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Abstract

As it has become common to use many com-
puter cores in routine applications, finding
good ways to parallelize popular algorithms
has become increasingly important. In this
paper, we present a parallelization scheme for
Markov chain Monte Carlo (MCMC) meth-
ods based on spectral clustering of the under-
lying state space, generalizing earlier work on
parallelization of MCMC methods by state
space partitioning. We show empirically that
this approach speeds up MCMC sampling for
multimodal distributions and that it can be
usefully applied in greater generality than
several related algorithms. Our algorithm
converges under reasonable conditions to an
‘optimal’ MCMC algorithm. We also show
that our approach can be asymptotically far
more efficient than naive parallelization, even
in situations such as completely flat target
distributions where no unique optimal algo-
rithm exists. Finally, we combine theoreti-
cal and empirical bounds to provide practical
guidance on the choice of tuning parameters.

1 INTRODUCTION

Markov chain Monte Carlo (MCMC) is a powerful
and popular method for sampling from target distribu-
tions. As a sampling method, it is inherently parallel:
simply run independent copies of the Markov chain on
every available core. However, as MCMC has been
used for a wider variety of problems, it has become
clear that this ‘naive’ paralellization can often be im-
proved upon. A major problem in the field is to de-
velop new parallelization methods and find conditions
under which they are better than the naive paralleliza-
tion.
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Past approaches to parallelizing MCMC algorithms
can be broadly divided into four categories: (i)
single-step speedups, (ii) exploration speedups, (iii)
learning or partitioning data and (iv) learning or
partitioning the state-space. The first method uses
several cores to increase the speed at which individual
steps of a Metropolis-Hastings algorithm are taken
(Wilkinson (2005); Calderhead (2014); Brockwell
(2006); Angelino et al. (2014); Feng et al. (2003)),
while the second method uses several cores to run
slightly different chains, increasing the speed at which
the algorithm mixes (see e.g., parallel-tempering in
Altekar et al. (2004) and the elliptical slice sampler
in Nishihara et al. (2014)). Contrary to the first
two approaches, the third approach applies mainly in
the context of sampling from posterior distributions,
and involves partitioning the data into batches and
later recombining the MCMC samples (Scott et al.
(2013); Wang and Dunson (2013); Neiswanger et al.
(2013); Huang and Gelman (2005)). This approach
is especially useful for large data sets as they are
often stored across different machines. The fourth
method often involves finding good partitions of the
state space and running a different MCMC chain in
each part of the partition (Hallgren and Koski (2014);
VanDerwerken and Schmidler (2013)), though there
exist other methods in this category (Craiu et al.
(2009)). Although we describe four categories, these
methods can generally all be applied at the same
time. In addition, several data-augmentation chains
incorporate the underlying dataset into the state
space of the Markov chain (see, e.g., Maclaurin and
Adams (2014)), meaning that statespace-partitioning
schemes, including the approach described in this
paper, can be used as a first step in data-partitioning
schemes.

1.1 Our Contributions

We propose a novel collection of methods for paral-
lelizing MCMC by partitioning the underlying state
space. Our key idea is to find partitions based on spec-
tral clustering (see Von Luxburg (2007)). The main
intuition behind all state space partitioning methods
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is to replace a single Markov chain targeting a highly
multimodal distribution with several Markov chains,
each targeting distinct unimodal distributions. Since
Markov chains tend to mix much more quickly on uni-
modal distributions than on multimodal distributions,
this should improve computational efficiency. Our
approach differs from existing space-partitioning ap-
proaches in that it includes a general way to find a
partition (unlike Hallgren and Koski (2014)) and that
the allowable partitions are extremely general and can
in particular include non convex sets (this is in contrast
to the more limited family of Voronoi partitions sug-
gested in VanDerwerken and Schmidler (2013)). Per-
haps surprisingly, we find that the additional flexibility
of our family of partitions generally does not greatly
increase the cost of finding a ‘good’ partition, as long
as a ‘good’ partition exists.
We provide empirical evidence that our approach
works well for benchmark problems and provide ex-
amples for which our method outperforms its competi-
tors. We also provide a theoretical grounding for our
approach. This includes some guarantees that the par-
titions we find converge to a ‘good’ partition and that
‘good’ partitions result in efficient MCMC chains. We
use fully worked-out examples to illustrate the gains
that our method can provide under optimal circum-
stances, as well as the fact that state space partition-
ing can give an advantage over naive parallelization
even when the target distribution does not have strong
clusters and when the partitions used are neither sta-
ble nor close to optimal. Finally, we discuss heuristics
for the amount of computational effort that should be
spent on finding a partition.

