
Pareto Front Identification from Stochastic Bandit Feedback

Peter Auer Chao-Kai Chiang
Montanuniversität Leoben
auer@unileoben.ac.at

Montanuniversität Leoben
chaokai@gmail.com

Ronald Ortner Madalina M. Drugan
Montanuniversität Leoben
rortner@unileoben.ac.at

Vrije Universiteit Brussel
madalina.drugan@gmail.com

Abstract

We consider the problem of identifying the
Pareto front for multiple objectives from a
finite set of operating points. Sampling an
operating point gives a random vector where
each coordinate corresponds to the value of
one of the objectives. The Pareto front is
the set of operating points that are not dom-
inated by any other operating point in re-
spect to all objectives (considering the mean
of their objective values). We propose a
confidence bound algorithm to approximate
the Pareto front, and prove problem specific
lower and upper bounds, showing that the
sample complexity is characterized by some
natural geometric properties of the operat-
ing points. Experiments confirm the relia-
bility of our algorithm. For the problem of
finding a sparse cover of the Pareto front, we
propose an asymmetric covering algorithm of
independent interest.

1 INTRODUCTION

Multi-objective optimization is a natural extension of
single-objective problems and has various applications,
also within machine learning (Jin, 2006). Recently,
multi-objective optimization has become of increasing
importance in reinforcement learning contexts as well,
ranging from multi-objective Markov decision pro-
cesses to algorithms (Drugan et al., 2014) and applica-
tions (Moffaert and Nowé, 2014; Lizotte et al., 2010).

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 41. Copyright
2016 by the authors.

In multi-objective optimization, one is usually inter-
ested in the Pareto front, the set of all operating points
that are not dominated by any other operating point.
Thus we consider the sample complexity of identify-
ing the Pareto front in such a multi-objective setting,
where the learning algorithm sequentially chooses an
operating point to sample, and receives feedback only
from this point. This can be seen as an active learning
problem, or as a generalization of multi-armed bandit
problems, where instead of identifying the single op-
timal arm, the set of Pareto optimal operating points
has to be identified.

Sample complexity bounds for best arm identifica-
tion in multi-armed bandit problems have recently
received significant attention (Audibert et al., 2010;
Gabillon et al., 2012; Kaufmann et al., to appear). In
our setting, operating points attaining the optimal
value for a particular objective are also Pareto optimal,
such that in the course of identifying the Pareto front,
one also has to determine the best operating point for
each objective. Thus, our problem is also related to the
multi-armed multi-bandit problem where the learner
has to identify the optimal arms in several independent
bandit problems (Gabillon et al., 2011; Bubeck et al.,
2013). However, our setting is combinatorially more
involved, as each sample gives information about all
objectives of the chosen operating point, and — more
importantly — there are operating points in the Pareto
front that are not optimal for any objective.

The question of identifying the Pareto front in a multi-
objective bandit setting has been considered before by
Zuluaga et al. (2013). However, in this work it is as-
sumed that the operating points are generated by a
Gaussian process, which induces a strong regularity
that can be exploited by the suggested PAL algorithm
and is reflected in the theoretical results. Our algo-
rithm and analysis do not depend on any such as-
sumptions. An empirical comparison of PAL to our

939

Pareto Front Identification from Stochastic Bandit Feedback

algorithm also shows that PAL sometimes is too opti-
mistic with respect to the regularity of the data. For
more details we refer to Section 8.

The goal of this paper is to characterize the sample
complexity for finding the Pareto front, and our main
contribution is to identify the relevant problem param-
eters and prove their correctness. We introduce these
parameters in Section 2, also providing some intuition
about them. As the points on the Pareto front might
be indistinguishable from points close to it, we propose
two ways to approximate the Pareto front in Section 3.
We first consider the problem of finding all Pareto op-
timal points, possibly together with some additional,
almost optimal points. In Section 4, we present an
algorithm that returns all points in the Pareto front
(and some more close to it), and we give its analy-
sis in Section 5. An almost matching lower bound is
shown in Section 6. Then Section 7 considers the nat-
ural problem of finding a minimal set of optimal or al-
most optimal points that cover the Pareto front. Since
the underlying distance measure is asymmetric, the al-
gorithm we introduce for that purpose is of indepen-
dent interest. Finally, Section 8 presents experiments
to illustrate the validity of our approach, comparing
our algorithm to the PAL algorithm of Zuluaga et al.
(2013).

2 PRELIMINARIES

We consider a multi-objective optimization problem
with D objectives and a finite set of operating points
indexed by i = 1, . . . ,K. The mean values of the
objectives for an operating point i are denoted by
yi = (y1i , ..., y

D
i) ∈ RD. When an operating point i

is sampled, then a random vector Xi ∈ RD with
E [Xi] = yi is received.

Definition 1. An operating point i is weakly domi-
nated by an operating point j (denoted by i � j), if
ydi ≤ ydj for all objectives d = 1, . . . , D. An operating
point i is dominated by an operating point j (denoted
by i ≺ j), if i � j and ydi < ydj for at least one objec-
tive d. An operating point i is strongly dominated by
an operating point j (denoted by i � j), if ydi < ydj for
all objectives d = 1, . . . , D.

