Consistently Estimating Markov Chains with Noisy Aggregate Data
 Garrett Bernstein and Daniel Sheldon
 University of Massachusetts Amherst

A Extra Proofs

A. 1 Additional Details for Proof of Proposition 2

We wish to show that $\Lambda_{t}=N\left(\operatorname{diag}\left(\boldsymbol{\mu}_{t}\right)+(N-1) \boldsymbol{\mu}_{t} \boldsymbol{\mu}_{t}^{T}\right)$ is invertible. The Sherman-Morrison formula (Sherman and Morrison, 1950) gives the inverse of a matrix that is equal to an invertible matrix $\left(\operatorname{diag}\left(\boldsymbol{\mu}_{t}\right)\right)$ plus a rank-one matrix (the rank-one outer product of $\boldsymbol{\mu}_{t}$).
Specifically, let $D=\operatorname{diag}\left(\boldsymbol{\mu}_{t}\right)$ and then we have

$$
\begin{aligned}
\Lambda_{t}^{-1} & =N^{-1}\left(D+(N-1) \boldsymbol{\mu}_{t} \boldsymbol{\mu}_{t}^{T}\right)^{-1} \\
& =N^{-1}\left(D^{-1}-\frac{(N-1) D^{-1} \boldsymbol{\mu}_{t} \boldsymbol{\mu}_{t}^{T} D^{-1}}{1+(N-1) \boldsymbol{\mu}^{T} D^{-1} \boldsymbol{\mu}_{t}}\right) \\
& =N^{-1}\left(D^{-1}-\frac{N-1}{N} \mathbf{1 1}^{T}\right)
\end{aligned}
$$

We have used the fact that $D^{-1} \boldsymbol{\mu}_{t}=\mathbf{1}$ (the all ones vector) and that $\mathbf{1}^{T} \boldsymbol{\mu}_{t}=1$, since $\boldsymbol{\mu}_{t}$ is a vector of marginal probabilities.

A. 2 Proof of Proposition 3

Proof. Using condition (ii) of the proposition, we write:

$$
\mathbb{E}\left[\mathbf{y}_{t}\right]=\mathbb{E}\left[\mathbb{E}\left[\mathbf{y}_{t} \mid \mathbf{n}_{t}\right]\right]=\mathbb{E}\left[A_{t} \mathbf{n}_{t}\right]=A_{t} \mathbb{E}\left[\mathbf{n}_{t}\right]
$$

Since A_{t} is invertible, we have $\mathbb{E}\left[\mathbf{n}_{t}\right]=A_{t}^{-1} \mathbb{E}\left[\mathbf{y}_{t}\right]$, which proves conclusion (i).
For the non-central second moments, we have for $s \neq t$:

$$
\begin{align*}
\mathbb{E}\left[\mathbf{y}_{s} \mathbf{y}_{t}^{T}\right] & =\mathbb{E}\left[\mathbb{E}\left[\mathbf{y}_{s} \mathbf{y}_{t}^{T} \mid \mathbf{n}_{s}, \mathbf{n}_{t}\right]\right] \tag{8}\\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbf{y}_{s} \mid \mathbf{n}_{s}\right] \cdot \mathbb{E}\left[\mathbf{y}_{t}^{T} \mid \mathbf{n}_{t}\right]\right] \\
& =\mathbb{E}\left[\left(A_{s} \mathbf{n}_{s}\right)\left(A_{t} \mathbf{n}_{t}\right)^{T}\right] \\
& =A_{s} \mathbb{E}\left[\mathbf{n}_{s} \mathbf{n}_{t}^{T}\right] A_{t}^{T}
\end{align*}
$$

