{X}}_{\star}^{\top} \widetilde{\mathbf{A}} \tilde{\mathbf{Y}}_{\star}\right)-\operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \widetilde{\mathbf{A}} \mathbf{Y}_{\sharp}\right) \\
& \leq \operatorname{Tr}\left(\widetilde{\mathbf{X}}_{\star}^{\top} \tilde{\mathbf{U}} \widetilde{\boldsymbol{\Sigma}}\left(\widetilde{\mathbf{C}}_{\star}-\mathbf{C}_{\sharp}\right)\right)+\operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \widetilde{\mathbf{U}} \widetilde{\boldsymbol{\Sigma}}\left(\mathbf{C}_{\sharp}-\widehat{\mathbf{C}}\right)\right) . \tag{18}
\end{align*}
$$

By Lemma C.10,

$$
\begin{align*}
\mid \operatorname{Tr} & \left(\widetilde{\mathbf{X}}_{\star}^{\top} \widetilde{\mathbf{U}} \widetilde{\boldsymbol{\Sigma}}\left(\widetilde{\mathbf{C}}_{\star}-\mathbf{C}_{\sharp}\right)\right) \mid \\
& \leq\left\|\widetilde{\mathbf{X}}_{\star}^{\top} \widetilde{\mathbf{U}}_{\mathrm{F}} \cdot\right\| \widetilde{\widetilde{\boldsymbol{\Sigma}}\left\|_{2} \cdot\right\| \widetilde{\mathbf{C}}_{\star}-\mathbf{C}_{\sharp} \|_{\mathrm{F}}} \\
& \leq\left\|\widetilde{\mathbf{X}}_{\star}\right\|_{\mathrm{F}} \cdot \sigma_{1}(\widetilde{\mathbf{A}}) \cdot \sqrt{k} \cdot \epsilon \\
& \leq \max _{\mathbf{X} \in \mathcal{X}}\|\mathbf{X}\|_{\mathrm{F}} \cdot \sigma_{1}(\widetilde{\mathbf{A}}) \cdot \sqrt{k} \cdot \epsilon \\
& \leq \sigma_{1}(\widetilde{\mathbf{A}}) \cdot \sqrt{k} \cdot \epsilon . \tag{19}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\left|\operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \tilde{\mathbf{U}} \widetilde{\boldsymbol{\Sigma}}\left(\mathbf{C}_{\sharp}-\widehat{\mathbf{C}}\right)\right)\right| & \leq\left\|\mathbf{X}_{\sharp} \tilde{\mathbf{U}}\right\|_{\mathrm{F}} \cdot\|\widetilde{\boldsymbol{\Sigma}}\|_{2} \cdot\left\|\mathbf{C}_{\sharp}-\widehat{\mathbf{C}}\right\|_{\mathrm{F}} \\
& \leq \max _{\mathbf{X} \in \mathcal{X}}\|\mathbf{X}\|_{\mathrm{F}} \cdot \sigma_{1}(\widetilde{\mathbf{A}}) \cdot \sqrt{k} \cdot \epsilon \\
& \leq \sigma_{1}(\widetilde{\mathbf{A}}) \cdot \sqrt{k} \cdot \epsilon . \tag{20}
\end{align*}
$$

The second inequality follows from the fact that by the definition of $\widehat{\mathbf{C}}$,

$$
\begin{aligned}
\left\|\widehat{\mathbf{C}}-\mathbf{C}_{\sharp}\right\|_{\infty, 2} & =\left\|\widetilde{V}^{\top} \widehat{\mathbf{Y}}-\mathbf{C}_{\sharp}\right\|_{\infty, 2} \leq\left\|\widetilde{V}^{\top} \widetilde{\mathbf{Y}}_{\star}-\mathbf{C}_{\sharp}\right\|_{\infty, 2} \\
& =\left\|\widetilde{\mathbf{C}}_{\star}-\mathbf{C}_{\sharp}\right\|_{\infty, 2} \leq \epsilon,
\end{aligned}
$$

which implies that

$$
\left\|\widehat{\mathbf{C}}-\mathbf{C}_{\sharp}\right\|_{\mathrm{F}} \leq \sqrt{k} \cdot \epsilon .
$$

