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A Posterior Updates

Here we derive the posterior update rules for the time-varying setting via a suitable adaptation of the derivation
for the time-invariant setting [6]. Observe from (3)–(4) that each function f

t

depends only on the functions g
i

for i  t. By a simple recursion, we readily obtain for all t, j and x that
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using the definitions in the proposition statement. Using the formula for the conditional distribution associated
with a jointly Gaussian random vector [6, App. A], we find that f

t+1(x) is conditionally Gaussian with mean
µ̃
t

(x) and variance �̃
t

(x)2, as was to be shown.

B Learning ✏ via Maximum-Likelihood

In this section, we provide an overview of how ✏ can be learned from training data in a principled manner; the
details can be found in [20, Section 4.3] and [6, Section 5]. Throughout this appendix, we assume that the kernel
matrix is parametrized by a set of hyperparameters ✓ (e.g., ✓ = (⌫, l) for the Mátern kernel), � and ✏.

Let ȳ be a vector of observations such that the i-th entry is observed at time t
i

as a result of sampling the
function f

ti at location x
i

. Note that there will typically be many indices i sharing common values of t
i

, since in
the training data we often have multiple samples at each time. Under our time-varying GP model, the marginal
log-likelihood of ȳ given the hyperparameters is
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where (K̄)
ij

= k(x
i

, x
j

) and (D̄)
ij

= (1 � ✏)|ti�tj |/2. To set the hyperparameters by maximizing the marginal
likelihood, we can use the partial derivatives with respect to the hyperparameters. In particular, we have
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where ↵ = (K̄ � D̄+ �2
I)�1

ȳ, and (D̄
0
)
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= �v(1� ✏)v�1 with v = |t
i

� t
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|/2.
We can now fit ✏ and the other hyperparameters by optimizing the marginal likelihood on the training data, e.g.
by using an optimization algorithm from the family of quasi-Newton methods.

C Analysis of TV-GP-UCB (Theorem 4.3)

We recall the following alternative form for the mutual information (see (14)) from [1, Lemma 5.3], which extends
immediately to the time-varying setting:
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t�1(xt

)
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. (26)
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C.1 Proof of (20)

The initial steps of the proof follow similar ideas to [1], but with suitable modifications to handle the fact that
we have a di↵erent function f

t

at each time instant. A key di�culty is in subsequently bounding the maximum
mutual information in the presence of time variations, which is done in the following subsection.

We first fix a discretization D
t

⇢ D ✓ [0, r]d of size (⌧
t

)d satisfying
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where [x]
t

denotes the closest point in D
t

to x. For example, a uniformly-spaced grid su�ces to ensure that this
holds.

We now fix a constant � > 0 and an increasing sequence of positive constants {⇡
t

}1
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P
t�1 ⇡

�1
t

= 1

(e.g. ⇡
t

= ⇡2t2/6), and condition on three high-probability events:

1. We first claim that if �
t

� 2 log 3⇡t
�

then the selected points {x
t

}T
t=1 satisfy the confidence bounds

|f
t

(x
t

)� µ̃
t�1(xt

)|  �
1/2
t

�̃
t�1(xt

), 8t (28)

with probability at least 1 � �
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3. Finally, we claim that setting L
t

= b
p

log(3da⇡
t

/�) yields

|f
t

(x)� f
t

(x0)|  L
t

kx� x0k1, 8t, x 2 D,x0 2 D (30)

with probability at least 1� �

3 . To see this, we note that by the assumption in (10) and the union bound over

j = 1, . . . , d, the event corresponding to time t in (30) holds with probability at least 1� dae�L

2
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2
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.

Taking the union bound over t establishes the claim.

Again applying the union bound, all three of (28)–(30) hold with probability at least 1 � �. We henceforth
condition on each of them occurring.

Combining (27) with (30) yields for all x that
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This coincides with (19) upon setting ⇡
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= ⇡2t2/6.
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Substituting (33) into (29) and applying the triangle inequality, we find the maximizing point x⇤
t

at time t
satisfies
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Thus, we can bound the instantaneous regret as follows:
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where in (37) we used (35), (38) follows since the function µ̃
t�1(x) + �

1/2
t
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t

by the
definition of the algorithm, and (39) follows from (28).