The second line uses condition (i) of the proposition: \mathbf{y}_{s} and \mathbf{y}_{t} are conditionally independent given \mathbf{n}_{s} and \mathbf{n}_{t} if $s \neq t$. Therefore, we have $\mathbb{E}\left[\mathbf{n}_{s} \mathbf{n}_{t}^{T}\right]=A_{s}^{-1} \mathbb{E}\left[\mathbf{y}_{s} \mathbf{y}_{t}^{T}\right] A_{t}^{-T}$, which proves conclusion (iii).
For conclusion (ii), we have for $s \neq t$:

$$
\begin{aligned}
\operatorname{Cov}\left(\mathbf{y}_{s}, \mathbf{y}_{t}\right) & =\mathbb{E}\left[\mathbf{y}_{s} \mathbf{y}_{t}^{T}\right]-\mathbb{E}\left[\mathbf{y}_{s}\right] \mathbb{E}\left[\mathbf{y}_{t}\right]^{T} \\
& =A_{s} \mathbb{E}\left[\mathbf{n}_{s} \mathbf{n}_{t}^{T}\right] A_{t}^{T}-A_{s} \mathbb{E}\left[\mathbf{n}_{s}\right] \mathbb{E}\left[\mathbf{n}_{t}\right]^{T} A_{t}^{T} \\
& =A_{s}\left(\mathbb{E}\left[\mathbf{n}_{s} \mathbf{n}_{t}^{T}\right]-\mathbb{E}\left[\mathbf{n}_{s}\right] \mathbb{E}\left[\mathbf{n}_{t}\right]^{T}\right) A_{t}^{T} \\
& =A_{s} \operatorname{Cov}\left(\mathbf{n}_{s}, \mathbf{n}_{t}\right) A_{t}^{T},
\end{aligned}
$$

so that $\operatorname{Cov}\left(\mathbf{n}_{s}, \mathbf{n}_{t}\right)=A_{s}^{-1} \operatorname{Cov}\left(\mathbf{y}_{s}, \mathbf{y}_{t}\right) A_{t}^{-T}$, which completes the proof.

A. 3 Additional Details for Proof of Theorem 1

We wish to show that $\lim _{k \rightarrow \infty} \gamma(k)=0$, where $\gamma(k)=\operatorname{Cov}\left(n_{t}(i) n_{t+1}(j), n_{t+k}(i) n_{t+k+1}(j)\right)$. We have

Consistently Estimating Markov Chains with Noisy Aggregate Data
 Garrett Bernstein and Daniel Sheldon
 University of Massachusetts Amherst

$$
\begin{aligned}
\gamma(k) & =\operatorname{Cov}\left(n_{t}(i) n_{t+1}(j), n_{t+k}(i) n_{t+k+1}(j)\right) \\
& =\operatorname{Cov}\left(\sum_{a=1}^{N} \sum_{b=1}^{N}\left[x_{t}^{(a)}=i\right]\left[x_{t+1}^{(b)}=j\right], \sum_{c=1}^{N} \sum_{d=1}^{N}\left[x_{t+k}^{(c)}=i\right]\left[x_{t+k+1}^{(d)}=j\right]\right) \\
& =\sum_{a, b, c, d=1}^{N} \operatorname{Cov}\left(\left[x_{t}^{(a)}=i\right]\left[x_{t+1}^{(b)}=j\right],\left[x_{t+k}^{(c)}=i\right]\left[x_{t+k+1}^{(d)}=j\right]\right)
\end{aligned}
$$

It is enough to show that the covariance in the summand goes to zero for any choice of four individuals $a, b, c, d \in$ $\{1, \ldots, N\}$. Clearly, it is equal to zero when the individuals $\{a, b\}$ do not overlap with $\{c, d\}$, because individuals are independent. We will verify that the covariance goes to zero for the choice $a=b=c=d:=m$, which, since it involves only a single individual, is the case with the greatest dependence between times t and $t+k$. Verifying the statement for other combinations of a, b, c, d is similar. Because we are considering a single individual m, we now drop the superscript and write $x_{t}:=x_{t}^{(m)}$. We can rewrite the covariance as:

