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Abstract

We consider the sequential Bayesian op-
timization problem with bandit feedback,
adopting a formulation that allows for the re-
ward function to vary with time. We model
the reward function using a Gaussian pro-
cess whose evolution obeys a simple Markov
model. We introduce two natural extensions
of the classical Gaussian process upper confi-
dence bound (GP-UCB) algorithm. The first,
R-GP-UCB, resets GP-UCB at regular in-
tervals. The second, TV-GP-UCB, instead
forgets about old data in a smooth fashion.
Our main contribution comprises of novel re-
gret bounds for these algorithms, providing
an explicit characterization of the trade-o↵
between the time horizon and the rate at
which the function varies. We illustrate the
performance of the algorithms on both syn-
thetic and real data, and we find the gradual
forgetting of TV-GP-UCB to perform favor-
ably compared to the sharp resetting of R-
GP-UCB. Moreover, both algorithms signifi-
cantly outperform classical GP-UCB, since it
treats stale and fresh data equally.

1 Introduction

In recent years, there has been a great deal of inter-
est in the theory and methods for bandit optimiza-
tion problems, where one seeks to sequentially select
a sequence of points to optimize an unknown reward
function from noisy samples [1, 2, 3]. Such prob-
lems have numerous applications, including sensors
networks, recommender systems, and finance. A key
challenge is to rigorously trade-o↵ between exploration,
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i.e., learning the behavior of the function across the
whole domain, and exploitation, i.e., selecting points
that have previously given high rewards.

In the vast majority of practical applications, the func-
tion to be optimized is not static, but varies with time:
In sensor networks, measured quantities such as tem-
perature undergo fluctuations; in recommender sys-
tems, the users’ preferences may change according to
external factors; similarly, financial markets are highly
dynamic. In such cases, the performance of standard
algorithms may deteriorate, since these continue to
treat stale data as being equally important as fresh
data. The development of algorithms and theory to
handle time variations is therefore crucial.

In this paper, we take a novel approach to handling
time variations, modeling the reward function as a
Gaussian process (GP) that varies according to a sim-
ple Markov model.

Related Work: Even in time-invariant settings, GP-
based models provide a flexible and powerful approach
to Bayesian optimization problems [4, 5]. Here, the
smoothness properties of the reward function are dic-
tated by a kernel function [6]. A wide variety of works
have made use of upper confidence bound (UCB) al-
gorithms, where the selected point maximizes a linear
combination of the posterior mean and standard devi-
ation. In particular, Srivinas et al. [1] provided regret
bounds for the GP-UCB algorithm, and several exten-
sions were given subsequently, including the contextual
[7] and high-dimensional [8, 9, 10] settings.

While the study of time-varying models is limited in
the GP setting, several such models have been consid-
ered in the multi-armed bandit (MAB) setting. Per-
haps the most well-known one is the adversarial setting
[3, 2, 11], where one typically seeks to compete with
the best fixed strategy. Rewards modeled by Markov
chains have been considered under the categories of
restless bandits [12, 13, 14, 15], where the reward for
each arm changes at each time step, and rested bandits
[16, 17], where only the pulled arm changes.
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Two further related works are those of Slivkins and
Upfal [15], who studied a MAB problem with vary-
ing rewards based on Brownian motion, and Besbes
et al.[18], who considered a general MAB setting with
time-varying rewards subject to a total budget in the
amount of change allowed. Both [15] and [18] demon-
strate the need for a forgetting-remembering trade-o↵
arising from the fact that using the information from
more samples may decrease the variance of the func-
tion estimates, while older information may be stale
and hence misleading. Both papers present strategies
in which the algorithm is reset at regular intervals in
order to discard stale data. This is shown to be opti-
mal in the worst case for the function class considered
in [18], whereas in [15] it is shown that simple resetting
strategies can be suboptimal in more specific scenarios,
and alternative approaches are presented.

In contrast to GP-based settings such as ours, the se-
tups of [15] and [18] consider finite action spaces, and
assume independence between the rewards associated
with di↵erent arms. Thus, observing the reward of
one arm does not reveal any information about the
other ones, and the algorithms are designed to exploit
temporal correlations, but not spatial correlations.