Finally, we bound the cumulative regret as
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where (41) follows using
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t=1 1/t
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(42) is proved using following steps from [1, Lemma 5.4], which we include for completeness:
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where (43) follows since �
t

is increasing in T , (44) holds with C2 = ��2/ log(1 + ��2) using the identity
z2  C2 log(1 + z2) for z2 2 [0,��2] (note also that ��2�̃2
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, along with the alternative form for the mutual information in (26).

C.2 Proof of (21)

It remains to show that
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under the definitions in (14)–(15). Recall that x

T

= (x1, . . . , xT

) are the points of interest, f

T

=
(f1(x1), . . . , fT (xT

)) are the corresponding function values, and y

T

= (y1, . . . , yT ) contains the corresponding
noisy observations with y

i

= f
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(x
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) + z
i

.

At a high level, we bound the mutual information with time variations in terms of the corresponding quantity
for the time-invariant case [1] by splitting the time steps {1, . . . , T} into T

Ñ

blocks of length Ñ , such that within

each block the function f
i

does not vary significantly. We assume for the time being that T/Ñ is an integer, and
then handle the general case.

Using the chain rule for mutual information and the fact that the noise sequence {z
i

} is independent, we have
[25, Lemma 7.9.2]
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where y

(i)

Ñ

= (y
Ñ(i�1)+1, . . . , yÑi

) contains the measurements in the i-th block, and f

(i)

Ñ

is defined analogously.

Maximizing both sides over (x1, . . . , xT

, we obtain
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Ñ
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We are left to bound �̃
Ñ

. To this end, we write the relevant covariance matrix as
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is the Ñ⇥Ñ matrix of ones. Observe that the (i, j)-th entry of D
Ñ
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Ñ

has absolute value 1�(1�✏)
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2 ,
which is upper bounded for all ✏ 2 [0, 1] by ✏|i� j|.4 Hence, and using the fact that each entry of K

Ñ
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range [0, 1], we obtain the following bound on the Frobenius norm:

kA
Ñ
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where (53) is a standard double summation formula. We will use this inequality to bound �̃
N

via Mirsky’s
theorem, which is given as follows.
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(·) is the i-th largest eigenvalue.

Using this lemma with U
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Ñ
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Ñ

+A

Ñ
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where (58) follows from the inequality log(1 + a+ b)  log(1 + a) + log(1 + b) for non-negative a and b (and the
definition in (12)), (59) follows since a simple analysis of the optimality conditions of
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ÑX
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log(1 +�
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�2
i
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4For |i � j| � 2, this follows since the function of interest is concave, passes through the origin, and has derivative
|i�j|

2  |i� j| there. For k = 1, the statement follows by observing that equality holds for ✏ 2 {0, 1}, and noting that the
function of interest is convex.
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reveals that the maximum is achieved when all of the �
i

are equal to Ñ2✏, and (60) follows from the inequality
log(1 + a)  a.

Recalling that we are considering the case that T/Ñ is an integer, we obtain (21) by combining (48) and (60).
In the general case, we simply use the fact that �̃

T

is increasing in T by definition, hence leading to the addition
of one in (21).

D Analysis of R-GP-UCB (Theorem 4.2)

Parts of the proof of Theorem 4.2 overlap with that of Theorem 4.3; we focus primarily on the key di↵erences.
First, overloading the notation from the TV-GP-UCB analysis, we let µ̃

t

(x) and �̃
t

(x) be defined as in (7)–(8),

but using only the samples since the previous reset in the R-GP-UCB algorithm, and similarly for k
t

, ek
t

, d
t

, and
so on. Thus, for example, the dimension of k

t

is at most the length N between resets, and the entries of D
t

are
no smaller than (1 � ✏)N/2. Note that the time-invariant counterparts µ

t

(x) and �
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(x) (computed using k and

K in place of ek and e
K) are used in the algorithm, thus creating a mismatch that must be properly handled.

Recall the definitions of the discretization D
t

(whose cardinality is again set to ⌧d
t

for some ⌧
t

), the corresponding
quantization function [x]

t

, and the constants ⇡
t

. We now condition on four (rather than three) high probability
events:

• Setting �
t

= 2 log 4|Dt|⇡t

�

, the same arguments as those leading to (28)–(29) reveal that
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with probability at least 1 � �

2 . Note that in proving these claims we only condition on the observations
since the last reset, rather than all of the points since t = 1.

• Using the same argument as (30), the assumption in (10) implies that
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4 .