An operating point is called Pareto optimal if it is
not dominated, and the set of Pareto optimal points
is called the Pareto front,

P ∗ = {i | ∄j : i ≺ j}.

Remark 2. For a sampling based algorithm, the dis-
tinction between dominance and weak or strong domi-
nance is immaterial, as a sharp distinction is not pos-
sible due to sampling error. We keep this distinction
only for formal correctness of the following definitions.

To measure by how much a point i is dominated by a
point j, we define the gap1

m(i, j) = min{s ≥ 0 | ∃d : ydi + s ≥ ydj }
= max{0,min

d
(ydj − ydi)}

as the amount by which the objective values of point i
have to be increased such that i would not be strongly
dominated by j. We have m(i, j) > 0 if and only if
i � j. The distance of a point i to the Pareto front is
then denoted by

∆∗
i = max

j∈P∗
m(i, j).

This is the amount by which the objective values of i
have to be increased such that i would not be strongly
dominated by any other point. If i is Pareto optimal
then ∆∗

i = 0. We also define the gap

M(i, j) = min{s ≥ 0 | ∀d : ydi ≤ ydj + s}
= max{0,max

d
(ydi − ydj)}

as the amount by which the values of j have to be in-
creased such that i would be weakly dominated by j.
We haveM(i, j) = 0 if and only if i � j. The gap func-
tion M(·, ·) is an asymmetric distance function that
satisfies the triangle inequality.

Lemma 3. M(i, k) ≤M(i, j) +M(j, k).

Proof. The statement follows since ydj + s ≥ ydi and

ydk + t ≥ ydj imply ydk + s+ t ≥ ydi .

Based on these gap functions, we characterize the com-
plexity of identifying the Pareto front. We consider the
required estimation accuracy for the objective values
of an operating point i to determine the Pareto opti-
mality of point i itself and also of other points j. By an
estimation error above ∆∗

i , a suboptimal point i may
appear Pareto optimal. Thus we define the required
accuracy for suboptimal points as

∆i = ∆∗
i for i 6∈ P ∗. (1)

For Pareto optimal points the situation is more com-
plicated. For two Pareto optimal points i and j, i may
appear suboptimal if underestimated by M(i, j), and j
may appear suboptimal if i is overestimated byM(j, i).
Thus we define

∆+
i = min

j∈P∗\i
min{M(i, j),M(j, i)}.

For a Pareto optimal point i and a suboptimal point j,
we consider a slightly modified and Pareto optimal op-
erating point j′ that might replace point j and is de-
fined as ydj′ = ydj + 2∆∗

j . By an estimation error of

1See appendix in the supplementary material for an il-
lustration of the quantities introduced in this section.

940

Peter Auer, Chao-Kai Chiang, Ronald Ortner, Madalina M. Drugan

M(j, i) + 2∆∗
j for point i, the Pareto optimal point j′

may appear dominated by point i. As it may be dif-
ficult for an algorithm to distinguish between these
objective values for j and j′, we define

∆−
i = min

j 6∈P∗
[M(j, i) + 2∆∗

j].

As the required estimation accuracy for a Pareto op-
timal point i we now define

∆i = min{∆+
i ,∆

−
i }. (2)

In Section 5, the estimation accuracy will be used for
the analysis of our algorithm. This definition is also
reflected in the lower bound of Section 6.

3 SETTING AND PARETO FRONT
APPROXIMATIONS

We are interested in the sample complexity of iden-
tifying the Pareto front from random samples for a
given set of operating points with unknown mean ob-
jective values y1, . . . ,yK ∈ RD. The sample complex-
ity is the total number of samples a learning algorithm
requests, until it outputs an approximation P of the
Pareto front P ∗. When operating point i is sampled
the n-th time, the algorithm receives a random vec-
tor Xi,n ∈ RD with E [Xi,n] = yi. We assume that
the random vectors Xi,n are mutually independent for
i = 1, . . . ,K and n ≥ 1. The coordinates of a vec-
tor Xi,n = (X1

i,n, . . . , X
D
i,n) for fixed i and n may be

correlated. We also assume that the random variables
Xd

i,n− ydi are 1-subgaussian. This allows to use Hoeff-
ding’s inequality in the analysis and holds e.g. when
Xi,n is Gaussian with variance σ2 ≤ 1 or if Xi,n is
bounded as |Xi,n| ≤ 1.

As the learning is subject to sampling noise, it can-
not be expected to return the perfectly correct Pareto
front. The following example depicts that identifying
the Pareto front from samples can be difficult if points
are close to the Pareto front.

Example 1. Consider two operating points with mean
value vectors y1 = (34 ,

1
2) and y2 = (12 ,

3
4). Then a

third point y3 = (12 + θ, 1
2 + θ) would be on the Pareto

front if θ > 0, while it would be suboptimal for θ ≤ 0.
If θ is very close to 0, then a moderately sized random
sample will not suffice to settle the status of the point.

Therefore, we propose two possible conditions for ap-
proximating the Pareto front. For each of the two
conditions we provide algorithms (in Sections 4 and 7)
that meet these conditions with high probability.