Continuing from (18) under (19) and (20),

$$
\operatorname{Tr}\left(\mathbf{X}_{\sharp}^{\top} \widetilde{\mathbf{A}} \mathbf{Y}_{\sharp}\right) \geq \operatorname{Tr}\left(\widetilde{\mathbf{X}}_{\star}^{\top} \widetilde{\mathbf{A}} \tilde{\mathbf{Y}}_{\star}\right)-2 \cdot \epsilon \cdot \sqrt{k} \cdot \sigma_{1}(\widetilde{\mathbf{A}})
$$

Recalling that the singular values of $\widetilde{\mathbf{A}}$ have been scaled by a factor of $\mu_{\mathcal{X}} \cdot \mu_{\mathcal{Y}}$ yields the desired result.

The runtime of Alg. 1 follows from the cost per iteration and the cardinality of the $\epsilon$-net. Matrix multiplications can exploit the truncated singular value decomposition of $\widetilde{\mathbf{A}}$ which is performed only once.
Lemma A.6. For any $\mathbf{A}, \widetilde{\mathbf{A}} \in \mathbb{R}^{m \times n}$, and normboudned sets $\mathcal{X} \subseteq \mathbb{R}^{m \times k}$ and $\mathcal{Y} \subseteq \mathbb{R}^{n \times k}$, let

$$
\left(\mathbf{X}_{\star}, \mathbf{Y}_{\star}\right) \triangleq \underset{\mathbf{X} \in \mathcal{X}, \mathbf{Y} \in \mathcal{Y}}{\arg \max } \operatorname{Tr}\left(\mathbf{X}^{\top} \mathbf{A} \mathbf{Y}\right)
$$

and

$$
\left(\widetilde{\mathbf{X}}_{\star}, \widetilde{\mathbf{Y}}_{\star}\right) \triangleq \underset{\mathbf{X} \in \mathcal{X}, \mathbf{Y} \in \mathcal{Y}}{\arg \max } \operatorname{TR}\left(\mathbf{X}^{\top} \widetilde{\mathbf{A}} \mathbf{Y}\right)
$$

For any $(\widetilde{\mathbf{X}}, \tilde{\mathbf{Y}}) \in \mathcal{X} \times \mathcal{Y}$ such that

$$
\operatorname{Tr}\left(\tilde{\mathbf{X}}^{\top} \tilde{\mathbf{A}} \tilde{\mathbf{Y}}\right) \geq \gamma \cdot \operatorname{Tr}\left(\tilde{\mathbf{X}}_{\star}^{\top} \tilde{\mathbf{A}} \tilde{\mathbf{Y}}_{\star}\right)-C
$$

for some $0<\gamma \leq 1$, we have

$$
\begin{aligned}
\operatorname{Tr}\left(\widetilde{\mathbf{X}}^{\top} \mathbf{A} \tilde{\mathbf{Y}}\right) \geq & \gamma \cdot \operatorname{Tr}\left(\mathbf{X}_{\star}^{\top} \mathbf{A} \mathbf{Y}_{\star}\right)-C \\
& -2 \cdot\|\mathbf{A}-\widetilde{\mathbf{A}}\|_{2} \cdot \mu_{\mathcal{X}} \cdot \mu_{\mathcal{Y}}
\end{aligned}
$$

where $\mu_{\mathcal{X}} \triangleq \max _{\mathbf{X} \in \mathcal{X}}\|\mathbf{X}\|_{\mathrm{F}}$ and $\mu_{\mathcal{Y}} \triangleq \max _{\mathbf{Y} \in \mathcal{Y}}\|\mathbf{Y}\|_{\mathrm{F}}$.
Proof. By the optimality of $\widetilde{\mathbf{X}}_{\star}, \widetilde{\mathbf{Y}}_{\star}$ for $\widetilde{\mathbf{A}}$, we have

$$
\operatorname{Tr}\left(\tilde{\mathbf{X}}_{\star}^{\top} \tilde{\mathbf{A}} \tilde{\mathbf{Y}}_{\star}\right) \geq \operatorname{Tr}\left(\mathbf{X}_{\star}^{\top} \tilde{\mathbf{A}} \mathbf{Y}_{\star}\right)
$$