• We claim that the assumption in (9) similarly implies that

��y
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�
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4 . To see this, we first note that Pr
�|z

t
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�  e�L

2
/2 since z

t

⇠ N (0, 1),
and by a standard bound on the standard normal tail probability. Combining this with (9) and noting that
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t
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�|y

t
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�
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2
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2
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2

. Choosing L = L̃
t

/2 and applying the union bound and some
simple manipulations, we obtain (65).

By the union bound, all four of (62)–(65) hold with probability at least 1� �.

As in the TV-GP-UCB proof, we set ⌧
t

= rdt2L
t
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2 for all x 2 D. Defining
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t
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t
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to be the maximal errors between the true and the mismatched posterior updates, we have the following:
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+
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where (69) follows in the same way as (37), (70) follows from (62)–(63), (71) follows from the definitions in
(66)–(67), and (72) follows from the choice of x

t

in the algorithm.

The key remaining step is to characterize �(µ)
t

and �(�)
t

. Our findings are summarized in the following lemma.

Lemma D.1. Conditioned on the event in (65), we have �(µ)
t

 �
��2+��4

�
N3✏L̃

t

and �(�)
t

 �
3��2+��4

�
N3✏

almost surely.

This lemma implies Theorem 4.2 upon substitution into (72), setting ⇡
t

= ⇡2t2/6, and following the steps from

(40) onwards. In the remainder of the section, we prove the lemma. The claims on �(µ)
t

and �(�)
t

are proved
similarly; we focus primarily on the latter since it is the (slightly) more di�cult of the two.

The subsequent analysis applies for arbitrary values of t and x, so we use the shorthands k := k

t

(x), K := K

t

(x),
e
k := e

k

t

(x), eK := e
K

t

and I := I

t

. We first use the definition in (8) and the triangle inequality to write
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:= T1 + T2. (75)

We proceed by bounding T1 and T2 separately, starting with the latter.

Set M := (K+�2
I)�1 for brevity. By expanding the quadratic function (ek�k)TM(ek�k)T , grouping the terms

appearing in T2, and applying the triangle inequality, we obtain

T2  2|kT

M(ek� k)|+ |(ek� k)TM(ek� k)|. (76)

We upper bound each of these terms of the form a

T

Mb by kak2kMk2!2kbk2, where kMk2!2 is the spectral
norm. By definition, � is an eigenvalue of K if and only if 1

�+�

2 is an eigenvalue of M; since K is positive

semi-definite, it follows that kMk2!2  1
�

2 . We also have kkk22  N since the entries of k lies in [0, 1], and

kek � kk22  N3✏2 since the absolute values of the entries of ek � k are upper bounded by N✏ by the argument
following (51). Combining these, we obtain

T2  2��2N2✏+ ��2N3✏2. (77)

To bound T1, we use the following inequality for positive definite matrices U,V and any unitarily invariant norm
|||·||| [27, Lemma X.1.4]: ������(U+ I)�1 � (U+V + I)�1

������  ������
I� (V + I)�1

������. (78)

Specializing to the spectral norm, multiplying through by 1
�
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�
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�

2 ( eK�K), we
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Next, � is an eigenvalue of e
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�+�

2 is an eigenvalue of ��2
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I)�1.
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2 = ��2
�
1� 1

�/�

2+1

�  ��4�, it follows that the right-hand side of (79) is upper bounded by



Ilija Bogunovic, Jonathan Scarlett, Volkan Cevher

��4k eK�Kk2!2. Using (54) (observe that A
N

= e
K�K) and the fact that the spectral norm is upper bounded

by the Frobenius norm, we obtain k eK � Kk2!2  N2✏. Substituting into (79), we conclude that the matrix

M

0 := (K+ �2
I)�1 � ( eK+ �2

I)�1 has a spectral norm which is upper bounded by ��4N2✏. Finally, T1 can be

written as ekT

M

0e
k, and since kekk22  N (since each entry of ek lies in [0, 1]), we obtain

T1  ��4N3✏. (80)

Combining (77) and (80) and crudely writing N2✏  N3✏ and N3✏2  N3✏, we obtain

|�̃
t

(x)2 � �
t

(x)2|  �
3��2 + ��4

�
N3✏, (81)

and hence, applying the inequality (a� b)2  |a2 � b2|, we obtain

�(�)
t


q�

3��2 + ��4
�
N3✏. (82)

To characterize �(µ)
t

, we write the following analog of (74):

|µ̃
t

(x)2 � µ
t

(x)2|
 ��e

k

T ( eK+ �2
I)�1

y � e
k

T (K+ �2
I)�1

y

��+
��e
k

T (K+ �2
I)�1

y � k

T (K+ �2
I)�1

y

�� (83)