Success Condition 1:
The first condition requires that the algorithm, given

the required precision ǫ0 > 0, outputs a set of operat-
ing points P , such that P contains all Pareto optimal
points and possibly some suboptimal points that are
close to the Pareto front:
(1.a) P ∗ ⊆ P ,
(1.b) ∀i ∈ P : ∆∗

i ≤ ǫ0.

Success Condition 2:
The second condition requires, given ǫ0 > 0 and ǫ > 0,
a sparse cover P of the Pareto front, such that all
Pareto optimal points are close to a point in P , and
all points in P are distant from each other:
(2.a) ∀i ∈ P ∗ ∃j ∈ P : M(i, j) ≤ ǫ0,
(2.b) ∀i ∈ P : ∆∗

i ≤ ǫ0,
(2.c) ∀i, j ∈ P with i 6= j : M(i, j) ≥ ǫ0

2 − ǫ.

It is no accident that the factor 1
2 appears in (2.c).

The example below shows that for any ǫ0
2 < β there

are operating points such that no subset P of the op-
erating points satisfies (2.a) and M(i, j) ≥ β for all
i, j ∈ P . The additional precision parameter ǫ in (2.c)
is necessary to account for sampling errors.

Table 1: For ǫ0
2 < α < β there is no β-sparse ǫ0-cover

of the Pareto front.

yi y1i y2i y3i y4i y5i
y1 1 1 1 1− α 1− 2α
y2 1 1 1− α 1− 2α 1
y3 1 1− α 1− 2α 1 1
y4 1− α 1− 2α 1 1 1
y5 1− 2α 1 1 1 1− α

Example 2. Consider the operating points y1, . . . ,y5

in Table 1. All these operating points are Pareto op-
timal. Further, M(1, 2) = M(2, 3) = M(3, 4) =
M(4, 5) = M(5, 1) = α < β and M(i, j) = 2α > ǫ0
for all other i 6= j. Thus a subset P satisfying (2.a)
must contain for each point i the point i itself or its
“successor” with M(i, j) = α. It follows that such a
subset P contains at least three points, which implies
that it contains a pair with M(i, j) = α < β.

In Section 7, we show that for any finite set P ∗ with
asymmetric distance function M , and any ǫ0 > 0, a set
P ⊆ P ∗ can be calculated satisfying (2.a) and (2.c).
Note that for D = 1, Success Condition 2 is quite triv-
ial, as any single ǫ0-optimal point constitutes a cover.

4 ALGORITHM FOR SUCCESS
CONDITION 1

In this section, we present Algorithm 1 that meets Suc-
cess Condition 1 with high probability. The set P out-
put by this algorithm will also be used in Section 7
to calculate a sparse cover of the Pareto front meeting
Success Condition 2.

941

Pareto Front Identification from Stochastic Bandit Feedback

Algorithm 1 for finding all Pareto optimal points

Input: set of operating points {1, . . . ,K}, accuracy
parameter ǫ0 > 0, confidence parameter δ > 0.

Initialize A← {1, . . . ,K} and P ← ∅.
Repeat until A = ∅:

1. Sample each operating point i ∈ A once.

2. A1 ← {i ∈ A | ∀j ∈ A : m̂(i, j) ≤ βi + βj}

3. P1 ← {i ∈ A1 | ∀j ∈ A1\{i} : M̂ǫ0(i, j) ≥ βi+βj}.

4. P2 ← {j ∈ P1 | 6 ∃i ∈ A1\P1 : M̂ǫ0(i, j) ≤ βi+βj}.

5. A← A1 \ P2 and P ← P ∪ P2.

Output: P

The algorithm is an elimination algorithm based on
confidence intervals, that maintains a set A of active
operating points. It eliminates points that are subop-
timal with high probability (step 2), or points that are
(almost) Pareto optimal with high probability (set P1

in step 3). Optimal points in P1 are not removed,
though, if they are needed to establish the status of
other points they may dominate (steps 4 and 5). The
algorithm stops when no active operating points re-
main and outputs the set of (almost) Pareto optimal
points.

The algorithm uses the empirical estimates ŷdi of the
mean objective values ydi to calculate estimates of the
gap functions as

m̂(i, j) = min{s ≥ 0 | ∃d : ŷdi + s ≥ ŷdj },
M̂ǫ0(i, j) = min{s ≥ 0 | ∀d : ŷdi + ǫ0 ≤ ŷdj + s}.

The latter definition reflects success condition (1.b)
that allows to return points that are not dominated
by more than ǫ0. We will also use the estimates

M̂(i, j) = M̂0(i, j)

with M̂(i, j) ≤ M̂ǫ0(i, j) ≤ M̂(i, j) + ǫ0. The width of
the confidence intervals for the ŷdi is defined as

βi =

√
2 log(4KDn2

i /δ)

ni
, (3)

where ni is the number of samples from operating
point i so far.

Algorithm 1 is analyzed in the next section, prov-
ing Theorem 4 as the first main result of the paper.
The constant in the sample complexity bound is quite
loose, though.