In turn, for any $(\widetilde{\mathbf{X}}, \widetilde{\mathbf{Y}}) \in \mathcal{X} \times \mathcal{Y}$ such that

$$
\operatorname{Tr}\left(\widetilde{\mathbf{X}}^{\top} \tilde{\mathbf{A}} \tilde{\mathbf{Y}}\right) \geq \gamma \cdot \operatorname{Tr}\left(\tilde{\mathbf{X}}_{\star}^{\top} \tilde{\mathbf{A}} \tilde{\mathbf{Y}}_{\star}\right)-C
$$

for some $0<\gamma<1$ (if such pairs exist), we have

$$
\begin{equation*}
\operatorname{Tr}\left(\tilde{\mathbf{X}}^{\top} \tilde{\mathbf{A}} \tilde{\mathbf{Y}}\right) \geq \gamma \cdot \operatorname{Tr}\left(\mathbf{X}_{\star}^{\top} \tilde{\mathbf{A}} \mathbf{Y}_{\star}\right)-C \tag{21}
\end{equation*}
$$

By the linearity of the trace operator,

$$
\begin{align*}
& \operatorname{Tr}\left(\widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{A}} \tilde{\mathbf{Y}}\right) \\
& \quad=\operatorname{Tr}\left(\widetilde{\mathbf{X}}^{\top} \mathbf{A} \tilde{\mathbf{Y}}\right)-\operatorname{Tr}\left(\widetilde{\mathbf{X}}^{\top}(\mathbf{A}-\widetilde{\mathbf{A}}) \widetilde{\mathbf{Y}}\right) \\
& \quad \leq \operatorname{Tr}\left(\widetilde{\mathbf{X}}^{\top} \mathbf{A} \tilde{\mathbf{Y}}\right)+\left|\operatorname{Tr}\left(\widetilde{\mathbf{X}}^{\top}(\mathbf{A}-\widetilde{\mathbf{A}}) \widetilde{\mathbf{Y}}\right)\right| \tag{22}
\end{align*}
$$

By Lemma C.10,

$$
\begin{align*}
& \left|\operatorname{TR}\left(\widetilde{\mathbf{X}}^{\top}(\mathbf{A}-\widetilde{\mathbf{A}}) \widetilde{\mathbf{Y}}\right)\right| \\
& \leq\|\widetilde{\mathbf{X}}\|_{\mathrm{F}} \cdot\|\widetilde{\mathbf{Y}}\|_{\mathrm{F}} \cdot\|\mathbf{A}-\widetilde{\mathbf{A}}\|_{2} \\
& \leq\|\mathbf{A}-\widetilde{\mathbf{A}}\|_{2} \cdot \max _{\mathbf{X} \in \mathcal{X}}\|\mathbf{X}\|_{\mathrm{F}} \cdot \max _{\mathbf{Y} \in \mathcal{Y}}\|\mathbf{Y}\|_{\mathrm{F}} \triangleq R . \tag{23}
\end{align*}
$$