:= T1 + T2. (84)

Following the same arguments as those above, and noting from (65) that kyk22  NL̃2
N

, we obtain

T1  ��2N2✏L̃
N

(85)

T2  ��4N3✏L̃
N

, (86)

and hence

�(µ)
t

 �
��2 + ��4

�
N3✏L̃

N

. (87)

E Applications to Specific Kernels (Corollary 4.1)

Throughout this section, we let I
T

(z) denote the integer in {1, . . . , T} which is closest to z 2 R. We focus
primarily on the proof for TV-GP-UCB, since the proof for R-GP-UCB is essentially identical.

We begin with the squared exponential kernel. From [1, Thm. 5], we have �
Ñ

= O(d log Ñ) = Õ(1), and we thus
obtain ✓

T

Ñ
+ 1

◆⇣
�
Ñ

+N3✏
⌘
= Õ

✓⇣ T

Ñ
+ 1

⌘
(1 + Ñ3✏)

◆
. (88)

Setting Ñ = I
T

(✏�1/3), we find that this behaves as Õ(T ✏1/3) when ✏ � 1
T

3 , and as Õ(1) when ✏ < 1
T

3 (and

hence Ñ = T ). Substitution into Theorem 4.3 yields the desired result.

For the Matérn kernel, we have from [1, Thm. 5] that �
Ñ

= O(Ñ c log Ñ) = Õ(Ñ c) with c = d(d+1)
2⌫+d(d+1) , and we

thus obtain ✓
T

Ñ
+ 1

◆⇣
�
Ñ

+ Ñ3✏
⌘
= Õ

✓⇣ T

Ñ
+ 1

⌘
(Ñ c + Ñ3✏)

◆
. (89)

Setting Ñ = I
T

(✏�
1

3�c ), we find that this behaves as Õ(T ✏
1�c
3�c ) when ✏ � 1

T

3�c , and as Õ(T c) when ✏ < 1
T

3�c

(and hence Ñ = T ). Substitution into Theorem 4.3 yields the desired result.

For R-GP-UCB, the arguments are analogous using Theorem 4.2 in place of Theorem 4.3, with N playing the
role of Ñ . We set N = I

T

(✏�1/4) for the squared exponential kernel and N = I
T

(✏�
1

4�c ) for the Matérn kernel.
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F Lower Bound (Theorem 4.1)

We obtain a lower bound on the regret of any algorithm by considering the optimal algorithm for a genie-aided
setting. Specifically, suppose that at time t, the entire function f

t�1 is known perfectly. We claim that the
optimal strategy, in the sense of minimizing the expected regret, is to choose x

t

to be any maximizer of f
t�1.

This can be seen by noting that minimizing the regret r
t

= f
t

(x⇤
t

) � f
t

(x
t

) is equivalent to maximizing the
function value f

t

(x
t

), since f
t

(x⇤
t

) is una↵ected by the choice of x
t

. Then, conditioned on the entire function
f
t�1, the next value ft(x) is distributed as N (

p
1� ✏f

t�1(x), ✏), and clearly the optimal strategy is to choose the
point that maximizes the mean.

We proceed by lower bounding the regret incurred by such a scheme. Recall that for each t, both f
t

and g
t

are
distributed as GP(0, k). Thus, (10) and (11) hold for all such functions.

We let rf denote the gradient vector of a function f , and let r2f denote the Hessian matrix. For the time
being, we condition on the previous function f

t�1, the selected point x
t

(i.e., the maximizer of f
t�1) and the

innovation function g
t

satisfying the following events for some positive constants L and ⌘:

A1 :=

⇢���
@2f

t�1(x)

@x(j1)@x(j2)

���  L, 8j1, j2, x
�

(90)

A2 :=

⇢���
@2g

t

(x)

@x(j1)@x(j2)

���  L, 8j1, j2, x
�

(91)

A3 :=

⇢p
✏
��@gt(x)
@x

(j)

��

2L
p
d

 ⌘, 8j
�

(92)

A4 :=
�
d(x

t

, B) � ⌘
 
, (93)

where d(x
t

, B) := min
x2B

kx
t

� xk2 is the distance of x
t

to the closest point on the boundary B of the compact
domain D. Observe that for any fixed ⌘, Pr[A

i

] can be made arbitrarily close to one for i = 1, 2, 3 by choosing
L su�ciently large. Moreover, we have Pr[A4] > 0 for su�ciently small ⌘, since otherwise the maximum of
f ⇠ GP(0, k) would be on the boundary of the domain D with probability one. Applying the union bound, we
conclude that the event A := A1 \A2 \A3 \A4 occurs with strictly positive probability for suitable chosen ⌘
and L.