Theorem 4. When Algorithm 1 is run on a set of
operating points with parameters ǫ0 and δ, then with
probability 1− δ it outputs a set of operating points P
satisfying Success Condition 1, using at most a total
number of ∑

i

4320

(∆ǫ0
i)2

log
(12KD

δ∆ǫ0
i

)

samples, where ∆ǫ0
i = max{∆i, ǫ0} and ∆i is as de-

fined in equations (1) and (2).

For D = 1, Theorem 4 recovers known bounds for
the multi-armed bandit problem as given e.g. by
Mannor and Tsitsiklis (2004), Gabillon et al. (2011).
Note that the sample complexity of an algorithm that
simply compares any two points will depend on the
smallest distance between any two points (with respect
to any objective), which in general can be much larger
than the quantities that appear in Theorem 4.

5 ANALYSIS OF ALGORITHM 1

We start with some simple results about the confidence
intervals and their relation to the number of samples.

Lemma 5. With probability 1 − δ, |ŷdi − ydi | < βi for
all i and d and any number of samples ni from the
operating points.

Proof. By Hoeffding’s inequality and a union bound.

For simplicity we assume in the following that the con-
fidence bounds of Lemma 5 hold. Thus some of the
following lemmas hold only with probability 1− δ.

Lemma 6. When ni ≥ 30 log(KD/(δ∆))
∆2 , then βi ≤ ∆.

Proof. By the definition of βi and simple calculus.

Lemma 7. For any i, j, and d, |(ŷdi −ŷdj)−(ydi −ydj)| <
βi + βj, |m(i, j) − m̂(i, j)| < βi + βj, and |M(i, j) −
M̂(i, j)| < βi + βj.

Proof. By the confidence bounds of Lemma 5.

The following lemmas show that with high probability
the algorithm does not miss any point of the Pareto
front.

Lemma 8. Only suboptimal points are removed in
Step 2 of the algorithm.

Proof. If m̂(i, j) > βi + βj then m(i, j) > 0 by
Lemma 7. Thus i ≺ j and i is not Pareto optimal.

Lemma 9. At any stage of the algorithm, P ∗ ⊆ A∪P .

Proof. Initially the statement holds since A =
{1, . . . ,K}. Since points are removed from A∪P only
by Step 2, the statement follows from Lemma 8.

942

Peter Auer, Chao-Kai Chiang, Ronald Ortner, Madalina M. Drugan

Lemma 10. Let i ≺ j and j ∈ P ∗ with m(i, j) =
∆∗

i ≥ ǫ0. If i ∈ A then also j ∈ A. Furthermore,
i 6∈ P1 and i 6∈ P .

Proof. The proof is by induction on the iterations of
the algorithm. Initially the statement holds since A =
{1, . . . ,K} and P = ∅. Assume that i is not removed
in Step 2 and i ∈ A1 in the current iteration. By
Lemma 8 and induction assumption also j ∈ A1. Since
m(i, j) ≥ ǫ0 we have for all d that ydi − ydj ≤ −ǫ0, and
by Lemma 7 that ŷdi − ŷdj +ǫ0 < ydi −ydj +ǫ0+βi+βj ≤
βi + βj . Thus M̂ǫ0(i, j) < βi + βj . Hence i 6∈ P1 and
j 6∈ P2, such that j remains in A and i is not added
to P .

Lemma 11. If i ∈ P \ P ∗, then ∆∗
i ≤ ǫ0.

Proof. Immediate from Lemma 10.

By Lemmas 9 and 11 we have established that the
output of the algorithm satisfies conditions (1.a) and
(1.b). To bound the sample complexity, we lower
bound βi for i ∈ A. Note that by definition of the
algorithm, βi = βj for all i, j ∈ A.

Lemma 12. If in some iteration of the algorithm βi ≤
ǫ0
4 for i ∈ A1, then P2 = A1 and the algorithm stops.

Proof. By Step 2 of the algorithm we have that for
all i, j ∈ A1, there is a d with ŷdj − ŷdi ≤ βi + βj .

Hence ŷdi − ŷdj + ǫ0 ≥ ǫ0 − βi − βj ≥ ǫ0
2 ≥ βi + βj and

M̂ǫ0(i, j) ≥ βi + βj . Thus by Step 3 we have P1 = A1,
and by Step 4 also P2 = P1 = A1.

Lemma 13. If i 6∈ P ∗, ∆∗
i ≥ ǫ0, and i ∈ A1, then

βi ≥ ∆i/4.

Proof. By Lemma 10 there is a j ∈ A with m(i, j) =
∆∗

i . Then ∆i = ∆∗
i = m(i, j) ≤ m̂(i, j) + βi + βj ≤

2βi + 2βj = 4βi by Lemma 7 and Step 2.

Lemma 14. If i ∈ P ∗ and i ∈ A1\P1, then βi ≥ ∆i/4.