Continuing from (22),

$$
\begin{equation*}
\operatorname{Tr}\left(\widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{A}} \tilde{\mathbf{Y}}\right) \leq \operatorname{Tr}\left(\widetilde{\mathbf{X}}^{\top} \mathbf{A} \tilde{\mathbf{Y}}\right)+R \tag{24}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
& \operatorname{Tr}\left(\mathbf{X}_{\star}^{\top} \widetilde{\mathbf{A}} \mathbf{Y}_{\star}\right) \\
& =\operatorname{Tr}\left(\mathbf{X}_{\star}^{\top} \mathbf{A} \mathbf{Y}_{\star}\right)-\operatorname{Tr}\left(\mathbf{X}_{\star}^{\top}(\mathbf{A}-\widetilde{\mathbf{A}}) \mathbf{Y}_{\star}\right) \\
& \geq \operatorname{Tr}\left(\mathbf{X}_{\star}^{\top} \mathbf{A} \mathbf{Y}_{\star}\right)-\left|\operatorname{Tr}\left(\mathbf{X}_{\star}^{\top}(\mathbf{A}-\widetilde{\mathbf{A}}) \mathbf{Y}_{\star}\right)\right| \\
& \geq \operatorname{Tr}\left(\mathbf{X}_{\star}^{\top} \mathbf{A} \mathbf{Y}_{\star}\right)-R . \tag{25}
\end{align*}
$$

Combining the above, we have

$$
\begin{aligned}
\operatorname{Tr}\left(\widetilde{\mathbf{X}}^{\top} \mathbf{A} \tilde{\mathbf{Y}}\right) & \geq \operatorname{Tr}\left(\widetilde{\mathbf{X}}^{\top} \tilde{\mathbf{A}} \tilde{\mathbf{Y}}\right)-R \\
& \geq \gamma \cdot \operatorname{Tr}\left(\mathbf{X}_{\star}^{\top} \tilde{\mathbf{A}} \mathbf{Y}_{\star}\right)-R-C \\
& \geq \gamma \cdot\left(\operatorname{Tr}\left(\mathbf{X}_{\star}^{\top} \mathbf{A} \mathbf{Y}_{\star}\right)-R\right)-R-C \\
& =\gamma \cdot \operatorname{Tr}\left(\mathbf{X}_{\star}^{\top} \mathbf{A} \mathbf{Y}_{\star}\right)-(1+\gamma) \cdot R-C \\
& \geq \gamma \cdot \operatorname{Tr}\left(\mathbf{X}_{\star}^{\top} \mathbf{A} \mathbf{Y}_{\star}\right)-2 \cdot R-C,
\end{aligned}
$$

where the first inequality follows from (24) the second from (21), the third from (25), and the last from the fact that $R \geq 0$. This concludes the proof.

Lemma 3.3. For any $\mathbf{A} \in \mathbb{R}^{m \times n}$, let

$$
\left(\mathbf{X}_{\star}, \mathbf{Y}_{\star}\right) \triangleq \underset{\mathbf{X} \in \mathcal{X}, \mathbf{Y} \in \mathcal{Y}}{\arg \max } \operatorname{Tr}\left(\mathbf{X}^{\top} \mathbf{A} \mathbf{Y}\right)
$$

where $\mathcal{X} \subseteq \mathbb{R}^{m \times k}$ and $\mathcal{Y} \subseteq \mathbb{R}^{n \times k}$ are sets satisfying the conditions of Lemma 3.2. Let $\widetilde{\mathbf{A}}$ be a rank-r approximation of $\mathbf{A}$, and $\widetilde{\mathbf{X}} \in \mathcal{X}, \widetilde{\mathbf{Y}} \in \mathcal{Y}$ be the output of Alg. 1 with input $\widetilde{\mathbf{A}}$ and accuracy $\epsilon$. Then,

$$
\begin{aligned}
& \operatorname{Tr}\left(\mathbf{X}_{\star}^{\top} \mathbf{A} \mathbf{Y}_{\star}\right)-\operatorname{Tr}\left(\widetilde{\mathbf{X}}^{\top} \mathbf{A} \tilde{\mathbf{Y}}\right) \\
& \quad \leq 2 \cdot\left(\epsilon \sqrt{k} \cdot\|\widetilde{\mathbf{A}}\|_{2}+\|\mathbf{A}-\widetilde{\mathbf{A}}\|_{2}\right) \cdot \mu_{\mathcal{X}} \cdot \mu_{\mathcal{Y}}
\end{aligned}
$$

where $\mu_{\mathcal{X}} \triangleq \max _{\mathbf{X} \in \mathcal{X}}\|\mathbf{X}\|_{\mathrm{F}}$ and $\mu_{\mathcal{Y}} \triangleq \max _{\mathbf{Y} \in \mathcal{Y}}\|\mathbf{Y}\|_{\mathrm{F}}$.
Proof. The proof follows the approximation guarantees of Alg. 1 in Lemma 3.2 and Lemma A.6.

