
Supplemental material to “Supervised
neighborhoods for distributed nonparametric

regression”

1 Proof of Theorem 1
We restate the assumptions required for Theorem 1 to hold.

Assumption 1. The training data {(yi,xi), i = 1, . . . , n} are generated i.i.d.
from a joint distribution that satisfies the following properties:

xi ∼ Uniform([0, 1]p) (1)
yi = g(xi) + ω(xi)εi (2)

where εi is independent of xi, the function ω(x) is bounded, E(εi) = 0, and
E(ε2i) <∞. The function g must be sufficiently well-behaved such that Assump-
tion 4 can be satisfied. A minimal requirement is that g is continuous.

Assumption 2. The splits of the constituent regression trees of the random
forest are calculated using a dataset that is independent of the training data.

Assumption 3. We require that

min
x∈[0,1]p
j∈(1,...,K)

kθj (x)→∞ (3)

i.e., the number of training points contained in each node of each tree of the
random forest goes to infinity.

Assumption 4. For each x ∈ [0, 1]p, the trees are trained in such a way that

max
i,j

[w(xi,x, θj)|g(xi)− g(x)|] p→ 0 (4)

i.e., that the cells containing x shrink in such away that the maximal variation
of the function g within a cell shrinks to 0 in probability.

Assumption 5. The data in each tree are sampled without replacement from
the original training set, so that all training points occuring in a particular leaf
node have the same weight.

1

Theorem 1. Under Assumptions 1 - 5, for all x ∈ [0, 1]p,

ĝ(x)− g(x) p→ 0 (5)

Proof. For convenience, we introduce a shorthand for the random forest weight
of training point i, defining wi = wRF(xi,x). We substitute equation 2 into the
definition of ĝ(x) in equation 12 from the main text.

ĝ (x)− g (x) = U (0)T Σ−1
x

[
n∑
i=1

wiU (xi − x) (g (xi)− g (x) + ω(x)εi)
]

(6)

Note that we have used the fact that

U (0)T Σ−1
x

[
n∑
i=1

wiU (xi − x) g (x)
]

= g(x) (7)

This is a well-known property of local linear estimators: that they reproduce
linear functions (in this case, a constant). See, for example, Proposition 1.12 in
[1].

We decompose ĝ(x)− g(x) into a bias-type term and a variance-type term,
defining

b (x) = U (0)T Σ−1
x

[
n∑
i=1

wiU (xi − x) (g (xi)− g (x))
]

(8)

v (x) = U (0)T Σ−1
x

[
n∑
i=1

wiU (xi − x)ω(xi)εi

]
(9)

We will show that each of these terms converges to 0 in probability.

Lemma 1. v(x) p→ 0

Proof. For notational convenience, we introduce a shorthand for the indicator
that a training point xi belongs to the same leaf node as x in a tree trained with
random parameter θ: let wi(θ) = w(xi,x, θ). We drop the dependence on x in
the notation, because we will work with a fixed x for the duration of the proof.
By Assumption 5, a particular training point will only occur once in a leaf node,
so wi(θ) ∈ {0, 1}, and it both indicates the presence of i in the leaf node, and can
be used to represent the weight of training point xi. We define the bandwidth
matrix of the random forest to be a diagonal matrix with diagonal elements set
to be the largest component-wise distances from x to a training point that has
nonzero weight. Let xi = (xi,1, . . . , xi,p), and let x = (x1, . . . , xp). We define

hm = max
i,j

[wi(θj) |xi,m − xm|]

H = diag(1, h1, . . . , hp)
(10)

By Assumption 3, the number of training points falling in a leaf node goes to
infinity. Using Assumption 2, if we condition on the variables wi(θj), the subset

2

of the training data falling in R(x, θj) is independent and identically distributed
uniformly in the rectangle R(x, θj). By definition,

∥∥H−1U (xi − x)
∥∥
∞ < 1, and

we have assumed that ω(x) is bounded and E(εi) = 0. We apply the weak law
of large numbers (in fact, just a variance calculation) to obtain

1
kθj (x)

n∑
i=1

wi (θj) H−1U (xi − x)ω(xi)εi
p→ 0 (11)

Thus, averaging over trees, we have
n∑
i=1

wiH−1U (xi − x)ω(xi)εi
p→ 0 (12)

We now examine the covariance matrix Σx.

Σx =
n∑
i=1

wiU(xi − x)U(xi − x)T

= 1
K

K∑
j=1

[
1

kθj (x)

n∑
i=1

wi(θj)U(xi − x)U(xi − x)T
]

We define the tree-level contributions to Σx as

Σx(θj) = 1
kθj (x)

n∑
i=1

wi(θj)U(xi − x)U(xi − x)T

We define δi = wi(θj)(xi − x), and denote the components of δi as δi =
(δi,1, . . . , δi,p). For convenience, we have dropped the dependence on j in the
notation for δi, but it is to be understood that it is only nonzero for data falling
in the leaf node of tree j. Then

Σx (θj) = 1
kθj (x)


kθj (x)

∑
i δi,1 · · ·

∑
i δi,p∑

i δi,1
∑
i δ

2
i,1 · · ·

∑
i δi,1δi,p

...
...