We fix an arbitrary vector v with kvk2 = 1 and a constant � > 0, and note that the regret r
t

at time t an be
lower bounded as follows provided that x

t

+ v� 2 D:

r
t

= max
x

f
t

(x)� f
t

(x
t

) (94)

� f
t

(x
t

+ v�)� f
t

(x
t

) (95)

=
p
1� ✏

�
f
t�1(xt

+ v�)� f
t�1(xt

)
�
+

p
✏
�
g
t

(x
t

+ v�)� g
t

(x
t

)
�

(96)

=
p
1� ✏

1

2
�2vT

⇥r2f
t�1(xt

+ v�
f

)
⇤
v +

p
✏
�
�vTrg

t

(x
t

) +
1

2
�2vT

⇥r2g
t

(x
t

+ v�
g

)
⇤
v
�
, (97)

where (96) follows by substituting the update equations in (3)–(4), and (97) holds for some �
f

2 [0, �] and
�
g

2 [0, �] by a second-order Taylor expansion; note that rf
t�1(xt

) = 0 since x
t

maximizes f
t�1, whose peak is

away from the boundary of the domain by (93).

We choose the unit vector v to have the same direction as rg
t

(x
t

), so that �vTrg
t

(x
t

) = �krg
t

(x
t

)k2. By
(90)–(91), the entries of r2f

t�1(xt

+ v�
f

) and r2g
t

(x
t

+ v�
g

) are upper bounded by L, and thus a standard
inequality between the entry-wise `1 norm and the spectral norm reveals that the latter is upper bounded by
Ld. This, in turn, implies that vT

⇥r2f
t�1(xt

+ v�
f

)
⇤
v and vT

⇥r2g
t

(x
t

+ v�
g

)
⇤
v are upper bounded by Ld, and

hence

r
t

� p
✏�krg

t

(x
t

)k2 � 1

2
Ld�2

�p
1 + ✏+

p
✏
�

(98)

� p
✏�krg

t

(x
t

)k2 � Ld�2, (99)

where we have used
p
1 + ✏+

p
✏  2. By di↵erentiating with respect to �, it is easily verified that the right-hand

side is maximized by � =
p
✏krgt(xt)k2

2Ld

. This choice is seen to be valid (i.e., it yields x
t

+ v� still in the domain)
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by (92)–(93) and the fact that kzk2  p
dkzk1 for z 2 Rd, and we obtain

r
t

� ✏krg
t

(x
t

)k22
4Ld

. (100)

It follows that the expectation of r
t

is lower bounded by

E[r
t

] � Pr[A]E[r
t

|A] (101)

� Pr[A]
✏E

⇥krg
t

(x
t

)k22 | A
⇤

4Ld
(102)

= ⇥(✏), (103)

where (101) follows since r
t

� 0 almost surely, and (103) follows since E
⇥krg

t

(x
t

)k22 | A
⇤
> 0 by a simple proof

by contradiction: The expectation can only equal zero if its (non-negative) argument is zero almost surely, but if
that were the case then the unconditional distribution of krg

t

(x
t

)k22 would satisfy Pr[krg
t

(x
t

)k22 = 0] > Pr[A],
which is impossible since the entries of rg

t

(x
t

) are Gaussian [6, Sec. 9.4] and hence have zero probability of
being exactly zero.

Finally, using (103), the average cumulative regret satisfies E[R
T

] =
P

T

i=1 E[rT ] = ⌦(T ✏).

G Further results for tra�c speed data

In Figure 4, we outline the complete results on all the testing days for the experiment described in Section 5.2.
The sensors used in the experiment have the following IDs: [0, 54, 69, 77, 169, 131, 262, 216, 34, 320, 308, 177,
130, 221, 290, 348, 25, 157, 252, 83, 163, 149, 294, 21, 246, 45, 98, 74, 274, 237, 322, 29, 120, 44, 49, 241, 286,
99, 247, 297, 96, 234, 236, 205, 329, 214, 28, 175, 65, 220].
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Figure 4: Numerical performance of upper confidence bound algorithms on tra�c speed dataset.
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