$$
\begin{align*}
& \operatorname{Cov}\left(\left[x_{t}=i\right]\left[x_{t+1}=j\right], \quad\left[x_{t+k}=i\right]\left[x_{t+k+1}=j\right]\right) \\
& \quad=\mathbb{E}\left[\left[x_{t}=i\right]\left[x_{t+1}=j\right]\left[x_{t+k}=i\right]\left[x_{t+k+1}=j\right]\right]-\mathbb{E}\left[\left[x_{t}=i\right]\left[x_{t+1}=j\right]\right] \mathbb{E}\left[\left[x_{t+k}=i\right]\left[x_{t+k+1}=j\right]\right] \\
& \quad=\operatorname{Pr}\left(x_{t}=i, x_{t+1}=j, x_{t+k}=i, x_{t+k+1}=j\right)-\operatorname{Pr}\left(x_{t}=i, x_{t+1}=j\right) \operatorname{Pr}\left(x_{t+k}=i, x_{t+k+1}=j\right) \\
& \quad=\mu(i, j) \cdot\left(P^{k-1}\right)_{j i} \cdot P(i, j)-\mu(i, j)^{2} . \tag{9}
\end{align*}
$$

In the last line, we apply several facts about the Markov chain. Here, $\mu(i, j)=\operatorname{Pr}\left(x_{t}=i, x_{t+1}=j\right)$ is the (timeindependent) pairwise marginal, $\left(P^{k-1}\right)_{j i}=\operatorname{Pr}\left(x_{t+k}=i \mid x_{t+1}=j\right)$ and $P(i, j)=\operatorname{Pr}\left(x_{t+k+1}=j \mid x_{t+k}=i\right)$. Since the Markov chain is ergodic, $\lim _{k \rightarrow \infty}\left(P^{k-1}\right)_{j i}=\pi(i)$, so the first term of Equation (9) becomes:

$$
\lim _{k \rightarrow \infty} \mu(i, j)\left(P^{k-1}\right)_{j i} P(i, j)=\mu(i, j) \pi(i) P(i, j)=\mu(i, j)^{2} .
$$

Putting it all together, we see that the limit as k goes to infinity of the covariance in Equation (9) is $\mu(i, j)^{2}-$ $\mu(i, j)^{2}=0$, as desired. This completes the proof.

A. 4 Additional Details for Proof of Theorem 2

We wish to show that $|\gamma(k)|$ decays exponentially to zero as $k \rightarrow \infty$, where $|\gamma(k)|=$ $\left|\operatorname{Cov}\left(n_{t}(i) n_{t+1}(j), n_{t+k}(i) n_{t+k+1}(j)\right)\right|$. We follow the exact same steps in Section A. 3 up through Equation (9) where we instead desire $\left|\left(P^{k-1}\right)_{j i}-\pi(i)\right| \leq C \alpha^{k}$ for some constants $\alpha \in(0,1)$ and $C>0$. This is proved for irreducible and aperiodic P as Theorem 4.9 in (Levin et al., 2009). Using this fact together with Equation (9), we have:

$$
\begin{aligned}
\left|\operatorname{Cov}\left(\left[x_{t}=i\right]\left[x_{t+1}=j\right],\left[x_{t+k}=i\right]\left[x_{t+k+1}=j\right]\right)\right| & =\left|\mu(i, j) \cdot\left(P^{k-1}\right)_{j i} \cdot P(i, j)-\mu(i, j)^{2}\right| \\
& =\left|\mu(i, j) \cdot\left(P^{k-1}\right)_{j i} \cdot P(i, j)-\mu(i, j) \cdot \pi(i) \cdot P(i, j)\right| \\
& =\mu(i, j) \cdot\left|\left(P^{k-1}\right)_{j i}-\pi(i)\right| \cdot P(i, j) \\
& \leq \mu(i, j) \cdot C \alpha^{k} \cdot P(i, j) \\
& =C^{\prime} \alpha^{k} .
\end{aligned}
$$

for $C^{\prime}=\mu(i, j) P(i, j) C$. Thus the result is proved.

