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1 Additional Theorem

Theorem 1.1. The estimator τ̂ is unbiased for τ under query randomization if all auctions are
unconstrained.

Proof. Without quota throttling, Assumption 2 and query randomization imply that

I(Zi = 1)Yi(Z) = I(Zi = 1)Yi(Zq[i])

= I(Zi = 1)Yi(1q[i])

= I(Zi = 1)Yi(1).

Therefore,

E(τ̂(Z)) = 2E

(∑
i

(I(Zi = 1)Yi(Z)− I(Zi = 0)Yi(Z))

)

= 2E

(∑
i

(I(Zi = 1)Yi(1)− I(Zi = 0)Yi(0)

)
= 2

∑
i

(P (Zi = 1)Yi(1)− P (Zi = 0)Yi(0))

= τ.

2 Proofs of main theorems

2.0.1 Proof of Theorem 5.1

Proof. First notice that for a bid treatment, we have:

W (Z)|Z ∼W (Z)|Z = ~1 ∼W (Z)|Z = ~0 (1)

which leads to:

P (W (Z) = w|Z) = P (W (Z) = w|Z = ~1) for all Z (2)
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Under joint throttling we let Wb = {w ∈ [0, 1]N [b] :
∑

iwi = Q[b] }, and compute the following
expectation:

E(Yi(W (Z), Z)|Z) =
∑

w∈Wb

P (W (Z) = w|Z)Y (w,Z)

=
∑

w∈Wb

P (W (Z) = w|Z = ~1)Y (w,Z)

= E(Yi(W (~1), Z)|Z)

So combining this with the query randomization assumption, we have:

E (I(Zi = 1)Yi(W (Z), Z)|Z) = E
(
I(Zi = 1)Yi(W (Z), Zq[i] = ~1q[i])|Z

)
= I(Zi = 1)E

(
Yi(W (Z), Zq[i] = ~1q[i])|Z

)
= I(Zi = 1)E

(
Yi(W (~1), Zq[i] = ~1q[i])|Z

)
Finally, for a specific realization w, the Assumption 2 implies:

Yi(w,Zq[i] = ~1q[i]) = Yi(w,Z = ~1) (3)

and so finally:

E (I(Zi = 1)Yi(W (Z), Z)|Z) = I(Zi = 1)E
(
Yi(W (~1), Zq[i] = ~1q[i])|Z

)
= I(Zi = 1)E

(
Yi(W (~1), Z = ~1|Z

)
= I(Zi = 1)E

(
Yi(W (~1),~1)

)
Using the same reasoning to establish

E(I(Zi = 0)Yi(W (Z), Z)|Z) = I(Zi = 0)E(Yi(W (~0),~0)) (4)

we can then write:
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E(τ̂) = E(E(τ̂ |Z))

= E(2
∑
i

(I(Zi = 1)E
(
Yi(W (~1),~1)

)
− I(Zi = 0)E

(
Yi(W (~0),~0)

)
))

= 2
∑
i

(P (Zi = 1)E
(
Yi(W (~1),~1)

)
− P (Zi = 0)E

(
Yi(W (~0),~0)

)
)

=
∑
i

(E
(
Yi(W (~1),~1)

)
− E

(
Yi(W (~0),~0)

)
)

= E(
∑
i

(Yi(W (~1),~1)− Yi(W (~0),~0)))

= E(τ)

= τ∗

which completes the proof.

2.0.2 Proof of Theorem 5.2

Proof. Denote by W (Z)[x=1] the sub vector of W (Z) corresponding to the units satisfying xi = 1.
We have that:

P (W (Z)[q[i],x=1] = w[x=1]|Zi = 0, Z−i) =
∏

j:q[j]=q[i],xj=1

min(
Q

(0)
b[j]

N
(0)
b[j](Z)

, 1)(1−Zj)wj

×min(1−
Q

(0)
b[j]

N
(0)
b[j](Z)

, 1)(1−Zj)(1−wj)

×min(
Q

(1)
b[j]

N
(1)
b[j](x = 1)(Z)

, 1)Zjwj

×min(1−
Q

(1)
b[j]

N
(1)
b[j](x = 1)(Z)

, 1)Zj(1−wj)

=
∏

j:q[j]=q[i]&xj=1

(min(
Q

(0)
b[j]

N
(0)
b[j](Z)

, 1)wj

×min(1−
Q

(0)
b[j]

N
(0)
b[j](Z)

, 1)(1−wj)

since query randomization implies Zi = 0⇒ Zq[i] = 0q[i]. So we have:
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P (W (Z)[q[i],x=1] = w[x=1]|Zi = 0, Z−i) =
∏

j:q[j]=q[i],xj=1

(min(
Q

(0)
b[j]

N
(0)
b[j](Z)

, 1)wj

×min(1−
Q

(0)
b[j]

N
(0)
b[j](Z)

, 1)(1−wj)

