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1 Proofs

Proof of Theorem 5.2. Let Ω = tni=1Ωi be the (random) partition used by Algorithm 1 in stage
`. Since the densities of Q(x, ·) and π(·) are uniformly bounded away from 0 by a constant c > 0,
so are the densities {πi(·)}ni=1. This immediately implies that the kernels {Ki}ni=1 used in stage `
are uniformly ergodic. The result then follows from the strong law of large numbers for uniformly
ergodic Markov chains, combined with the consistency of bridge sampling.

Proof of Theorem 5.3. Fix k ∈ N. We note that if the second line of the submethod DoSpectral-
Clustering were replaced with

Sample N i.i.d. points from the mixture distribution 1
n

∑n
i=1 πi,

then Equation (23) would follow immediately from Theorem 16 of Ben-David et al. (2006).
Thus, to prove Equation (23) in our setting, it is sufficient to prove that the distribution of the
subsample obtained in DoSpectralClustering(X,n,N(k), Q, π) converges in total variation dis-
tance to an i.i.d. sample as k goes to infinity. To do this, we need some additional notation.

We fix an ordering of the elements ofX = {X(i)
t }0≤t≤T (k), 1≤i≤n as follows: X = {X[1], . . . , X[nT (k)]} =

{X(1)
1 , X

(1)
2 , . . . , X

(1)
T (k), X

(2)
1 , . . . , X

(n)
T (k)}. Let 1 ≤ s1 < . . . < sN(k) ≤ nT (k) be the indices of

the subsample selected in the second line of DoSpectralClustering when DoSpectralCluster-
ing(X,n,N(k), Q, π) is called.

Next, let X ′1, . . . , X
′
N(k) be an i.i.d. sequences drawn from the mixture distribution 1

n

∑n
i=1 πi.

By the remark in the first paragraph of the proof, to prove Equation (23) it is sufficient to prove
that:

lim
k→∞

‖L({X[si]}N(k)
i=1 )− L({X ′i}

N(k)
i=1 )‖TV = 0 (1)

Next, define

∆(k) = min( min
1≤i<N(k)

(si+1 − si), min
1≤i≤N(k), 0≤j≤n

(|si − jT (k)|)).
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By Equation (22), we have

lim
k→∞

P[∆(k) < N(k)γ ] ≤ lim
k→∞

((
1− 3N(k)1+γ

T (k)

)N(k)

+

(
3nN(k)

T (k)

))
(2)

= lim
k→∞

O

(
N(k)2+γ

T (k)
+
N(k)

T (k)

)
= 0.

Next, define D = min1≤j≤n λ(Ωj), where λ is the Lebesgue measure on Rd. Conditioning on the

indices {si}N(k)
i=1 , we have by Equation (21) and Equation (2) that

lim
k→∞
‖L({Xsi(k)}N(k)

i=1 )− L({X ′i}
N(k)
i=1 )‖TV (3)

≤ lim
k→∞

(N(k)e−b
N(k)γ

Dc
c + P[∆ < N(k)γ ])

= 0.

We conclude that condition (1) holds, and thus that Equation (23) holds. This completes the
proof.

2 Simulations

2.1 Details of Example 1

The target π(x) is a mixture of bivariate normals with the weights w = (0.02, 0.2, 0.2, 0.58), means
µ1 = (3, 3), µ2 = (7,−3), µ3 = (2, 7), µ4 = (−5, 0), and covariance matrices Σ1 = [1, 0.2; 0.2, 1],Σ2 =
[2,−0.5;−0.5, 0.5],Σ3 = [1.3, 0.3; 0.3, 0.4],Σ4 = [1, 1; 1, 2.5]. The proposal distribution we use for
our method has the following density: Q(x, ·) = MVN(x, 0.8I2) where MVN denotes the multi-
variate normal distribution, and I2 is the two by two identity matrix. For parallel tempering, on
top of the original target π(X) and the corresponding proposal just mentioned, we use the 3 tem-
pered targets π(2)(x) = π(x)0.7, π(3)(x) = π(x)0.4, π(4)(x) = π(x)0.25 and their associated proposals
Q(2)(x, ·) = MVN(x, I2), Q

(3)(x, ·) = MVN(x, 2I2), Q
(4)(x, ·) = MVN(x, 3I2).

2.2 Details of Example 2

The proposal we use for this example is Q(x, ·) = MVN(x, 0.015I2).

3 Extensions

3.1 Estimating ratios of normalizing constants

In our article, we use a vanilla version of bridge sampling (Meng and Wong (1996)) to estimate the
partition weights. Meng and Schilling (2002) proposed an extension of bridge sampling that essen-
tially transforms the densities before applying the bridge, thus increasing the “overlap” between
the two distributions. Gelman and Meng (1998) extends bridge sampling in a different direction
by considering multiple bridges (eventually, an infinity of bridges).
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An alternative family of strategies for estimating ratios of normalizing constants is Importance
Sampling, as well as extensions such as Annealed Importance Sampling (Neal (2001)) and Linked
Importance Sampling (Neal (2005)).

3.2 Scaling Spectral Clustering in High Dimensions

Like most clustering algorithms, spectral clustering experiences some difficulties in high dimension.
Niu et al. (2011) identifies the main issue as being a lack of robustness to “noisy dimensions” and
proposes a method to reduce the dimension of the data before clustering. This method can be
plugged into our approach. More generally, any method that improves on spectral clustering can
be integrated to our approach.

3.3 Extending clustering to a partition

In the paper, we use the centers {C1, . . . , Cn} found by the kmeans algorithm in the eigenspace
to define the partition. An alternative is to use the observed points, as follow:

Ωi = {x ∈ Ω : σ( argmin
Z∈{Z1,...,ZN}

‖Z − Z(x)‖) = i}. (4)

with the same notation as in the paper.

3.4 More on the heuristics

One may wonder how to choose the number of iterations `. In practice, we want to run as many
iterations as possible, so the real question of interest concerns the relationship between T (k) and
N(k) for which we provide a heuristic in Theorem 5.3.
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