Proof. If i ∈ A1 and i 6∈ P1, then by Step 3 there is a
j ∈ A1, i 6= j, with M̂ǫ0(i, j) < βi+βj. ThusM(i, j) <

M̂(i, j)+βi+βj ≤ M̂ǫ0(i, j)+βi+βj < 2βi+2βj = 4βi.
If j ∈ P ∗, then by definition ∆i ≤ M(i, j) ≤ 4βi. If
j 6∈ P ∗, then there is a j∗ ∈ P ∗ with j ≺ j∗ such that
by Lemma 3 ∆i ≤ M(i, j∗) ≤ M(i, j) + M(j, j∗) =
M(i, j) ≤ 4βi.

Lemma 15. If j ∈ P ∗, j ∈ P1 \ P2, and βj ≥ ǫ0/4.
Then βj ≥ ∆j/12.

Proof. If j ∈ P1\P2, then by Step 4 there is an i ∈ A1,
i 6= j, with M̂ǫ0(i, j) ≤ βi+βj and thus M(i, j) ≤ 4βj .
If ∆∗

i < ǫ0, then ∆∗
i ≤ 4βj. If ∆∗

i ≥ ǫ0, then by
Lemma 10 there is an i∗ ∈ A with m(i, i∗) = ∆∗

i .
Thus by Step 2 we also get ∆∗

i = m(i, i∗) ≤ m̂(i, i∗) +
βi + βi∗ ≤ 2βi + 2βi∗ = 4βj . Since by definition ∆j ≤
M(i, j) + 2∆∗

i , we have ∆j ≤ 12βi.

Proof of Theorem 4. Since the algorithm termi-
nates when A = ∅, Success Condition 1 is satisfied by
Lemmas 9 and 11. Combining Lemmas 12–15, we find
that i ∈ A1\P2 only if βi ≥ ∆ǫ0

i /12. By Lemma 6, this
gives the sample complexity bound of the theorem.

6 LOWER BOUND

The following Theorem 17 provides a lower bound cor-
responding to the upper bound in Theorem 4. For the
proof see the appendix (supplementary material).

Definition 16. We call an algorithm a learning algo-
rithm for Success Condition 1 on [0, 1]D, if for any set
of distributions Di on [0, 1]D for the operating points
i = 1, . . . ,K, it outputs with probability 1 − δ a set of
operating points P satisfying Success Condition 1.

Theorem 17. For any set of operating points yi ∈
[14 ,

3
4]

D, i = 1, . . . ,K, there exist distributions Di such
that any learning algorithm for Success Condition 1 on
[0, 1]D requires

Ω

(K∑

i=1

1

(∆̃ǫ0
i)2

log
(1
δ

))

samples to identify the Pareto front with precision ǫ0 ≤
1
8 , where ∆̃ǫ0

i = max{∆∗
i , ǫ0} for i 6∈ P ∗ and ∆̃ǫ0

i =

max{∆+
i , ǫ0} for i ∈ P ∗.

Remark 18. We note that the lower bound may not
match the upper bound for i ∈ P ∗ with ∆i = M(j, i)+
2∆∗

j < ∆+
i for some j 6∈ P ∗. But since in this case

∆i > ∆∗
j , the missing ∆i-term can be compensated by

the ∆∗
j -term, as long as the same j is not needed in

too many such definitions of ∆i, i ∈ P ∗.

7 ALGORITHM AND ANALYSIS
FOR SUCCESS CONDITION 2

While the set P that is output by Algorithm 1
with high probability satisfies Success conditions (2.a)
and (2.b), for achieving (2.c) we have to compute a
sparse cover of P . In order to do so, we first check
which operating points are too close to each other.
This may require additional samples from points in P .
Thus, our proposed Algorithm 2 maintains a set of
points Q that still have to be sampled (step 2). The
algorithm however only samples the point with the
widest confidence interval (step 3). When two close
points have been identified, an edge is put between
them (step 1). Note that edges are directed since the
measure M̂(j, i) is not symmetric. When the status of
all pairs of points has been identified, the algorithm
outputs a directed graph whose vertices are the points
in P with edges between close points. Note that Algo-
rithm 2 stops in particular when all βi ≤ ǫ

4 such that
Q = ∅ by definition.

943

Pareto Front Identification from Stochastic Bandit Feedback

Algorithm 2 for identifying close points

Input: the set P output by Algorithm 1
Initialize E ← ∅ and Q← P .
Repeat until Q = ∅:

1. E′ ← {(i, j) ∈ Q2 | M̂(j, i) ≤ ǫ0
2 − βi − βj , i 6= j}.

2. Q←
{
i ∈ Q | ∃j ∈ Q, j 6= i :

ǫ0
2 − βi − βj < M̂(i, j) ≤ ǫ0

2 − ǫ+ βi + βj

or ǫ0
2 − βi − βj < M̂(j, i) ≤ ǫ0

2 − ǫ+ βi + βj

}
.

3. Sample some i ∈ Q with βi = maxj∈Q βj once.

4. E ← E ∪ E′.

Output: the graph G = (P,E)

The algorithm returns an edge (i, j) if M(j, i) < ǫ0
2 −ǫ,

and it returns no edge (i, j) if M(j, i) > ǫ0
2 . This

follows from the construction of the algorithm and is
argued formally in the following sections.