Contributions: We introduce two algorithms for ad-
dressing the fundamental trade-o↵s inherent in the
problem formulation: (i) trading o↵ exploration with
exploitation; (ii) di↵erentiating between stale and
fresh data in the presence of time variations; (iii) ex-
ploiting spatial and temporal correlations present in
the reward function. Our main results present re-
gret bounds, first for general kernels and then for the
squared-exponential and Mátern kernels, that explic-
itly characterize the trade-o↵ between the time hori-
zon and the rate at which the function varies. Their
proofs require novel techniques to handle di�culties
arising from the time variations, such as the maxi-
mum function value and its location changing dras-
tically throughout the duration of the time horizon.
Moreover, we provide an algorithm-independent lower
bound on the cumulative regret. Finally, we demon-
strate the utility of our model and algorithms on both
synthetic and real-world data

2 Problem Statement

We seek to sequentially optimize an unknown reward
function ft over a compact, convex subset D ⇢ Rd.1

At time t, we can interact with ft only by querying
at some point xt 2 D, after which we observe a noisy
observation yt = ft(xt) + zt, where zt ⇠ N (0, �2). We

1Finite domains were also handled in the time-invariant
setting [1], and all of our upper bounds have counterparts
for such scenarios that are in fact simpler to obtain com-
pared to the compact case.

assume that the noise realizations at di↵erent time in-
stants are independent. The goal is to maximize the re-
ward via a suitable trade-o↵ between exploration and
exploitation. This problem is ill-posed for arbitrary re-
ward functions even in the time-invariant setting, and
it is thus necessary to introduce suitable smoothness
assumptions. We take the approach of [1], and model
the reward function as a sample from a Gaussian pro-
cess, where its smoothness is dictated by the choice of
kernel function.

Model for the Reward Functions: Let k : D⇥D !
R+ be a kernel function, and let GP(µ, k) be a Gaus-
sian process [6] with mean µ 2 Rd and kernel k. As in
[1], we assume bounded variance: 8x 2 D, k(x, x)  1.
Two common kernels are squared exponential (SE)
and Matérn, defined as

kSE(x, x0) = exp

✓
� kx � x0k2

2l2

◆
(1)

kMatérn(x, x0) =
21�⌫

�(⌫)

✓p
2⌫kx � x0k

l

◆⌫

⇥ B⌫

✓p
2⌫kx � x0k

l

◆
, (2)

where l > 0 and ⌫ > 0 are hyperparameters, and B⌫

denotes the modified Bessel function.

Letting g1, g2, . . . be independent random functions on
D with gi ⇠ GP(0, k), the reward functions are mod-
eled as follows:

f1(x) = g1(x) (3)

ft+1(x) =
p

1 � ✏ ft(x) +
p
✏ gt+1(x) 8t � 2, (4)

where ✏ 2 [0, 1] quantifies how much the function
changes after every time step. If ✏ = 0 then we re-
cover the standard time-invariant model [1], whereas
if ✏ = 1 then the reward functions are independent be-
tween time steps. Importantly, for any choice of ✏ we
have for all t that ft ⇠ GP(0, k). See Figure 1 for an
illustration.

From a practical perspective, this model has the desir-
able property of only having one additional hyperpa-
rameter ✏ compared to the standard GP model, thus
facilitating the learning process. It serves as a suitable
model for reward functions that vary at a steady rate,
though we will see numerically in Section 5 that the
resulting algorithms are also e↵ective more generally.

As noted in regression studies in [19, 20], our model is
equivalent to a spatiotemporal kernel model with tem-
poral kernel (1� ✏)|t1�t2|/2. We expect our techniques
to apply similarly to other temporal kernels, particu-
larly stationary kernel functions that depend only on
the time di↵erence |t1�t2|, but we focus on (3)–(4) for
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Figure 1: Two examples of GP functions when ✏ = 0.01: (Left) Squared exponential kernel (l = 0.2); (Right)
Matérn kernel (l = 0.2, ⌫ = 1.5). Note that the location of the maximum changes significantly at distant times.

concreteness. Spatiotemporal kernels can also be con-
sidered in the contextual bandit setting [7], but to our
knowledge, no regret bounds have been given that ex-
plicitly characterize the dependence on the function’s
rate of variation, as is done in our main result.