2 Intuition Behind Partitioning

Before discussing how our algorithm chooses a par-
tition, we give notation and explain why state space
partitioning methods work well once a good partition
has been found. Let {Yt}t∈N be a Markov chain on a
state space Ω with stationary distribution π and tran-
sition kernel K. Throughout this paper, we assume
that the kernel K is a Metropolis-Hastings kernel asso-
ciated with a proposal kernel Q, though our approach
can be applied in other settings. For any T ∈ N and
π-measurable function h, the usual MCMC estimate
of µ ≡ π(h) is

µ̂ =
1

T

T∑

t=1

h(Yt). (1)

The computation of this estimate can be naively
parallelized by running n independent chains

{Y (i)
t }t∈N,1≤i≤n and writing

µ̂naive =
1

nT

T∑

t=1

n∑

i=1

h(Y
(i)
t ). (2)

Alternatively, fix a partition of Ω into disjoint subsets
{Ωi}ni=1. Define the weights wi = π(Ωi) and distribu-
tions

π̃i(A) = π(A ∩ Ωi) and πi(A) =
1

wi
π̃i(A). (3)

For 1 ≤ i ≤ n, define Ki to be the Metropolis-Hastings
kernel with proposal kernel Q and target distribu-

tion πi and let {X(i)
t }t∈N be a Markov chain evolv-

ing according to Ki. For each fixed i, the estimate of
µi ≡ πi(h) that is analogous to (1) is given by

µ̂i,par =
1

T

T∑

t=1

h(X
(i)
t ), (4)

and since µ =
∑
i wiµi, we use

µ̂par =
n∑

i=1

wiµ̂i,par (5)

as the full estimate of µ.
We now derive conditions under which the es-
timator in (5) has smaller variance than the
estimator in (3). Let λ = sup{|λ∗| : (λ∗I −
K)−1 is not a bounded linear operator on L2(π), λ∗ 6=
1} and denote by (1−λ) the spectral gap of reversible
kernel K, and similarly by (1 − λi) the spectral gap
of Ki. The normalized variance of the estimate (2)
can be bounded (see e.g. Prop 4.29 of Aldous and Fill
(2002)) by

T Var[µ̂naive](1−O(T−1)) ≤ νnaive ≡
2||h||22,π
n(1− λ)

, (6)

and generically there exists a function h for which this
is close to equality for large T . Similarly,

T Var[µ̂par](1−O(T−1)) ≤ νpar ≡ 2
∑

i

w2
i ||h||22,πi

1− λi
,(7)

and again this is generically close to equality for large
T and worst-case h. Denote by Φ the set of all mea-
surable n-partitions of Ω and by P = (Ω1, . . . ,Ωn) an
element of Φ. Equations (6) and (7) suggest that the
estimate (5) obtained from a partitioned state space
should be more efficient than the naive estimate (2)
when

∑

i

nw2
i (1− λ)

1− λi
||h||22,πi

||h||22,π
< 1. (8)
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Since ||h||22,πi
=
∫
x
h(x)2πi(dx) ≤ 1

wi
||h||22,π for all i,

this suggests choosing the partition

P = argminP∈Φ

(∑

i

wi
1− λi

)
(9)

to find an estimator that is efficient for generic func-
tions h. Finding this partition is computationally diffi-
cult, and so we settle for finding a partition that makes
a good proxy for