. . .
...∑

i δi,p
∑
i δi,pδi,1 · · ·

∑
i δ

2
i,p

 (13)

We define the width of the rectangle R(x, θj) in each dimension as ωm,j , and
define the offsets of x from the center of the rectangle R(x, θj) in each dimension
as ∆m,j , m ∈ {1, . . . , p}, j ∈ {1, . . . ,K}. Then we have, by the weak law of large
numbers, Assumption 2, Assumption 3, and the i.i.d. uniform distribution of
xi,

1
kθj (x)

∑
i

δi,m + ∆m,j
p→ 0 (14)

1
kθj (x)

n∑
i=1

δi,lδi,m −∆l,j∆m,j
p→ 0 for l 6= m (15)

1
kθj (x)

∑
i

δ2
i,m −

1
3

(
3∆2

m,j +
ω2
m,j

4

)
p→ 0 (16)

3

We define the tree-averaged quantities

∆m = 1
K

K∑
j=1

∆m,j (17)

σ2
m = 1

K

K∑
j=1

1
3

(
3∆2

m,j +
ω2
m,j

4

)
(18)

We define the vector ∆ = (∆1, . . . ,∆p)T , and define the matrix

S =

σ
2
1 · · · 0
...

. . .
...

0 · · · σ2
p

+ ∆∆T (19)

The above has shown that

Σx −
(

1 ∆T

∆ S

)
= op(1) (20)

Then, we will apply the Woodbury formula and the formula for the inverse of
a block-partitioned matrix to explicitly calculate the inverse of this matrix. We
define

η =
p∑

m=1

∆2
m

σ2
m

− 1
1 +

∑p
j=1

∆2
i

σ2
i

p∑
m=1

p∑
l=1

∆2
m∆2

l

σ2
mσ

2
l

(21)

Then

U(0)T
(

1 ∆T

∆ S

)−1
=



1
1−η

1
1−η

∆1
σ2

1
− 1

1+
∑p

j=1

∆2
i

σ2
i

∑p
m=1

∆1∆2
m

σ2
1σ

2
m


...

1
1−η

∆p

σ2
p
− 1

1+
∑p

j=1

∆2
i

σ2
i

∑p
m=1

∆p∆2
m

σ2
pσ

2
m




(22)

Since ∆2
m = O(σ2

m), we see that this vector is

U (0)T Σ̄ =


O (1)
O
(

1
σ1

)
...

O
(

1
σp

)

 (23)

Hence, because hm = O(σm),

U(0)TΣ−1
x H = (Op(1), . . . , Op(1)) (24)

Thus, we have that U(0)TΣ−1
x
∑n
i=1 wiU(xi − x) = op(1)

4

Lemma 2. b(x) p→ 0

Proof. We have, by definition,

b (x) = U (0)T Σ−1
x H

[
n∑
i=1

wiH−1U (xi − x) (g (xi)− g (x))
]

(25)

where H was defined in equation 10. By Assumption 4, and the definition of
H, we have that[

n∑
i=1

wiH−1U (xi − x) (g (xi)− g (x))
]

= op(1) (26)

As we have shown in Lemma 1, U (0)T Σ−1
x H = (Op(1), . . . , Op(1)), hence

b(x) = op(1)

2 Timing Results for Experiments in Spark

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

6000

8000

10000

1e+06 2e+06 3e+06
Dataset size

Tr
ai

ni
ng

 ti
m

e
(s

)

Method ● ●SILO MLlib

Friedman1 simulation

●

●

●
●

● ● ●

●

●

●

●

●
●

●

●
●

2000

3000

4000

5000

6000

1e+06 2e+06 3e+06
Dataset size

Tr
ai

ni
ng

 ti
m

e
(s

)

Method ● ●SILO MLlib

Gaussian Process simulation

Figure 1: Training timing for Distributed-Silo and MLlib with growing dataset
size. The amount of training data per Spark partition was fixed at 100,000
observations. Experiments were run on Amazon EC2 clusters using r3.xlarge
instances, which have 4 processors and 30.5 GB of RAM per node. For each
experiment, the cluster size was chosen such that the number of partitions was
equal to the number of processors. As expected, training time of Distributed
Silo is fairly constant as size of the dataset is increased, due to the lack of com-
munication between workers. While MLlib’s implementation avoids communica-
tion, particularly at deeper nodes in the trees, it does pay some communication
penalty as more workers are added.

5

References
[1] A. B. Tsybakov, Introduction to Nonparametric Estimation, ser. Springer

Series in Statistics. Springer-Verlag New York, 2008.

6

	Proof of Theorem 1
	Timing Results for Experiments in Spark