Regret: Let x⇤
t denote a maximizer of ft at time t,

i.e., x⇤
t = arg maxx ft(x), and suppose that our choice

at time t is xt. Then the instantaneous regret we incur
at time t is rt = ft(x

⇤
t ) � ft(xt). We are interested in

minimizing the cumulative regret RT =
PT

t=1 rt.

These definitions naturally coincide with those for the
time-invariant setting when ✏ = 0. Note that we do
not aim to merely compete with fixed strategies, but
instead to track the maximum of ft for all t. In our
setting, a notion of regret based on competing with a
fixed strategy would typically lead to a negative cu-
mulative regret. In other words, all fixed strategies
perform poorly.

In time-invariant scenarios, as well as several time-
varying scenarios, algorithms are typically designed to
achieve sublinear regret. In our setting, we will show
that for fixed ✏, the cumulative regret RT must in fact
be ⌦(T ) (cf., Theorem 4.1). Intuitively, this is because
if the function changes significantly at each time step,
one cannot expect to track its maximum to arbitrary
precision. However, we emphasize that what is really
of interest is the joint dependence of RT on T and ✏,
and we thus seek regret bounds of the form Õ(T (✏))
for some function  (✏) that vanishes as ✏ ! 0.2 Our
approach is analogous to Slivkins and Upfal [15], who
considered another time-varying setting with unavoid-
able ⌦(T ) regret for any fixed function variation pa-
rameter, and focused on the behavior in the implied
constant in the limit as that parameter vanishes.

For the squared exponential and Matérn kernels, we
obtain regret bounds of the form Õ(T✏↵) for some

2Here and subsequently, the notation Õ(·) denotes
asymptotics up to logarithmic factors.

↵ > 0 (cf., Corollary 4.1), which can be viewed as be-
ing sublinear whenever ✏ = O(T�c) for some c > 0. We
observe that when c < 1, the correlation between f1(x)
and fT (x) is negligible, meaning that the correspond-
ing maximum may (and typically will) change drasti-
cally over the duration of the time horizon, e.g., see
Figure 1.

Limitations of GP-UCB: We briefly recall the
GP-UCB algorithm from [1], in which at each time
step the selected point maximizes a function of the
form µt�1(x) +

p
�t�t�1(x). Here, defining Kt =⇥

k(x, x0)
⇤
x,x02xt

and kt(x) =
⇥
k(xi, x)

⇤t
i=1

, the quan-

tities

µt+1(x) := kt(x)T
�
Kt + �2It

��1
yt (5)

�t+1(x, x)2 := k(x, x) � kt(x)T
�
Kt + �2It

��1
kt(x),

(6)

are the posterior mean and variance of the time-
invariant GP f(x), respectively, given the previous
samples xt = [x1, . . . , xt] and corresponding observa-
tions y1, . . . , yt. Intuitively, one seeks points with a
high mean µt to favor exploitation, but with a high
standard deviation �t to favor exploration.

In the time-invariant setting, GP-UCB is known to
achieve sublinear regret under mild assumptions [1].
As mentioned above, the problem with using it in
our setting is that it treats all of the previous sam-
ples as being equally important, whereas according to
our model, the samples become increasingly stale with
time. We now proceed to describing our algorithms
that account for this fact.

3 Algorithms

We first introduce an algorithm R-GP-UCB that
takes a conceptually simple approach to handling the
forgetting-remembering trade-o↵, namely, running the
GP-UCB algorithm within blocks of size N , and ap-
plying resetting at the start of each block. Some in-
sight on how to choose N is given by our bounds in
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the following section. The pseudo-code is shown in
Algorithm 1.

Algorithm 1 GP-UCB with Resetting (R-GP-UCB)

Input: Domain D, GP prior (µ0, �0, k), block size N
1: for t = 1, 2... do
2: if t mod N = 1 then
3: Reset µt�1(x) = µ0(x) and �t�1(x) = �0(x)
4: for each x
5: Choose xt = arg maxx2D µt�1(x)+

p
�t�t�1(x)

6: Sample yt = ft(xt) + zt

7: Perform Bayesian update as in (5)–(6), using
8: only the samples {xt} and {yt} obtained since
9: the most recent reset, to obtain µt and �t

Our second algorithm, TV-GP-UCB, instead forgets in
a “smooth” fashion, by using a posterior update rule
obtained via the time-varying model (3)–(4). In anal-
ogy with (5)–(6), the mean and variance of ft given the
previous samples xt = (x1, . . . , xt) and corresponding
observations y1, . . . , yt are given by