∑
i

wi

1−λi
small. Define the conduc-

tance of Ki by

φi(S) =

∫
x∈S Ki(x, S

c)dπi(x)

πi(S)πi(Sc)
(10)

φi = inf
S : 0<πi(S)< 1

2

φi(S),

with an analogous definition for the conductances as-
sociated with K. By Lawler and Sokal (1988),

φ2
i

2
≤ (1− λi) ≤ 2φi, (11)

and so
∑

i

wi
1− λi

≤ 2
∑

i

wi
φ2
i

. (12)

Thus, we approximately minimize the objective func-
tion (9) by making the upper bound (12) small. It is
known (see Meila and Shi (2000); Kannan et al. (2004))
that spectral clustering approximately finds

P = argminP∈Φ

n∑

i=1

wiφ(Pi). (13)

Although it is not obvious, this choice of partition also
approximately minimizes the right-hand side of Equa-
tion (12) (see Lee et al. (2014)), and so throughout
this paper we will generally choose our partitions via
spectral clustering. By inequalities (6), (7) and (12),
the condition

∑

i

nw2
i (1− λ)

φ2
i

||h||22,πi

||h||22,π
� 1 (14)

implies that νpar � νnaive.

Inequality (14) gives a sufficient condition under
which partitioning results in a more efficient sampler
than naive parallelization. We give some examples
showing that the ‘optimal’ partition defined by the
heuristic (13) can satisfy this condition, and also that
even very poor approximations of this partition can
vastly improve sampling efficiency. The following il-
lustrates the enormous improvement that partitioning
can achieve when each mode of a strongly multimodal
target density is in a separate part of the partition:

Example 2.1 (Mixture of Gaussians). Fix constants
0 < τ � σ � 1 and consider the Random Walk
Metropolis-Hastings chain K on R with proposal ker-
nel Q(x, ·) = 1

2τUnif[x − τ, x + τ ] and target distribu-
tion π = 1

2N(−1, σ)+ 1
2N(1, σ). By considering the set

S = (−∞, 0], we can calculate from Equation (10) that
this chain has conductance (and thus spectral gap by

Equation (11)) at most O
(
τ−2e−cσ

−2
)

for some fixed

0 < c <∞. We consider speeding up simulation from
the target distribution by partitioning the state space
R into n = 2 parts. Although spectral clustering at-
tempts to minimize the objective function (13) rather
than the ‘correct’ objective function (9), Figure 1 sug-
gests that both have the same minimizer: the partition
P = {(−∞, 0], (0,∞)}.
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Figure 1: Comparing Two Objective Functions (σ =
0.4, τ = 0.2) (Red is objective function for spectral
clustering; blue is objective function for MCMC).

The Metropolis-Hastings chains K1 and K2 with pro-
posal distribution Q and target distributions π1(x) ∝
π(x)1x≤0 and π2(x) ∝ π(x)1x>0 have conductances
that are at least on the order of τ

σ in the same regime
(see Theorem 4.3.3 of Woodard (2007)), and thus spec-

tral gaps that are at least on the order of τ2

σ2 (again,
see Equation (11)). Thus, the ratio of efficiencies (14)

is at most O( 1
σ2 e
−cσ−2

) � 1. Figure 2 plots the the
inverse of the true value of this ratio, showing that it
is enormous for reasonable values of σ and illustrating
the gains of state space partitioning over naive paral-
lelization. Note - this plot is on a logarithmic scale!

Figure 1 suggests that spectral clustering is essentially
optimizing the right objective function, and Figure 2
shows that the estimator µ̂par associated with the best
partition can be vastly more efficient than µ̂naive. Un-
fortunately, in realistic examples, we will not have ac-
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Figure 2: Log of Efficiency Ratio
(log(V ar(µ̂par)/V ar(µ̂naive) for τ = 0.2).

cess to an optimal partition. Thus, it is natural to ask
if similar gains can be obtained for partitions that are
closer to those that might be seen in practice. Figure
3 shows the relative efficiency of µ̂par as the partition
P = {(−∞, R], (R,∞)} ranges over various values of
R ≥ 0. It shows that µ̂par can be much more efficient
than µ̂naive even when the partition used is quite far
from optimal.
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Figure 3: Inverse of the bound of the variance of µ̂par

as R changes (τ = 0.2, σ = 0.15).