7.1 Asymmetric Covering

In order to compute a sparse cover of P satisfying Suc-
cess Condition 2 we propose an algorithm that elim-
inates redundant operating points from the graph G
output by Algorithm 2. As we are not aware of any
algorithm that computes sparse covers for asymmetric
distance relations (as M(i, j) in our application), this
algorithm is of independent interest. For any finite set
P ∗ with an asymmetric distance function M and any
ǫ0 > 0, it returns a cover P ⊆ P ∗ that satisfies (2.a)
and (2.c).

The proposed Algorithm 3 first breaks up cycles in the
graph (step 1) and then removes redundant vertices in
the remaining graph (step 2) until no edges are left in
the graph.

Algorithm 3 for finding a sparse cover

Input: a directed graph G = (V,E) (e.g., as produced
by Algorithm 2)

1. Repeat until there is no directed cycle in G:
Pick an arbitrary vertex i on some cycle, and
mark i.2For any successor j of i, if j belongs to
any cycle, then remove j together with incident
edges.

2. Repeat until there is no edge in G:
Pick a vertex i without predecessor, remove all
successors j of i together with edges incident
with j.

Output: the set V ′ of remaining vertices

Lemma 19. For any two distinct vertices i, j ∈ V ′ it
holds that M(i, j) ≥ ǫ0

2 − ǫ and M(j, i) ≥ ǫ0
2 − ǫ.

Proof. If i, j ∈ V ′ then i and j have not been con-
nected by an edge in G, since otherwise this edge and
one of the two vertices would have been deleted by
Algorithm 3. Hence, by Algorithm 2, we always have
M̂(i, j) > ǫ0

2 − βi − βj and M̂(j, i) > ǫ0
2 − βi − βj .

At some point either i or j is removed from Q. As-
sume without loss of generality that i is removed be-
fore or at the same step as j from Q since M̂(i, k) >
ǫ0
2 − ǫ + βi + βk and M̂(k, i) > ǫ0

2 − ǫ + βi + βk hold
for all k ∈ Q and in particular for k = j. Then by
Lemma 7, M(i, j) > M̂(i, j) − βi − βj > ǫ0

2 − ǫ and
similarly M(j, i) > ǫ0

2 − ǫ.

Lemma 20. (a) If (i, j) ∈ E, then M(j, i) ≤ ǫ0
2 .

(b) If (i, ℓ) and (ℓ, j) are in E, then M(j, i) ≤ ǫ0.

Proof. For (i, j) ∈ E, by Algorithm 2 we have
M̂(j, i) ≤ ǫ0

2 − βj − βi. Then by Lemma 7, M(j, i) <

M̂(j, i) + βj + βi ≤ ǫ0
2 , which proves (a). This

also implies (b), as by Lemma 3 we have M(j, i) ≤
M(j, ℓ) +M(ℓ, i).

Lemma 21. Let j ∈ V be a vertex that is removed.
Then there is a vertex i ∈ V ′ such that M(j, i) ≤ ǫ0.

Proof. First, we note that no marked vertex ℓ will be-
long to any cycle, since every successor of ℓ belonging
to a cycle has been removed. Thus no marked vertex
is removed in Step 1. Also when a vertex j is removed
in Step 2, there is a predecessor i without predecessor,
such that i will never be removed.

Now for any removed vertex j, one of the following
three cases applies: Either (i) vertex j is removed
in Step 2, or (ii) it is removed in Step 1 and has a
marked predecessor belonging to V ′, or (iii) it is re-
moved in Step 1 and has a marked predecessor ℓ that
is removed in Step 2. In cases (i) and (ii), as argued
before, there is a vertex i in V ′ which is the predecessor
of the deleted vertex. In case (iii) we have (ℓ, j) ∈ E
and since none of the marked vertices is removed in
Step 1, there is an i ∈ V ′ such that (i, ℓ) ∈ E. Apply-
ing Lemma 20 we obtain the lemma.

7.2 Sample Complexity Bound for Success
Condition 2

Lemma 22. Consider Algorithm 2 and let i ∈ Q. If
|M(i, j)−(ǫ02 −ǫ)| > 2(βi+βj) and |M(j, i)−(ǫ02 −ǫ)| >
2(βi + βj) holds for all j ∈ Q, j 6= i, then i /∈ Q in the
next iteration.

2Marking vertices helps with the proof, but is immate-
rial to the algorithm.

944

Peter Auer, Chao-Kai Chiang, Ronald Ortner, Madalina M. Drugan

Proof. Note that ǫ0
2 −βi−βj < M̂(i, j) ≤ ǫ0

2 −ǫ+βi+βj

implies |M̂(i, j)− ǫ0
2 +ǫ| ≤ βi+βj. Hence, by Lemma 7,

if i remains in Q in the next iteration, then in the
current iteration ∃j ∈ Q such that |M(i, j)− ǫ0

2 + ǫ| ≤
2(βi + βj) or |M(j, i) − ǫ0

2 + ǫ| ≤ 2(βi + βj), and the
claim follows by contraposition.