µ̃t+1(x) := ekt(x)T
� eKt + �2It

��1
yt (7)

�̃2
t+1(x, x0) := k(x, x) � ekt(x)T

� eKt + �2It

��1ekt(x),
(8)

where eKt = Kt � Dt with Dt =
⇥
(1 � ✏)

|i�j|/2 ⇤T
i,j=1

,

and ekt(x) = kt(x) � dt with dt =⇥
(1 � ✏)

(T+1�i)/2 ⇤T
i=1

. Here � is the Hadamard
product, and Ik is the k ⇥ k identity matrix.

The derivation of (7)–(8) is given in the supplementary
material. Using these updates, the pseudo-code for
the TV-GP-UCB algorithm is given in Algorithm 2.
The idea is that the older a sample is, the smaller
the value in the corresponding entries of dt and Dt

defined following (8), and hence the less it contributes
to the final values of µ̃t(x) and �̃t(x). This algorithm
can in fact be considered a special case of contextual
GP-UCB [7] with a spatio-temporal kernel, but our
analysis (Section 4) goes far beyond that of [7] in order
to explicitly characterize the dependence on T and ✏.

Algorithm 2 Time-Varying GP-UCB (TV-GP-UCB)

Input: Domain D, GP prior (µ̃0, �̃0, k) and parame-
ter ✏

1: for t = 1, 2... do
2: Choose xt = arg maxx2D µ̃t�1(x)+

p
�t�̃t�1(x)

3: Sample yt = ft(xt) + zt

4: Perform Bayesian update as in (7)–(8) to ob-
tain µ̃t and �̃t

Computational Complexity: As it is presented
above, TV-GP-UCB has an identical computational

complexity to GP-UCB, i.e. the complexity of the se-
quential Bayesian update is O(T 2) [21]. R-GP-UCB is
less complex, since the matrix operations are on matri-
ces of size N rather than the overall time horizon T . In
practice, however, one could further modify TV-GP-
UCB to improve the e�ciency by occasionally reset-
ting and/or discarding stale data [21].

4 Theoretical Bounds

In this section, we provide our main theoretical upper
and lower bounds on the regret. We assume through-
out this section that hyperparameters are known, i.e.
both spatial kernel hyperparameters and ✏; in the nu-
merical section (Section 5) we will address real-world
problems where these are unknown. All proofs are
given in the supplementary material.

4.1 Preliminary Definitions and Results

Smoothness Assumptions: Each of our results be-
low will assume that the kernel k is such that a (strict)
subset of the following statements hold for some (ai, bi)
and all L � 0:

Pr

✓
sup
x2D

��f(x)
�� > L

◆
 a0e

�(L/b0)
2

(9)

Pr

✓
sup
x2D

��� @f

@x(j)

��� > L

◆
 a1e

�(L/b1)
2

,

j = 1, . . . , d (10)

Pr

✓
sup
x2D

��� @2f

@x(j1)@x(j2)

��� > L

◆
 a2e

�(L/b2)
2

,

j1, j2 = 1, . . . , d, (11)

where f ⇠ GP(0, k). Assumption (9) is mild, since
f(x) is Gaussian and thus has exponential tails. As-
sumption (10) was used in [1], and ensures that the
behavior of the GP is not too erratic. It is satisfied for
the SE kernel, as well as the Matérn kernel with ⌫ > 2
[1], though for other kernels (e.g., Ornstein-Uhlenbeck)
it can fail. Assumption (11) is used only for our lower
bound; it is again satisfied by the SE kernel, as well as
the Matérn kernel with ⌫ > 4.

Mutual Information: It was shown in [1] that a key
quantity governing the regret bounds of GP-UCB in
the time-invariant setting is the mutual information

I(fT ;yT ) =
1

2
log det

�
IT + ��2KT

�
, (12)

where fT := fT (xT ) = (f(x1), . . . , f(xT )) for the time-
invariant GP f . The corresponding maximum over any
set of points xT = (x1, . . . , xT ) is given by

�T := max
x1,...,xT

I(fT ;yT ). (13)
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In our setting, the analogous quantities are as follows:

Ĩ(fT ;yT ) =
1

2
log det

�
IT + ��2 eKT

�
, (14)

�̃T := max
x1,...,xT

Ĩ(fT ;yT ), (15)

where fT := fT (xT ) = (f1(x1), . . . , fT (xT )). While
these take the same form as (12)–(13), they can behave
significantly di↵erently when ✏ > 0. In particular, the
time-varying versions are typically much higher due to
the fact fT represents the points of T di↵erent random
functions, as opposed to a single function at T di↵erent
points.