Together, the three Figures 1, 2 and 3 justify our ap-
proach by showing that the partition returned by spec-
tral clustering is closely related to the best partition,
that the best partition can substantially increase effi-
ciency, and finally that there is a fairly wide range
of partitions that give rise to estimators with nearly-
optimal efficiency.

A central point of this paper is that our parallelization

scheme can offer large improvements even when the
partition used is far from optimal, and even in
the absence of multimodality. This is most starkly
illustrated by:

Example 2.2 (Simple Random Walk on the Cycle).
Fix m and define the graph (Vm, Em) with Vm =
{1, 2, . . . ,m} and Em = {(x, y) ∈ Vm : |x − y| ≤
1} ∪ {(1,m)}. Recall that the simple random walk on
the circle (here Ω = Vm), which has transition kernel
P[Xt+1 = y|Xt = x] = 1

31(x,y)∈Em
, has stationary dis-

tribution π = Unif(Ω) and spectral gap of order 1
m2

(see Section 12.3 of Levin et al. (2009)). Again, we
fix a function h with ||h||22,π = 1 and compare the effi-
ciency of µ̂par to the efficiency of µ̂naive. By Equation

(6), the variance of µ̂naive is on the order of m
2

nT . If we
partition Ω into n connected components {Pj}nj=1, the
associated kernels Kj have spectral gaps on the order of

1
|Pj |2 (again, see Levin et al. (2009)). Thus, by Equa-

tion (7), the associated estimator µ̂par has variance on
the order of 1

m2T

∑n
j=1 |Pj |4. It is easy to check that

this is minimized by choosing |Pj | = m
n , in which case

µ̂ has an asymptotic variance of only m2

n3T . This is

much smaller than the variance m2

nT of µ̂naive, despite
the fact that the target distribution is completely flat.
We note again that suboptimal partitions can yield sub-
stantial improvements. For example, any choice of

partition for which supj |Pj | = o
(
m√
n

)
will lead to an

estimator µ̂par with a smaller asymptotic variance than
the estimator µ̂naive. We also note that, due to the ro-
tational symmetry of the simple random walk, there is
not a unique optimal partition in this example. This
non-uniqueness does not prevent us from using the al-
gorithm presented in this paper. In most clustering ap-
plications, the resulting partition is of interest in and
of itself, and is meaningful only if a unique good par-
tition exists. In contrast, we only use the partitioning
method as a way to reduce the variance of our estima-
tor, and don’t attach any particular meaning to it: we
only need the existence of at least one good partition.

The remainder of this paper is concerned with describ-
ing an algorithm that produces a good partition effi-
ciently, as well as describing its performance.

3 Methods

In this section, we lay out our approach and give some
useful variations. Our main approach, summarized
in Algorithm 1, has four steps: an initial exploration
step, followed by repeated partitioning, sampling and
weighting. In the first step, we explore the state space
and try to capture as many modes as possible; this
is necessary if we hope to have a reasonable first par-
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tition. In the second step, we use spectral clustering
and the history of the algorithm to find a ‘good’ parti-
tion {Ωi}ni=1 of the state space - that is, one for which
the restricted chains Ki all have large conductance. In

the third step, we run the chains {X(i)
t }t∈N in each

component Ωi of the partition. In the last step, we
estimate the weights wi of each element of the par-
tition. The algorithm requires as input the number
n of cores to be used (corresponding to the number
of disjoint sets in the partitions), the proposal kernel
Q, the target distribution π, the number N0 of sam-
ples to be obtained by the initial exploration stage,
the number ` of times that repartitioning occurs, the
number {Ni}1≤i≤` of samples used in each repartition-
ing step (first step of Algorithm 2), and the number
{Ti}1≤i≤` of steps to run the Markov chain between
repartitionings. In practice, it is often helpful to have
`, T and especially N depend on the previous history
of the chain rather than fixing them in advance.