Theorem 23. The output V ′ of Algorithm 3 (when
using the graph produced by Algorithm 2 as input) sat-
isfies Success Condition 2. Furthermore, the sample
complexity for computing V ′ is

O

(∑

i

1

(∆ǫ0,ǫ
i)2

log

(
KD

δ∆ǫ0,ǫ
i

))
,

where ∆ǫ0,ǫ
i = min

{
max{∆i, ǫ0},
1
4 max

{
min

j∈P\{i}
d(i, j), ǫ

}}
,

d(i, j) = min{|M(i, j)− ǫ0
2 + ǫ|, |M(j, i)− ǫ0

2 + ǫ|}, and
P is the set output by Algorithm 1.

Proof. That Success Condition 2 is satisfied follows
from Lemmas 19 and 21 and the results about Algo-
rithm 1. For any operating point i, its sample com-
plexity in Algorithm 1 is determined by max{∆i, ǫ0}
according to Theorem 4. For the additional samples
taken by Algorithm 2, according to Lemma 22 any
fixed i ∈ Q will be at most sampled until d(i, j) ≥
2(βi + βj) for all j. Note that if at some time βi ≥ βj

for some j in Q, then point i will not be sampled more
often than to reach 4βi < d(i, j). On the other hand, if
for all j always βi < βj then by definition Algorithm 2
(that only samples points with maximal βj) point i is
not sampled at all. Finally, recall that the algorithm
terminates when all βi <

ǫ
4 and note that as soon as

some βi < ǫ
4 , it will not be sampled anymore before

all remaining points j in Q reach βj <
ǫ
4 as well. The

result follows by Lemma 6, summing over all points i
and combining the bound with Theorem 4.

8 EXPERIMENTS

To illustrate the performance of our Algorithm 1, we
run it on the SW-LLVM data set and compare it to the
PAL algorithm of Zuluaga et al. (2013), noting that
the comparison is not completely fair as the two algo-
rithms have different goals and make different assump-
tions on the data.

The PAL algorithm uses Gaussian process regression
to estimate the objective values of operating points.
This allows PAL to generalize over operating points
such that not all operating points need to be sampled.
The confidence intervals from the Gaussian process re-
gression are used to identify promising points that are

negative memory footprint

pe
rf

or
m

an
ce

operating points
Pareto front

Figure 1: Operating points of the modified SW-LLVM
data set.

possibly close to the Pareto front. The goal of PAL is
to estimate the Pareto front up to a given accuracy,
but not to return all Pareto optimal points.

In contrast, our algorithm is required to return all
Pareto optimal points, and to return only points that
are close to the Pareto front. In this sense our algo-
rithm takes a more conservative approach to estimat-
ing the Pareto front. Furthermore, our algorithm does
not generalize over operating points and has to sample
each operating point.

The data set. We use the SW-LLVM data set3

from (Zuluaga et al., 2013) consisting of 1024 oper-
ating points characterized by 10 binary values. Each
operating point corresponds to a compiler setting, and
the objectives are performance and memory footprint
of some software compiled with these settings.
To obtain quasi-stochastic data for our algorithm, we
use the four most informative binary features (features
7–10) to define 16 operating points for our experi-
ments. Ignoring the other features, this gives 64 sam-
ples for each of the 16 operating points. As the “true”
objective values for each of these operating points we
use the means of the 64 samples for the respective op-
erating point. These operating points with their stan-
dard deviations are depicted in Figure 1.4 There are
two Pareto optimal points. The data set with only 4
features is also used in the experiments with PAL.5

Modifications of Algorithm 1. To make our the-
oretically motivated Algorithm 1 practical, we made
small modifications: (i) We scale the objective values

3An implementation of PAL and the data set are avail-
able at http://www.spiral.net/software/pal.html.

4Since the memory footprint is to be minimized, we plot
and maximize the negative memory footprint.

5The chosen four features are highly predictive. The
squared error of a linear regression model decreases only
from 18.6% to 16.5% of the sample variance, if all features
are used. This puts PAL at some advantage since employ-
ing regression is still useful for these data.

945

Pareto Front Identification from Stochastic Bandit Feedback

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

ε
0

∆ A

Algorithm 1
PAL
∆

A
 = ε

0

Figure 2: ∆A averaged over 1000 runs.

in the same way as PAL to allow for a general range
of the objective values. (ii) Instead of the overly con-
servative (3), we use individual and tighter confidence

values βd
i =

√
2Ṽ d

i log (DKni/δ)

ni
for each objective. Here

Ṽ d
i = V̂ d

i + V̄ d
√
4 log (DKni/δ)/ni is an upper confi-

dence bound on the variance, where V̂ d
i is the empirical

variance and V̄ d is a given upper bound. This upper
confidence bound is justified by a tail bound on the
χ2-distribution (Lemma 1 of Laurent and Massart,
2000), assuming that the data are sufficiently close to
a Gaussian. (iii) In Steps 2–4 of the algorithm instead

of βi + βj we use the tighter
√
β2
i + β2

j .
6

Results. In all experiments with Algorithm 1 and
PAL we use confidence parameter δ = 0.1. To ac-
commodate the different goal of PAL, we define the
estimation distance

∆A = max
{
max
i∈P

∆∗
i ,max

i∈P∗
min
j∈P

M(i, j)
}
,

considering the maximal distance of the predicted
points to the Pareto front, as in Success Condition
(1.b), and the maximum distance of an optimal point
to the closest predicted point.