Algorithm-Independent Lower Bound: The fol-
lowing result gives an asymptotic lower bound for any
bandit optimization algorithm under fairly mild as-
sumptions, expressed in terms of the time horizon T
and parameter ✏.

Theorem 4.1. Suppose that the kernel is such
that f ⇠ GP(0, k) is almost surely twice continu-
ously di↵erentiable and satisfies (10)–(11) for some
(a1, b1, a2, b2). Then, any GP bandit optimization al-
gorithm incurs expected regret E[RT ] = ⌦(T✏).

The proof reveals that this result holds true even in the
full information (as opposed to bandit) setting, and is
based on the fact that at each time step, there is a
non-zero probability that the maximum value and its
location change by an amount proportional to ✏. As
discussed above, this lower bound motivates the study
of the joint dependence on the regret of T and ✏, and
in particular, the highest possible constant ↵ such that
the regret behaves as Õ(T✏↵).

4.2 Main Results

We now present our main general bounds on the algo-
rithms introduced in Section 3. The two provide regret
bounds of a similar form, but we will shortly apply
these to specific kernels and find that the bounds for
TV-GP-UCB yield better scaling laws.

General Regret Bounds: The following theorems
provide regret bounds for R-GP-UCB and TV-GP-
UCB, respectively. We will simplify these bounds be-
low to obtain scaling laws for specific kernels.

Theorem 4.2. Let the domain D ⇢ [0, r]d be com-
pact and convex, and suppose that the kernel is such
that f ⇠ GP(0, k) is almost surely continuously di↵er-
entiable and satisfies (9)–(10) for some (a0, b0, a1, b1).
Fix � 2 (0, 1), and set

�T = 2 log
2⇡2T 2

3�
+ 2d log

✓
rdbT 2

r
log

2da⇡2T 2

3�

◆
.

(16)

Defining C1 = 8/ log(1 + ��2), the R-GP-UCB algo-
rithm satisfies the following after T time steps:

RT 
s

C1T�T

✓
T

N
+ 1

◆
�N + 2 + T T (N, ✏) (17)

with probability at least 1 � �, where

 T (N, ✏) :=
q
�T

�
3��2 + ��4

�
N3✏

+
�
��2 + ��4

�
N3✏(2 + b0)

r
log

2(1 + a0)⇡2T 2

3�
.

(18)

The proof of Theorem 4.2 departs from regular
Bayesian optimization proofs such as [1] in the sense
that the posterior updates (5)–(6) assumed by the al-
gorithm di↵er from the true posterior described by
(7)–(8), thus requiring a careful handling of the e↵ect
of the mismatch.

Theorem 4.3. Let the domain D ⇢ [0, r]d be com-
pact and convex, and suppose that the kernel is such
that f ⇠ GP(0, k) is almost surely continuously dif-
ferentiable and satisfies (10) for some (a1, b1). Fix
� 2 (0, 1), and set

�T = 2 log
⇡2T 2

2�
+ 2d log

✓
rdbT 2

r
log

da⇡2T 2

2�

◆
.

(19)
Defining C1 = 8/ log(1+��2), the TV-GP-UCB algo-
rithm satisfies the following after T time steps:

RT 
p

C1T�T �̃T + 2 (20)


s

C1T�T

✓
T

Ñ
+ 1

◆⇣
�Ñ + Ñ3✏

⌘
+ 2 (21)

with probability at least 1��, where (21) holds for any
Ñ 2 {1, . . . , T}.

The step in (20) is obtained using techniques similar
to those of [1, 7], whereas the step in (21) is non-trivial
and new. This step is key to our analysis, bounding the
maximum mutual information �̃T for the time varying
case in terms of the analogous quantity �Ñ from the
time-invariant setting. The idea in doing this is to
split the block {1, . . . , T} into smaller blocks of size Ñ
within which the overall variation in ft is not too large.
This is in contrast with R-GP-UCB (and [18]), where
the algorithm takes the block length N as a parameter
and explicitly resets the algorithm every N time steps.
For TV-GP-UCB, the length Ñ is only introduced as
a tool in the analysis.