## B Correctness of Algorithm 2

In the sequel, we use $\|\mathbf{X}\|_{\infty, 1}$ to denote the maximum of the $\ell_{1}$ norm of the rows of $\mathbf{X}$. When $\mathbf{X} \in\{0,1\}^{d \times k}$, the constraint $\|\mathbf{X}\|_{\infty, 1}=1$ effectively implies that each row of $\mathbf{X}$ has exactly one nonzero entry.
Lemma 4.4. Let $\mathcal{X} \triangleq\left\{\mathbf{X} \in\{0,1\}^{d \times k}:\|\mathbf{X}\|_{\infty, 1}=1\right\}$. For any $d \times k$ real matrix $\mathbf{L}$, Algorithm 2 outputs

$$
\widetilde{\mathbf{X}}=\underset{\mathbf{X} \in \mathcal{X}}{\arg \max } \operatorname{Tr}\left(\mathbf{X}^{\top} \mathbf{L}\right),
$$

in time $O(k \cdot d)$

Proof. By construction, each row of $\mathbf{X}$ has exactly one nonzero entry. Let $j_{i} \in[k]$ denote the index of the nonzero entry in the $i$ th row of $\mathbf{X}$. For any $\mathbf{X} \in \mathcal{X}$,

$$
\begin{align*}
\operatorname{TR}\left(\mathbf{X}^{\top} \mathbf{L}\right) & =\sum_{j=1}^{k} \mathbf{x}_{j}^{\top} \mathbf{l}_{j}=\sum_{j=1}^{k} \sum_{i \in \operatorname{supp}\left(\mathbf{x}_{j}\right)} 1 \cdot L_{i j} \\
& =\sum_{i=1}^{d} L_{i j_{i}} \leq \sum_{i=1}^{d} \max _{j \in[k]} L_{i j} . \tag{26}
\end{align*}
$$

Algorithm 2 achieves equality in (26) due to the choice of $j_{i}$ in line 3 . Finally, the running time follows immediately from the $O(k)$ time required to determine the maximum entry of each of the $d$ rows of $\mathbf{L}$.

## C Auxiliary Lemmas

Lemma C.7. Let $a_{1}, \ldots, a_{n}$ and $b_{1}, \ldots, b_{n}$ be $2 n$ real numbers and let $p$ and $q$ be two numbers such that $1 / p+1 / q=1$ and $p>1$. We have

$$
\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p} \cdot\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{1 / q}
$$

Lemma C.8. For any $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times k}$,

$$
|\langle\mathbf{A}, \mathbf{B}\rangle| \triangleq\left|\operatorname{TR}\left(\mathbf{A}^{\top} \mathbf{B}\right)\right| \leq\|\mathbf{A}\|_{\mathrm{F}}\|\mathbf{B}\|_{\mathrm{F}} .
$$

Proof. Treating $\mathbf{A}$ and $\mathbf{B}$ as vectors, the lemma follows immediately from Lemma C. 7 for $p=q=2$.
Lemma C.9. For any two real matrices $\mathbf{A}$ and $\mathbf{B}$ of appropriate dimensions,

$$
\|\mathbf{A B}\|_{F} \leq \min \left\{\|\mathbf{A}\|_{2}\|\mathbf{B}\|_{F},\|\mathbf{A}\|_{\mathrm{F}}\|\mathbf{B}\|_{2}\right\} .
$$

