
Geometry Aware Mappings for High Dimensional Sparse Factors
Supplementary Material

Avradeep Bhowmik Nathan Liu

University of Texas at Austin, Austin, TX Google, Mountain View, CA

Erheng Zhong Badri Narayan Bhaskar Suju Rajan

Yahoo! Labs, Sunnyvale, CA Yahoo! Labs, Sunnyvale, CA Yahoo! Labs, Sunnyvale, CA

1 PROOFS

Proof of Lemma 1

Proof. Using standard Euclidean distance for projec-
tion of any factor z on to the tessellating vectors Γ,
recall by definition we have

arg min
a∈Γ

d(a, z) = arg min
a∈Γ

1− a>z

‖a‖2‖z‖2
= arg max

a∈Γ
a>z (∵ ‖a‖2 = 1)

= arg min
ã∈A

1− ã>z

‖ã‖2‖z‖2

Suppose a has t non-zero elements with the corre-
sponding indices Ia ⊂ {1, 2, · · · k} with |Ia| = t.
Clearly, the corresponding unnormalised ã would also
have to have had t non-zero elements, each of them
±1, and therefore ‖ã‖2 =

√
t.

Therefore, we have

a>z =

∑
j∈Ia sign(aj)zj

√
t

Clearly, for any fixed t, the maximiser of the numerator
is an a such that each aj has the same sign as zj and
aj is supported (non-zero) at the top t elements (by
absolute value) of z. Then, we have

max
a∈Γ

a>z = max
t

max
a:|Ia|=t

∑
j∈Ia sign(aj)zj

√
t

= max
t

zts

where zs is as defined in Algorithm (2) of the main
manuscript. This completes the proof of correctness
of the projection operator.

Proof of Lemma 2

The steps to compute the approximately closest tessel-
lation vector over ΓD are given in Algorithm (A). The

proof given below is not the only one possible, other
(possibly tighter) bounds can be obtained by using
different proof techniques and different algebraic ma-
nipulations of the quantities involved.

Proof. Note that for any scalar s with |s| ≤ 1, there
exists a scalar h with |h| ≤ D such that |s− h

D | <
1
D .

Therefore, since each ãj is a multiple of ± 1
D , for any

z ∈ Sk, there exists ã ∈ AD = BkD \ {0}k such that

‖z− ã‖ =
√∑

i(z
i − ãi)2 ≤

√
k
D .

For any vector x ∈ Sk, denote its projection on to AD
as

AD(x) = arg min
ã∈AD

‖ã− x‖2

Clearly, by the preceding discussion,

‖x−AD(x)‖2 ≤
√
k

D
(1)

Moreover, AD(x) can be obtained by following steps
(2) to (13) in TessVector-D(x, D) as detailed in Al-
gorithm (A).

Suppose for a factor z, the optimal projection on ΓD
is

a∗z = arg mina∈ΓD
d(a, z) = arg mina∈ΓD

1
2‖a− z‖22

= arg mina∈ΓD
‖a− z‖2

Suppose the projection obtained from TessVector-
D(z, D) is az. Then we have,

‖z− a∗z‖2 ≤ ‖z− az‖ (2)

Now, we have

‖az − a∗z‖ ≤ ‖az − z‖+ ‖z− a∗z‖ [∆ ineq]
(3)

≤ 2‖az − z‖ [by (2)]
(4)

≤ 2 (‖az −AD(z)‖+ ‖AD(z)− z‖) [∆ ineq]
(5)

Geometry Aware Mappings for High Dimensional Sparse Factors

Note that

az =
AD(z)

‖AD(z)‖2
(6)

Therefore,

‖az −AD(z)‖ = ‖ AD(z)