Applications to Specific Kernels: Specializing the
above results to the squared exponential and Matérn
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Figure 2: Numerical performance of upper confidence bound algorithms on synthetic data.

kernels, using the corresponding bounds on �N from
[1], and optimizing N as a function of T and ✏, we
obtain the following.

Corollary 4.1. Under the conditions of Theorems 4.2
and 4.3, we have the following for any fixed d:

1. For the squared exponential kernel,
RT = Õ(max{

p
T , T ✏1/8}) for R-GP-

UCB with N = ⇥(min{T, ✏�1/4}), and
RT = Õ(max{

p
T , T ✏1/6}) for TV-GP-UCB.

2. Consider the Matérn kernel with parameter ⌫ >

2, and set c = d(d+1)
2⌫+d(d+1) 2 (0, 1). We

have RT = Õ(max{
p

T 1+c, T ✏
1
2

1�c
4�c }) for R-GP-

UCB with N = ⇥(min{T, ✏�
1

4�c }), and RT =

Õ(max{
p

T 1+c, T ✏
1
2

1�c
3�c }) for TV-GP-UCB.

Observe that, upon substituting ✏ = 0, the preced-
ing Õ(·) terms are dominated by the first terms in
the maxima, and the bounds for both algorithms re-
duce to those in [1]. In the case that ✏ vanishes more
slowly (e.g., as 1/

p
T ), the regret bounds for TV-GP-

UCB are strictly better than those of R-GP-UCB. The
worsened bounds for the latter arise due to the above-
mentioned mismatch in the update rules.

For both kernels, the optimized block length N of R-
GP-UCB increases as ✏ decreases; this is to be ex-
pected, as it means that older samples are more corre-
lated with the present function. We also observe that
N increases as the function becomes smoother (by in-
creasing ⌫ for the Matérn kernel, or by switching from
Matérn to squared exponential).

5 Experiments

In this section, we test our algorithms on both syn-
thetic and real data, as well as studying the e↵ect of
mismatch with respect to the algorithm parameters ✏
and N .

Practical considerations: While (16) and (19) give
explicit choices for �t, these usually tend to be too con-
servative in practice. For good empirical performance,

we rely only on the scaling �t = O(d log t) dictated
by these choices, letting �t = c1 log(c2t) (similarly to
[1, 22], for example). We found c1 = 0.8 and c2 = 4
to be suitable for trading o↵ exploration and exploita-
tion, and we therefore use these in all of our synthetic
experiments.

Our theoretical analysis assumed that we know the
hyperparameters of both spatial and temporal kernel.
Having perfect knowledge of ✏ and other hyperparam-
eters is typically not realistic. The GP perspective
allows us to select them in a principled way by max-
imizing the GP marginal likelihood [6]. In our real-
world experiments below, we select ✏ in such manner,
using the approach from [19], outlined in Appendix
B. In our synthetic experiments, we consider both the
cases of perfect and imperfect knowledge of ✏.

Baseline Comparisons: We are not aware of any
algorithms other than those in Section 3 that exploit
both spatial and temporal correlations. In both our
synthetic and real-data experiments, we found it cru-
cial to handle both of these in order to obtain reason-
able values for the cumulative regret, thus drastically
limiting the number of reasonable baselines. Neverthe-
less, we also consider GP-UCB (which exploits spatial
but not temporal correlations), and in the real-world
experiments, we consider a completely random selec-
tion (thus corresponding to a choice that we should
hope to beat significantly).

5.1 Synthetic Data

We consider a two-dimensional setting and quantize
the decision space D = [0, 1]2 into 50 ⇥ 50 equally-
spaced points. We generate our data according to the
time-varying model (4), considering both the squared
exponential and Matérn kernels. For the former we set
l = 0.2, and for the latter we set ⌫ = 2.5 and l = 0.2.
We set the sampling noise variance �2 to 0.01, i.e. 1%
of the signal variance.

Matched Case: We first consider the case that the
algorithm parameters are “matched”. Specifically, the
parameter ✏ for TV-GP-UCB is the true parameter
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for the model, and the parameter N for R-GP-UCB
is chosen in accordance with Corollary 4.1: N =
dmin

�
T, 12✏�1/4

 
e for the squared exponential kernel,

and N = dmin
�
T, 24✏�

1
4�c

 
e for the Matérn kernel,

where the constants were found via cross-validation.