Algorithm 1: Our Method

input : Q, π,n, N0, `, {Ni}1≤i≤`, {Ti}1≤i≤`,
output: µ̂
begin

Initialize X as in Section 3.1;
for i = 1 to ` do

(Ω1, . . . ,Ωn), (V1, . . . , Vn)←
DoSpectralClustering (X,n,Ni, Q, π);
Compute (π̃1, ..., π̃n) as in Equation (3) ;
X ← X∪ RunParallelChains

(Q, π̃1, π̃2, . . . , π̃n, Ti);
Compute (ŵ1, ..., ŵn) as in Equations (17) and
(18) ;

end
Estimate µ̂ as in Equations (20);

end

3.1 Explore State Space

In this step, we create a sample X =
(X1, X2, . . . , XN0

) of points from the state space
Ω; these points will be used to create an initial
partition. Ideally, these points should cover every
mode of the target π. In simulations, we have found
that generating these points by running the parallel
tempering algorithm (Swendsen and Wang (1986);
Geyer (1991); Earl and Deem (2005)) from several
well-dispersed initial points works well.

3.2 Partition State Space

In the partitioning step we obtain a partition of the
state space, given the collection of points X that we
have seen so far. We summarize our approach in Al-

gorithm 2.

Algorithm 2: DoSpectralClustering

input : X, n, N, Q, π
output: (Ω1, ...,Ωn), (V 1, .., V n)
begin

Subsample N points uniformly and without
replacement X1, . . . , XN ∼ Unif(X) ;

Define the matrix Q̂ij = Q(Xi, Xj) for
i, j ∈ {1, ..., N} ;

Define the diagonal matrix Dii =
∑
j Q̂ij for

i ∈ {1, ..., N};
Let L = D−1/2Q̂D−1/2;
Let V 1, ..., V n be the n normalized leading
eigenvectors of L;
For i=1,...,N let
Zi = (V 1[i], ..., V n[i])/‖(V 1[i], ..., V n[i])‖;
Define the map
σ : {Z1, Z2, . . . , ZN} → {1, 2, . . . , n} by kmeans

(Z1, . . . , ZN ;n) ;
Let {C1, . . . , Cn} be the n centers obtained by
kmeans;
Define the partition Ω = tni=1Ωi by Equation
(16);

end

The first step, in which we subsample N points from
the original data X, is used to keep the computational
burden manageable, as the dataset can be very large.
The second-last step of this algorithm, kmeans, is the
popular k-means clustering algorithm (see e.g., Chap-
ter 13 of Hastie et al. (2009)). The last step is to
extend the partition σ of the set {Z1, . . . , ZN} to a
partition of the entire state space Ω. Let λ1, . . . , λn be
the eigenvalues associated with V 1, . . . , V n. Following
Equations (8) through (12) of Bengio et al. (2003), for
x ∈ Ω and 1 ≤ i ≤ n, we define

Zi(x) =

√
N

λi

N∑

j=1

V i[j]Q(x, xj). (15)

Set Z(x) = (Z1(x), . . . , Zn(x)) and for 1 ≤ i ≤ n define

Ωi = {x ∈ Ω : argmin
j∈{1,...,n}

(||Cj − Z(x)||) = i}. (16)

3.3 Run Chains

We define the method RunParallelChains. For
each i ∈ {1, 2, . . . , n}, we let {X(i)

t }Tt=1 be a
Metropolis-Hastings chain with proposal kernel Q and
target distribution π̃i. The method then returns

{X(i)
t }1≤t≤T, 1≤i≤n. We do not specify the initial

points X
(i)
1 , but have found in practice that the point
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in X ∩ Ωi corresponding to the centroid given by the
k-means algorithm is a good choice.