‖AD(z)‖2
−AD(z)‖

= ‖
(

1− 1

‖AD(z)‖2

)
AD(z)‖

= |‖AD(z)‖2 − 1|

Furthermore, by triangle inequality

‖AD(z)‖2 ≤ ‖AD(z)− z‖2 + ‖z‖ = ‖AD(z)− z‖2 + 1

Also, by triangle inequality,

‖AD(z)‖2 ≥ ‖z‖ − ‖z−AD(z)‖2 = 1− ‖AD(z)− z‖2

Therefore,

−‖AD(z)− z‖2 ≤ ‖AD(z)‖2 − 1 ≤ ‖AD(z)− z‖2

Hence,

|‖AD(z)‖2 − 1| ≤ ‖AD(z)− z‖2 (7)

Finally, by combining equations (5) and (7) with equa-

tion (1), we get that ‖az − a∗z‖2 ∼ O(
√
k
D).

Since d(az,a
∗
z) ∝ ‖az − a∗z‖22, we have our result

d(az,a
∗
z) ∼ O

(
k

D2

)
Moreover, the time complexity of Algorithm (A) is
O(k) and each step from (4) to (12) can be computed
in parallel for each j and each z. Also, algorithm (A)
requires no explicit storage of the tessellating set ΓD.
This completes the proof.

2 FURTHER DISCUSSION

2.1 Uniform Tessellation

A key consideration while designing a tessellation
schema on the unit sphere is whether the tessellation
needs to be uniform or non-uniform over the surface
of the unit sphere. There is no one way to capture
the notion of “uniformity” in the context of a tessella-
tion schema. A few example conditions could be that
each tessellating vector should be equidistant from the
closest tessellating vector, or by symmetry should have
the same number of closest tessellating vectors, or the

Algorithm A Region Specification on ΓD
1: procedure TessVector-D(z, D)
2: initialise ãz to all zeros
3: for each z ∈ Z do
4: for each j ∈ {1, 2, 3, · · · k} do
5: compute a+ = |Dzj − dDzje|
6: compute a− = |Dzj − bDzjc|
7: if a+ ≤ a− then

8: set ãjz = dDzje
D

9: else
10: set ãjz = bDzjc

D
11: end if
12: end for
13: end for
14: normalise to get az = ãz

‖ãz‖2
15: return az
16: end procedure

diameter of each tile (distance between farthest points
within the same tile) should be the same for each tile.

But whichever way “uniformity” is defined, as a gen-
eral scheme, a uniform tessellation would make intu-
itive sense because it captures the relevant locality
properties of any set of factors irrespective of their
distribution. However, in many instances a uniform
tessellation may be overkill, and especially for clus-
tered data, a non-uniform tessellation might be more
appropriate from efficiency considerations. In partic-
ular, a uniform tessellation could be made into a non-
uniform tessellation simply by dropping some of the
tessellating vectors.

The directional tessellating set A on a ternary base
set B does not uniformly tessellate the unit sphere.
This is because for each tessellating vector in Γ, the
distance from the nearest tessellating vector depends
on the number of non-zeros in the vector.

In particular, the nearest neighbour to a vector ai is
every vector aj such that the unnormalised vectors ãi
and ãj differ by a Euclidian distance of 1 in the un-
normalised space. That is, every nearest neighbour to
a vector ai can be found by replacing a single element
in the unnormalised version of the vector ãi in the fol-
lowing way. First, obtain ãj by replacing a single 1 or
-1 in ãi by a 0, or replace a single 0 by either a 1 or a
-1. This is then re-normalised to get the corresponding
aj .

The proof of the above statement is the following.
First, clearly the nearest neighbour to every ai must
belong to the same orthant as ai. Suppose aj be-
longs to the set of nearest neighbours. Therefore,
sign(aιi)sign(aιj) ≥ 0 for every ι = 1, 2, · · · k. There-
fore, without loss of generality, assume that ai lies in

Bhowmik et al

(a) average percentage of discarded items for Synthetic Data (b) average percentage of discarded items for MovieLens

Figure 1: Mean percentage of discarded items across users for (a) Synthetic Data (b) MovieLens Data

(a) Recovery Accuracy (b) Recovery Accuracy versus Sparsity

Figure 2: Plot for Recovery Accuracy versus Sparsity Achieved (a) Synthetic Data (b) MovieLens Data

the non-negative orthant, aιj ≥ 0 ∀ ι.