=
∏

j:q[j]=q[i],xj=1

(min(
Q

(0)
b +Q

(1)
b

Nb
, 1)wj

×min(1−
Q

(0)
b +Q

(1)
b

Nb
, 1)(1−wj)

= P (W (0)[q[i],x=1] = w[x=1])

Using the conditions stated in the theorem. So we have shown that:

P (W (Z)[q[i],x=1] = w[x=1]|Zi = 0, Z−i)

= P (W (0)[q[i],x=1] = w[x=1])

By a similar reasoning, we can show that:

P (W (Z)[q[i],x=1] = w[x=1]|Zi = 1, Z−i)

= P (W (1)[q[i],x=1] = w[x=1])

Then, after noticing the obvious fact that:

Yi(W (Z), Z) = Yi(W (Z)q[i],x=1, Z) (5)

we have:

E[Yi(W (Z), Z)|Zi = 1, Z−i] = E[Yi(W (Z)q[i],x=1, Z)|Zi = 1, Z−i]

=
∑

wq[i],x=1∈Wq[i],x=1

P (W (Z)q[i],x=1 = wq[i],x=1|Zi = 1, Z−i)× Yi(wq[i],x=1, Z)

=
∑

wq[i],x=1∈Wq[i],x=1

P (W (1)q[i],x=1 = wq[i],x=1)× Yi(wq[i],x=1, Z)

= E[Yi(W (Z), Z)|Z = 1]

Similarly, we can show that

E[Yi(W (Z), Z)|Zi = 0, Z−i] = E[Yi(W (Z), Z)|Z = 0]

So following the same technique as in the proof of Theorem 5.1 we have:
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E(I(Zi = 1)Yi(W (Z), Z)) = I(Zi = 1)E(Yi(W (1), Z = 1))

and

E(I(Zi = 0)Yi(W (Z), Z)) = I(Zi = 0)E(Yi(W (0), Z = 0))

the rest of the proof being identical to that of Theorem 5.1

3 Detailed derivations for Section 4

3.1 Scenario 2

The estimated treatment effect has expectation

E(τ̂) =
1

2K
τq +

1

2K

(
−B1(1) +

K∑
i=1

2K−iBi(1)

)

≥ 1

2K
τ +

1

2K

(
−B1(1) + 2KBK(1)

K∑
i=1

(
1

2
)i

)

≥ 1

2K
τ +

1

2K
(−B1(1)

+ 2K+1BK(1)(1− (
1

2
)K+1 − 1

2
))

=
1

2K
τ +AK

where

AK =
1

2K
(−B1(1) + 2K+1BK(1)(1− (

1

2
)K+1 − 1

2
))

4 Details and additional simulations

4.1 Correlation between potential bids

In the simulations in section 6.1, we induce a correlation between the treatment and control potential
bids. The complete generating process is as follows:

Bi(0) = exp(B∗i (0))

Bi(1) = exp(B∗i (1))

(B∗i (0), B∗i (1)) ∼MVN(µ,Σ)

where MVN(µ,Σ) denotes the multivariate distribution with mean µ = (µ0, µ1)
t and covariance

matrix Σ = ( 0.1 0.09
0.09 0.1 ). In particular, the correlation between B∗i (1) and B∗i (0) is ρ = 0.9
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Figure 1: Simulated bias of the effect of a bid treatment relative to the true effect under balanced
query randomization and balanced (query, bidder) randomization, for µ1 = 1.05 and Q = 2

3Nq.
The dots show the mean relative bias, and the endpoints show the mean ± twice the simulated
standard deviation of the relative effect size.

4.2 Experiments with larger auctions

Due to computational limitations, we were unable to simulate an exchange with a large number
of auctions. In the paper, we considered a maximum of Nq = 150 auctions. Here, we extend the
simulations to Nq = 390 auctions, for µ1 = 1.05 and Q = 2

3Nq. Figure 1 and Figure 2 show the
results for the relative biases and ratio of variances. They give weight to our previous observation
that the relative biases remain flat as the number of auctions increase, as does the ratio of variances.

4.3 Results for balanced complete randomization estimator under split and
joint quota

In the main paper, we report the results for balanced query randomization under split and joint
quota. We focused on those since our main purpose was to show that even when the conditions of
theorem 5.2 where violated, the combination of query randomization and split quota still resulted
in very low bias. In this section, we show empirically that split quota is also preferable to joint
quota under query randomization, although the bias is larger than under query randomization.
Figure 3 in particular show that the relative bias under joint quota is −1, as was the case for query
randomization. The relative bias under split quota is i close to zero when px = 0.9, but is overall
high otherwise.
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Figure 2: Ratio of variance of balanced complete randomization and balanced query randomization
estimators for different combinations of parameters. The dots show the mean ratios, and the
endpoints show the mean ± twice the simulated standard deviation of the ratio. The horizontal
dotted line lies at one.
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Figure 3: Bias of joint quota throttling and split quota throttling estimators relative tot he true
effect under complete randomization. The dots show the mean ratios, and the endpoints show the
mean ± twice the simulated standard deviation of the relative effect size.
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