Proof. Let $\mathbf{b}_{i}$ denote the $i$ th column of $\mathbf{B}$. Then,

$$
\begin{aligned}
\|\mathbf{A B}\|_{\mathrm{F}}^{2} & =\sum_{i}\left\|\mathbf{A} \mathbf{b}_{i}\right\|_{2}^{2} \leq \sum_{i}\|\mathbf{A}\|_{2}^{2}\left\|\mathbf{b}_{i}\right\|_{2}^{2} \\
& =\|\mathbf{A}\|_{2}^{2} \sum_{i}\left\|\mathbf{b}_{i}\right\|_{2}^{2}=\|\mathbf{A}\|_{2}^{2}\|\mathbf{B}\|_{\mathrm{F}}^{2}
\end{aligned}
$$

Similarly, using the previous inequality,

$$
\|\mathbf{A B}\|_{\mathrm{F}}^{2}=\left\|\mathbf{B}^{\top} \mathbf{A}^{\top}\right\|_{\mathrm{F}}^{2} \leq\left\|\mathbf{B}^{\top}\right\|_{2}^{2}\left\|\mathbf{A}^{\top}\right\|_{\mathrm{F}}^{2}=\|\mathbf{B}\|_{2}^{2}\|\mathbf{A}\|_{\mathrm{F}}^{2}
$$

The desired result follows combining the two upper bounds.

Lemma C.10. For any real $m \times k$ matrix $\mathbf{X}, m \times n$ matrix $\mathbf{A}$, and $n \times k$ matrix $\mathbf{Y}$,

$$
\left|\operatorname{TR}\left(\mathbf{X}^{\top} \mathbf{A Y}\right)\right| \leq\|\mathbf{X}\|_{\mathrm{F}} \cdot\|\mathbf{A}\|_{2} \cdot\|\mathbf{Y}\|_{\mathrm{F}}
$$

Proof. We have
$\left|\operatorname{TR}\left(\mathbf{X}^{\top} \mathbf{A Y}\right)\right| \leq\|\mathbf{X}\|_{\mathrm{F}} \cdot\|\mathbf{A} \mathbf{Y}\|_{\mathrm{F}} \leq\|\mathbf{X}\|_{\mathrm{F}} \cdot\|\mathbf{A}\|_{2} \cdot\|\mathbf{Y}\|_{\mathrm{F}}$, with the first inequality following from Lemma C. 8 on $|\langle\mathbf{X}, \mathbf{A Y}\rangle|$ and the second from Lemma C.9.

Lemma C.11. For any real $m \times n$ matrix A, and pair of $m \times k$ matrix $\mathbf{X}$ and $n \times k$ matrix $\mathbf{Y}$ such that $\mathbf{X}^{\top} \mathbf{X}=\mathbf{I}_{k}$ and $\mathbf{Y}^{\top} \mathbf{Y}=\mathbf{I}_{k}$ with $k \leq \min \{m, n\}$, the following holds:

$$
\left|\operatorname{Tr}\left(\mathbf{X}^{\top} \mathbf{A} \mathbf{Y}\right)\right| \leq \sqrt{k} \cdot\left(\sum_{i=1}^{k} \sigma_{i}^{2}(\mathbf{A})\right)^{1 / 2}
$$

Proof. By Lemma C.8,

$$
\begin{aligned}
|\langle\mathbf{X}, \mathbf{A Y}\rangle| & =\left|\operatorname{Tr}\left(\mathbf{X}^{\top} \mathbf{A} \mathbf{Y}\right)\right| \\
& \leq\|\mathbf{X}\|_{\mathrm{F}} \cdot\|\mathbf{A Y}\|_{\mathrm{F}}=\sqrt{k} \cdot\|\mathbf{A Y}\|_{\mathrm{F}} .
\end{aligned}
$$