3.4 Estimate Weights

The final step is to estimate the weights wi = π(Ωi).
There are a few options here, but we find that bridge
sampling (Meng and Wong (1996),Gelman and Meng
(1998)) works well. Recall that bridge sampling re-
quires, for each 1 ≤ i ≤ n, a proposal distribution
pi and bridge function αi. In this paper, we gen-
erally choose pi to be a normal or student distribu-
tion whose first two moments match the empirical
moments of Unif(Xi) and use the geometric bridge
αi = (piπ̃i)

−1/2, where π̃i(x) = wiπi(x) is the un-
normalized version of πi.

For fixed pi and αi, let Xi = X ∩ Ωi, ni = |Xi|, and
let {θj}1≤j≤ni

be i.i.d. draws from pi. Then, define

ĉ
(i)
1 =

1
ni

∑ni

j=1 π̃i(θj)α(θj)
1
ni

∑
θ∈Xi

pi(θ)α(θ)
. (17)

Since the estimates ĉ
(1)
1 , ..., ĉ

(n)
1 do not generally add

up to 1, we renormalize:

ŵi =
ĉ
(i)
1∑n

j=1 ĉ
(j)
1

. (18)

3.5 Estimating µ̂

We conclude by defining an estimator for µ̂. We start
by writing:

µ = Eπ(h(x)) =
n∑

i=1

µiwi (19)

where µi = π(Ωi)Eπ(h(x)1x∈Ωi) = Eπi(h(x)). We es-
timate µi by µ̂i as in Equation (4), and using the esti-
mated weights ŵ1, .., ŵn we have the following estima-
tor for µ:

µ̂ =
n∑

i=1

µ̂iŵi (20)

4 Applications

We describe the parameters and proposals used for the
simulations in the Supplementary Material.

4.1 Example 1: Mixture of Gaussians in 2
dimensions

We start with an example used by VanDerwerken and
Schmidler (2013), where the target distribution here is
a mixture of bivariate normals. We compare the per-
formance of three methods: parallel tempering, naive

parallelization, and our method. For our method, we
obtained N0 = 8000 samples using parallel temper-
ing as our exploration phase (see Figure 4). We then
ran our algorithm with ` = 1 round of partitioning,
n = 4 clusters, and N1 = 700, thus obtaining estimates
ŵi, i = 1, . . . , 4 of the weights. Considering those
weights as fixed, we ran parallel constrained chains
for an additional T1 = 4000 iterations, and obtained
an estimate µ̂ as in (19).

To evaluate our method we repeated the last step (the
last 4000 iterations) 500 times, computed the Euclid-
ian distance between our estimate and the true expec-
tation for each replication, and computed the average
squared error, and the sample standard deviation of
the squared error. In total, for one estimate, we ran a
total 8000+4000+4×4000 = 28000 iterations. But if
we assume that each iteration (whether it be for par-
allel tempering or constrained metropolis) takes t sec-
onds, and consider the fact that 4×4000 iterations are
run in parallel on 4 cores, each estimate is obtained in
16000×t seconds. For parallel tempering, we obtained
one estimate of the mean by running the algorithm for
16000 iterations. We again repeated this 500 times to
obtain an average squared error and a sample standard
deviation. For the naive method, we ran in parallel 4
independent chains initialized randomly from the tar-
get distribution, for 16000 iterations. In the end, if we
consider that an iteration of parallel tempering takes
the same time than an iteration of metropolis hast-
ings, then all the methods take the 16000× t seconds
(in fact, one iteration of parallel tempering takes a bit
longer; thus, as measured by clock time, our method
would look even better).

method mean se
ours 0.008 0.009

parallel tempering 0.21 0.28
naive parallel 14.08 13.5

Table 1: Square distance from the true mean in the
2D mixture of gaussians example

We see in Table 1 that our method dramatically re-
duces the mean squared error compared to parallel
tempering, and improves on naive parallelization even
more dramatically.