Suppose ai has t non-zero elements, and aj has t +
s non-zero elements, with t > 0, s 6= 0. Then, the
angular distance between ai and aj is

d(ai,aj) =

1−
√

t
t+s if s > 0

1−
√

t−s
t if s < 0

Clearly, the minimum distance is attained for any t by
setting s = 1.

Following this, we see that the distance between closest

neighbours ai,aj is d(ai,aj) = 1 −
√

t
t+1 . Therefore,

the distance between closest neighbours for a tessellat-
ing vector depends on the number of non-zero elements
in the vector. In particular, the set A is more densely
packed with vectors oriented towards the “centre” of
each orthant as opposed to vectors along the axes or
along any lower dimensional subspaces formed from
subsets of the axes.

As mentioned in the main manuscript, obtaining uni-
form tessellations deterministically is a challenging
task and heuristics [2, 1, 3] must be resorted to.

2.2 Parse Tree Constructions

In this section we describe some examples of parse-
tree constructions for the permutation mapping step,
in particular the parse tree used in the experiments in
the main manuscript. Note that computing the per-
mutation map proceeds in two steps- (i) reading az
at time j as a sequence of δ characters at a time as
ãjδ = [ãj−δ, · · · ãj], and (ii) marking the next non-zero
index via a counter τt on φ(·) as a function of τj−1 and

ãδj as τj = f(τj−1; ãjδ).

A key desideratum for our mapping scheme is that
for any two a,a′ at any step τj = τ ′j if and only if

[aj−t, · · ·aj] = [a′
j−t

, · · ·a′j] for some t0 ≥ δ. This is
useful in preventing “accidental” overlapping sparsity,
so that the same sparsity pattern is not obtained acci-

Geometry Aware Mappings for High Dimensional Sparse Factors

dentally via two entirely different set of sliding window
characters read on a and a′.

It is immediately clear that the one-hot encoding sat-
isfies this property with t0 = δ = 1. Another simple
scheme (and one that we used in our experiments) is
the following.

Consider a sliding window of size δ = 1. Suppose
after j − 1 steps, the counter is at position τj−1. Shift
the counter to position τj depending on the value of
currently read aj as follows-

τj =


kj if aj = 1

τj−1 + 1 if aj = 0

k(k + j) if aj = −1

The dimensionality increase required is p ∼ O(k2),
however, with the inverted index representation, we
only require O(klogk) storage space complexity.

Many other parse-tree methods are possible. In par-
ticular, a straightforward generalisation of the one-hot
scheme described in the manuscript would obtain a
class of methods that involve a one-hot encoding on
a D-ary tessellation with a δ-parse-tree which has Dδ

leaf nodes. For this schema, for any two a,a′ we shall
have the corresponding counters τj and τ ′l at time j
and l respectively to be equal τj = τ ′l if and only if

j = l and ãδj = ã
′δ
l .

3 ADDITIONAL PLOTS

We show some additional plots to augment the exper-
imental results given in the main manuscript. Figure
(1a) and (1b) respectively show the average sparsity
levels obtained across all users for different methods
mentioned in this mansucript. We also show error bars
to give an idea of the variance.

Figure (2a) and (2b) show a plot of recovery accu-
racy plotted against average sparsity achieved across
all users for our method.

References

[1] E. L. Altschuler, T. J. Williams, E. R. Ratner,
R. Tipton, R. Stong, F. Dowla, and F. Wooten.
Possible global minimum lattice configurations for
thomson’s problem of charges on a sphere. Physical
Review Letters, 78(14):2681, 1997.

[2] A. Katanforoush and M. Shahshahani. Distribut-
ing points on the sphere, i. Experimental Mathe-
matics, 12(2):199–209, 2003.

[3] M. Tegmark. An icosahedron-based method for

pixelizing the celestial sphere. The Astrophysical
Journal, 470:L81, 1996.