where the last inequality follows from the fact that $\|\mathbf{X}\|_{\mathrm{F}}^{2}=\operatorname{Tr}\left(\mathbf{X}^{\top} \mathbf{X}\right)=\operatorname{Tr}\left(\mathbf{I}_{k}\right)=k$. Further, for any $\mathbf{Y}$ such that $\mathbf{Y}^{T} \mathbf{Y}=\mathbf{I}_{k}$,

$$
\begin{equation*}
\|\mathbf{A Y}\|_{\mathrm{F}}^{2} \leq \max _{\substack{\widehat{\mathbf{Y}} \in \mathbb{R}^{n \times k} \\ \widehat{\mathbf{Y}} \\ \widehat{\mathbf{Y}}=\mathbf{I}_{k}}}\|\mathbf{A} \widehat{\mathbf{Y}}\|_{\mathrm{F}}^{2}=\sum_{i=1}^{k} \sigma_{i}^{2}(\mathbf{A}) \tag{27}
\end{equation*}
$$

Combining the two inequalities, the result follows.
Lemma C.12. For any real $m \times n$ matrix $\mathbf{A}$, and any $k \leq \min \{m, n\}$,

$$
\max _{\substack{\mathbf{Y} \in \mathbb{R}^{n \times k} \\ \mathbf{Y}^{\top} \mathbf{Y}=\mathbf{I}_{k}}}\|\mathbf{A Y}\|_{\mathrm{F}}=\left(\sum_{i=1}^{k} \sigma_{i}^{2}(\mathbf{A})\right)^{1 / 2}
$$

The above equality is realized when the $k$ columns of $\mathbf{Y}$ coincide with the $k$ leading right singular vectors of $\mathbf{A}$.

Proof. Let $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$ be the singular value decomposition of $\mathbf{A}$, with $\Sigma_{j j}=\sigma_{j}$ being the $j$ th largest singular value of $\mathbf{A}, j=1, \ldots, d$, where $d \triangleq \min \{m, n\}$. Due to the invariance of the Frobenius norm under unitary multiplication,

$$
\begin{equation*}
\|\mathbf{A Y}\|_{\mathrm{F}}^{2}=\left\|\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{Y}\right\|_{\mathrm{F}}^{2}=\left\|\boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{Y}\right\|_{\mathrm{F}}^{2} \tag{28}
\end{equation*}
$$

Continuing from (28),

$$
\begin{aligned}
\left\|\boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{Y}\right\|_{\mathrm{F}}^{2} & =\operatorname{Tr}\left(\mathbf{Y}^{\top} \mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \mathbf{Y}\right) \\
& =\sum_{i=1}^{k} \mathbf{y}_{i}^{\top}\left(\sum_{j=1}^{d} \sigma_{j}^{2} \cdot \mathbf{v}_{j} \mathbf{v}_{j}^{\top}\right) \mathbf{y}_{i} \\
& =\sum_{j=1}^{d} \sigma_{j}^{2} \cdot \sum_{i=1}^{k}\left(\mathbf{v}_{j}^{\top} \mathbf{y}_{i}\right)^{2}
\end{aligned}
$$

Let $z_{j} \triangleq \sum_{i=1}^{k}\left(\mathbf{v}_{j}^{\top} \mathbf{y}_{i}\right)^{2}, j=1, \ldots, d$. Note that each individual $z_{j}$ satisfies

$$
0 \leq z_{j} \triangleq \sum_{i=1}^{k}\left(\mathbf{v}_{j}^{\top} \mathbf{y}_{i}\right)^{2} \leq\left\|\mathbf{v}_{j}\right\|^{2}=1
$$

where the last inequality follows from the fact that the columns of $\mathbf{Y}$ are orthonormal. Further,

$$
\begin{aligned}
\sum_{j=1}^{d} z_{j} & =\sum_{j=1}^{d} \sum_{i=1}^{k}\left(\mathbf{v}_{j}^{\top} \mathbf{y}_{i}\right)^{2}=\sum_{i=1}^{k} \sum_{j=1}^{d}\left(\mathbf{v}_{j}^{\top} \mathbf{y}_{i}\right)^{2} \\
& =\sum_{i=1}^{k}\left\|\mathbf{y}_{i}\right\|^{2}=k .
\end{aligned}
$$