4.2 Example 2: Why Spectral Clustering?

In this section, we illustrate the flexibility of spectral
clustering, and show that it can work in situations
where Voronoi clustering fails. Define the two sets
S1 = {(r cos(θ), r sin(θ)) : θ ∈ [ 2π

6 ,
10π
6 ], r ∈ [1, 1.1]}

and S2 = {(r cos(θ), (r − 1) sin(θ)) : θ ∈ [−4π
6 , 4π

6 ], r ∈
[1, 1.1]}, and consider the target distribution π that is
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Figure 4: Spectral clustering of sample space for 2D
mixture of gaussians

uniform on S = S1∪S2 (see Figure 5). We consider the
simplified scenario where the exploration is carried by
two chains of length 5000, initialized in the two sets,
which results in a reasonably good picture of the over-
all density. We then perform spectral clustering on the
one hand, and k-means (an instance of Voronoi cluster-
ing) on the other hand, using the N0 = 10000 samples
obtained in the exploration step. Figure 5 show the
results of the clustering phase: we see that because
k-means can only find convex partitions, it doesn’t
capture the shapes adequately. To illustrate the im-
pact of the choice of clustering method in terms of
Monte-Carlo error, we carried the rest of our algorithm
(estimating of the weights, running restricted parallel
chains, and estimating the mean of the distribution)
with parameters (` = 1, N1 = 700, T1 = 10000) for
each clustering method . In particular, we simulated
the last two steps of algorithm 1 (running restricted
chains and estimating the mean) 200 times for each
method, and computed the squared Euclidian distance
of the estimated mean to the true mean. Using spec-
tral clustering, the average squared distance is 0.04,
with standard error 0.05, while with k-means, the av-
erage distance is 0.13, with standard error 0.03.

5 Convergence and Optimality

All proofs are in the Supplementary Material.

5.1 Consistency

We do not assume that the sequence of partitions we
obtain at each stage 1 ≤ i ≤ ` of Algorithm 1 is in any
sense optimal, or that it converges in any sense to a

spectral voronoi
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Figure 5: Spectral (left) and k-means (right) cluster-
ings of the sample space

good partition. Indeed, as illustrated by example 2.2,
our clustering algorithm can greatly increase compu-
tational efficiency even when there is not a unique op-
timal partition and when the partition used is far from
any optimal partition. Even when there is not conver-
gence to a unique optimal partition, the estimator µ̂
of µ returned by Algorithm 1 is generally consistent.
We consider a simple setting:

Assumptions 5.1. Assume that the state space Ω ⊂
Rd is bounded and that the target distribution π and
the proposal distributions {Q(x, ·)}x∈Ω have densities
ρ(·) and q(x, ·) that satisfy

c < ρ(y), q(x, y) < C (21)

for some 0 < c < C <∞ and all x, y ∈ Ω.

Theorem 5.2. Let Assumptions 5.1 hold, and assume
further that h is bounded. Fix ` and {Ti}`−1

i=1 , and let
µ̂ be the estimate returned by Algorithm 1. Then

P[ lim
T`→∞

µ̂ = µ] = 1.

Although our method doesn’t require that our par-
titions converge to an optimal partition, this conver-
gence is desirable and does occur under reasonable con-
ditions. For a partition P = {Ωi}ni=1 of Ω, define an
equivalence relation on Ω by writing x ∼P y if and
only if there exists some 1 ≤ i ≤ n such that x, y ∈ Ωi.
Then define the distance dπ between pairs of partitions
P = {Ωi}ni=1, P ′ = {Ω′i}ni=1 by

dπ(P,P ′) = P[(X ∼P Y )⊕ (X ∼P′ Y )],

where X,Y are drawn independently from π and ⊕ de-
notes the logical operator XOR. For any kernel Q and
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distribution π on Ω, Von Luxburg et al. (2008) defines
an associated limiting Laplacian L = L(Q, π). For any
limiting Laplacian L(Q, π), Ben-David et al. (2006) de-
fines the notion of a class of partitions C = C(Q, π) as-
sociated with L. We do not give precise definitions of
these objects in this paper; the only heuristic needed is
that C(Q, π) generally has exactly one element, unless
Q, π have symmetries. We can then state the following
corollary to Theorem 16 of Ben-David et al. (2006):

Theorem 5.3 (Convergence of Partitions). Let As-
sumptions 5.1 hold. Fix a partition P = {Ωj}nj=1 with

associated measures {πi}ni=1, so that C(Q, 1
n

∑n
j=1 πj)

has a unique element P. Fix γ > 0 and two sequences
{N(k)}k∈N, {T (k)}k∈N satisfying

lim
k→∞

T (k) =∞ (22)

lim
k→∞

N(k)2+2γ

T (k)
= 0.

