
Pareto Front Identification from Stochastic Bandit Feedback

A Illustration of Quantities

Introduced in Section 2
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Figure 6: Example for the illustration of the quantities
introduced in Section 2.

Figure 6 gives an example with two objectives, where
operating points i and j are on the Pareto front, while
point k is not. Moving k to the right by m(k, i), it
would not be strongly dominated by i anymore. This
is also the distance of k to the Pareto front, that is,
∆∗ = m(k, i).

The quantityM(j, i) gives the amount by which point i
has to be moved to dominate j. Since in our example
M(j, i) < M(i, j), this is also the (first component of
the) required accuracy7 for i and j, that is, ∆+

i =
∆+

j = M(j, i).

Finally, moving k by 2∆∗k, the modified point would be
on the Pareto front. Then the (second component of
the) required accuracy for j would be ∆−j = M(k, j)+
2∆∗k, since if j is moved by this amount it would appear
to dominate the modified operating point k.

B Proof of the Lower Bound

Proof sketch for Theorem 17. We construct small
modifications of the given operating points, such that
the output of the algorithm has to change to remain
correct. We argue that these small changes can only be

7Recall that the required estimation accuracy for
a point j on the Pareto front is defined as ∆j =
min{∆+

j ,∆
−

j }.

detected reliably if the operating points are sampled
sufficiently often, as given by the theorem.

We use distributions Di with fully correlated objec-
tive values: Di{yi +

1
4 (1, . . . , 1)} = pi and Di{yi −

1
4 (1, . . . , 1)} = 1 − pi, where pi is chosen to give the
desired mean. For the given operating points pi =

1
2 .

By choosing pi ∈ [ 14 ,
3
4 ] the operating point can be

increased or decreased by up to 1
8 .

We now consider the modifications of the operating
points that require a change of the output of the algo-
rithm:
Let i, j ∈ P ∗ with ∆+

i = M(i, j). Then without modi-
fication both i and j have to be in the output P of the
algorithm. With the modification y

′

i = yi − 3∆̃ǫ0
i , we

have m(i, j) ≥ 2ǫ0 such that i must not appear in the
output P .
If i, j ∈ P ∗ with ∆+

i = M(j, i), then with the modifi-
cation y

′

i = yi+3∆̃ǫ0
i , we have m(j, i) ≥ 2ǫ0 such that

j must not appear in P .
Let i 6∈ P ∗. Since the unmodified suboptimal point i

may or may not appear in a correct output P , we con-
sider two cases, depending on the probability that i ∈
P . First we assume that for the unmodified yi, with
probability ≥ 1

2 the algorithm outputs a P with i 6∈ P .

Then we consider the modification y
′

i = yi + 2∆̃ǫ0
i .

This makes the modified operating point Pareto op-
timal such that it has to appear in P . Secondly we
assume that with probability ≥ 1

2 the unmodified yi is
in P (because i is close to the Pareto front). Then the
modified point y′i = yi−2∆̃ǫ0

i has distance ≥ 2ǫ0 from
the Pareto front and must not appear in the output P .

We see that the algorithm has to detect any of these
changes to provide a correct output. From a stan-
dard argument it follows, that with probability δ

the algorithm cannot distinguish between a modified
and an unmodified operating point i, if the operat-

ing point is not sampled Ω
(

1
(∆̃

ǫ0

i
)2
log(1

δ
)
)

times, see

e.g. Even-Dar et al. (2002). Summing over all operat-
ing points gives the lower bound of the theorem.