Combining the above, we conclude that

$$
\begin{equation*}
\|\mathbf{A Y}\|_{\mathrm{F}}^{2}=\sum_{j=1}^{d} \sigma_{j}^{2} \cdot z_{j} \leq \sigma_{1}^{2}+\ldots+\sigma_{k}^{2} \tag{29}
\end{equation*}
$$

Finally, it is straightforward to verify that if $\mathbf{y}_{i}=\mathbf{v}_{i}$, $i=1, \ldots, k$, then (29) holds with equality.

Lemma C.13. For any real $m \times n$ matrix A, let $\sigma_{i}(\mathbf{A})$ be the ith largest singular value. For any $r, k \leq$ $\min \{m, n\}$,

$$
\sum_{i=r+1}^{r+k} \sigma_{i}(\mathbf{A}) \leq \frac{k}{\sqrt{r+k}}\|\mathbf{A}\|_{\mathrm{F}}
$$

Proof. By the Cauchy-Schwartz inequality,

$$
\begin{aligned}
\sum_{i=r+1}^{r+k} \sigma_{i}(\mathbf{A}) & =\sum_{i=r+1}^{r+k}\left|\sigma_{i}(\mathbf{A})\right| \leq\left(\sum_{i=r+1}^{r+k} \sigma_{i}^{2}(\mathbf{A})\right)^{1 / 2}\left\|\mathbf{1}_{k}\right\|_{2} \\
& =\sqrt{k} \cdot\left(\sum_{i=r+1}^{r+k} \sigma_{i}^{2}(\mathbf{A})\right)^{1 / 2}
\end{aligned}
$$

Note that $\sigma_{r+1}(\mathbf{A}), \ldots, \sigma_{r+k}(\mathbf{A})$ are the $k$ smallest among the $r+k$ largest singular values. Hence,

$$
\begin{aligned}
\sum_{i=r+1}^{r+k} \sigma_{i}^{2}(\mathbf{A}) & \leq \frac{k}{r+k} \sum_{i=1}^{r+k} \sigma_{i}^{2}(\mathbf{A}) \leq \frac{k}{r+k} \sum_{i=1}^{l} \sigma_{i}^{2}(\mathbf{A}) \\
& =\frac{k}{r+k}\|\mathbf{A}\|_{\mathrm{F}}^{2}
\end{aligned}
$$

Combining the two inequalities, the desired result follows.

Corollary 1. For any real $m \times n$ matrix A, the $r$ th largest singular value $\sigma_{\mathrm{r}}(\mathbf{A})$ satisfies $\sigma_{\mathrm{r}}(\mathbf{A}) \leq$ $\|\mathbf{A}\|_{\mathrm{F}} / \sqrt{r}$.

Proof. It follows immediately from Lemma C.13.

First, we define the $\|\cdot\|_{\infty, 2}$ norm of a matrix as the $l_{2}$ norm of the column with the maximum $l_{2}$ norm, i.e., for an $r \times k$ matrix $\mathbf{C}$

$$
\|\mathbf{C}\|_{\infty, 2}=\max _{1 \leq i \leq k}\left\|\mathbf{c}_{i}\right\|_{2}
$$

Note that

$$
\begin{align*}
\|\mathbf{C}\|_{\mathrm{F}}^{2} & =\sum_{i=1}^{k}\left\|\mathbf{c}_{i}\right\|_{2}^{2} \leq k \cdot \max _{1 \leq i \leq k}\left\|\mathbf{c}_{i}\right\|_{2}^{2} \\
& =k \cdot\left(\max _{1 \leq i \leq k}\left\|\mathbf{c}_{i}\right\|_{2}\right)^{2}=k \cdot\|\mathbf{C}\|_{\infty, 2} \tag{30}
\end{align*}
$$