For k ∈ N, let X = {X(i)
t }0≤t≤T (k), 1≤i≤n

be the output of the method RunParal-
lelChains(Q, π1, . . . , πn, T (k)) in Algorithm 1.
Let Pk,X be the partition returned by DoSpectral-
Clustering(X,n,N(k), Q, π). Then for ε > 0,

lim
k→∞

P[dπ(Pk,X ,P) > ε] = 0. (23)

This result implies that, if the partition {Ωi}ni=1 at
stage 1 ≤ q < ` of Algorithm 1 is close to the optimal
partition as measured by the metric dπ on partitions,
the metric at stage q+ 1 can be made arbitrarily close
as well by choosing Nq+1, Tq+1 large.

5.2 Sample Size Heuristics

In this section, we discuss the choice of the sample size
N used to compute each partition in Algorithm 1. We
emphasize two facts:

1. Increasing N has essentially no impact on the
mixing properties of Ki after a certain point
Nmax.

2. If there exists an optimal partition {Ωi}ni=1, and
di,j = Ex∼πi,y∼πj

[‖x− y‖] represents the distance
between parts of the partition while 1− λi is the
spectral gap of kernel Ki, we often have

Nmax ≈
(

max1≤i<j≤n dij
min1≤i≤n π(Ωi)(1− λi)

)2

. (24)

Together, these tell us that for the problems where our
methods are most useful (i.e. where max1≤i≤n(1−λi)
is largest), the amount of effort that spent on finding
the partitions should be small.
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Figure 6: Number of points needed to create a parti-
tion within a certain distance of the sample optimal
partition

The first heuristic follows from the fact that the parti-
tions returned by DoSpectralClustering converge
to the optimal partition under moderate conditions
(see Theorem 5.3) and that the mixing time and spec-
tral gap are continuous functions of the underlying
transition kernel (see e.g. the main result of Mitro-
phanov (2005)).

Our justification for the second heuristic is empiri-

cal. Let Q(x, x∗) = I(|x−x∗|<τ)
2τ , and for 0 < µ < ∞

let πµ = 1
2N (−µ, 1) + 1

2N (µ, 1). For any parti-
tion P = {Ωi}ni=1, let λ(P) be the smallest spec-
tral gap of the associated kernels {Ki}ni=1 and let
P0 = {(−∞, 0], [0,∞)}. Finally, for 0 < ε < 1, de-
fine

Nmax(ε, µ) = min{N : λ(CN,µ) ≥ (1− ε)λ(C0)},(25)

the number of points needed to create a partition that
is within a factor of 1− ε of the optimal partition.

For each µ ∈ {0.2, 0.3, . . . , 3.7} we generated
i.i.d. samples Xµ = {Xi} ∼ πµ and gener-
ated partitions PN,µ for N = {1, 2, . . .}, accord-
ing to DoSpectralClustering(Xµ, 2, N,Q, πµ). Fig-
ure 6 presents smoothed versions of the averages
of the curves {Nmax(ε, µ)}µ∈{0.2,0.3,...,3.7} for ε ∈
{0.015, 0.01, 0.0085} over 20 runs. This plot agrees
fairly well with the heuristic (24), as do other gener-
ated plots. The most important property of our heuris-
tic is that one need not spend an unlimited amount
of computational resources to learn a ‘good enough’
partitioning of the state space, and that the computa-
tional resources required can be very modest if there
exists a very good partition. Similarly to Daniely et al.
(2012), for problems where we expect the method in
this paper to work very well, we find the repartitioning
step to be computationally inexpensive.
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