Figure 2 reports the estimation distance of the output
set P from the Pareto front P ∗ for different choices
of ǫ0, each averaged over 1000 runs. Algorithm 1
achieves the desired precision unless the 64 available
samples per operating point are not sufficient (this
happens for small ǫ0). For small ǫ0, the estimation dis-
tance of PAL is larger, because PAL does not penalize
predicted points that are far from the Pareto front.
For large ǫ0, PAL shows smaller estimation distance at
the expense of possibly missing Pareto optimal points,
cf. Figures 3 and 4. Figure 3 shows the worst esti-
mation distance in batches of 10 runs, averaged over
100 batches. Figure 4 shows the fraction of 1000 runs

6This is theoretically justified. In the theoretical analy-
sis with already loose constants we use βi+βj for simplicity
of notation and argument.

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

ε
0

m
ax

 ∆
A
 (

av
er

ag
ed

 o
ve

r
10

0
ba

tc
he

s)

Algorithm 1
PAL
max∆

A
 = ε

0

Figure 3: Worst ∆A in batches of 10 runs.

0 0.05 0.1 0.15 0.2
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ε
0

fr
ac

tio
n

of
 s

uc
ce

ss
fu

l r
un

s
(o

ut
 o

f 1
00

0
ru

ns
)

Algorithm 1
PAL

Figure 4: Runs that find all optimal points.

0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

ε
0

N
um

be
r

of
 s

am
pl

es
 a

ve
ra

ge
d

ov
er

 1
00

0
ru

ns

Algorithm 1
PAL

Figure 5: Average number of samples.

in which the algorithms returned all Pareto optimal
points. We see that PAL frequently returns points far
from the Pareto front for small ǫ0, and misses Pareto
optimal points for large ǫ0. In contrast, Algorithm 1
always returns all Pareto optimal points and has very
stable estimation distance. This conservative behavior
comes at the price of larger numbers of samples, see
Figure 5.

Acknowledgements This research was funded by
the Austrian Science Fund (FWF): P 26219-N15.

946

Peter Auer, Chao-Kai Chiang, Ronald Ortner, Madalina M. Drugan

References

Jean-Yves Audibert, Sébastien Bubeck, and Rémi
Munos. Best arm identification in multi-armed ban-
dits. In COLT 2010 - The 23rd Conference on
Learning Theory, pages 41–53. Omnipress, 2010.

Sébastien Bubeck, Tengyao Wang, and Nitin
Viswanathan. Multiple identifications in multi-
armed bandits. In Proceedings of the 30th Inter-
national Conference on Machine Learning, ICML
2013, volume 28 of JMLR Proceedings, pages 258–
265, 2013.

Madalina M. Drugan, Ann Nowé, and Bernard Man-
derick. Pareto upper confidence bounds algo-
rithms: An empirical study. In IEEE Symposium
on Adaptive Dynamic Programming and Reinforce-
ment Learning, ADPRL 2014, pages 1–8, 2014.

Victor Gabillon, Mohammad Ghavamzadeh, Alessan-
dro Lazaric, and Sébastien Bubeck. Multi-bandit
best arm identification. In Advances in Neural In-
formation Processing Systems 24, NIPS 2011, pages
2222–2230, 2011.

Victor Gabillon, Mohammad Ghavamzadeh, and
Alessandro Lazaric. Best arm identification: A uni-
fied approach to fixed budget and fixed confidence.
In Advances in Neural Information Processing Sys-
tems 25, NIPS 2012, pages 3221–3229, 2012.

Yaochu Jin, editor. Multi-objective machine learning.
Springer, 2006.

Emilie Kaufmann, Olivier Cappé, and Aurélien Gariv-
ier. On the complexity of best arm identification
in multi-armed bandit models. Journal of Machine
Learning Research, to appear.

Béatrice Laurent and Pascal Massart. Adaptive esti-
mation of a quadratic functional by model selection.
The Annals of Statistics, 28(5):1302–1338, 2000.

Daniel J. Lizotte, Michael H. Bowling, and Susan A.
Murphy:. Efficient reinforcement learning with mul-
tiple reward functions for randomized clinical trial
analysis. In Proceedings of the 27th International
Conference on Machine Learning (ICML), pages
695–702, 2010.

Shie Mannor and John N. Tsitsiklis. The sample com-
plexity of exploration in the multi-armed bandit
problem. Journal of Machine Learning Research,
5:623–648, 2004.

Kristof Van Moffaert and Ann Nowé. Multi-objective
reinforcement learning using sets of pareto dominat-
ing policies. Journal of Machine Learning Research,
15:3483–3512, 2014.

Marcela Zuluaga, Guillaume Sergent, Andreas Krause,
and Markus Püschel. Active learning for multi-
objective optimization. In Proceedings of the

30th International Conference on Machine Learn-
ing, ICML 2013, volume 28 of JMLR Proceedings,
pages 462–470, 2013.

947