In Figures 2a and 2b, we show the average re-
gret RT

T of TV-GP-UCB and R-GP-UCB for ✏ 2
{0.001, 0.01, 0.03}. For each time shown, we average
the performance over 200 independent trials. We ob-
serve that for all values of ✏ and for both kernel func-
tions, TV-GP-UCB outperforms R-GP-UCB, which is
consistent with the theoretical bounds we obtained in
the previous section. Furthermore, we see that the
curves for R-GP-UCB have an oscillatory behavior,
resulting from the fact that one tends to incur more
regret just after a reset is done. In contrast, the curves
for TV-GP-UCB are more steady, since the algorithm
forgets in a “smooth” fashion.

Mismatch and Robustness: We consider the sta-
bility of TV-GP-UCB when there is mismatch between
the true ✏ and the one used in TV-GP-UCB. We focus
on the squared exponential kernel, and we set ✏ = 0.01
and T = 200. From Figure 2c, we see that the perfor-
mance of TV-GP-UCB is robust with respect to the
mis-specification of ✏. In particular, the increase in re-
gret as ✏ is increasingly over-estimated is slow. In con-
trast, while slightly under-estimating ✏ is not harmful,
the regret increases rapidly beyond a certain point. In
particular, using 0 instead of the true ✏ corresponds to
simply running the standard GP-UCB algorithm, and
gives the worst performance within the range shown.
Note that the shaded area corresponds to a standard
deviation from the mean.

Next, we study R-GP-UCB on the same model to de-
termine the robustness with respect to the choice of
N ; the results are shown in Figure 2d. Values of N
that are too small are problematic, since the algorithm
resets too frequently. While the mean of the regret is
robust with respect to increasing N , we observe that
the corresponding standard deviation also steadily in-
creases. GP-UCB is again recovered as a special case,
corresponding to N = T .

5.2 Real Data

We use temperature data collected from 46 sensors de-
ployed at Intel Research, Berkeley. The dataset con-
tains 5 days of measurements collected at 10-minute
intervals. The goal of the spatiotemporal monitoring
problem (see [7] for details) is to activate a sensor
at every time step that reports a high temperature.
Hence, ft consists of the set of all sensor temperature
reportings at time t. A single sensor is activated every
10 minutes, and the regret is measured as the tem-

perature di↵erence between reporting of the activated
sensor and the one that reports the maximum temper-
ature at that particular time. Figure 3b plots each of
the 46 functions with respect to time.

As a base comparison, we consider an algorithm that
simply picks the sensors uniformly at random. We also
consider the standard GP-UCB algorithm [1], even
though it is unsuitable here since the reward function
is varying with time.3 Although it is not shown, we
note that the RExp3 algorithm [18] (Exp3 with reset-
ting) performed comparably to GP-UCB for this data
set, su↵ering from the fact that it does not exploit
correlations between the sensors.

We use the first three days of measurements for learn-
ing our algorithms’ parameters. First, we compute the
empirical covariance matrix from these days and use
it as the kernel matrix in all of the algorithms. Next,
using the same three training days, we obtain ✏ = 0.03
by maximizing the marginal likelihood [19], and we
obtain N = 15 by cross-validation. The algorithms
are run on the final two days of the data.The results
(c1 = 0.8, c2 = 0.4, �2 = 0.5 or 5% of the signal vari-
ance) are shown in Figure 3a. We observe that GP-
UCB performs well for a short time, but then starts to
su↵er from the stale data, eventually becoming barely
better than a random guess. Once again, TV-GP-UCB
improves over R-GP-UCB, with the gap generally in-
creasing over the duration of the experiment.

Next, we use tra�c speed data from 357 sensors de-
ployed along the highway I-880 South (California).
The dataset contains one month of measurements,
where 84 measurements were made on every day in
between 6 AM and 11 AM. Our goal is to identify the
least congested part of the highway by tracking the
point of maximum speed. We use two thirds of the
dataset to compute the empirical covariance matrix
(and set it as the kernel matrix), and to learn ✏ by
maximizing the marginal likelihood for all the train-
ing days [19], treating each day as being statistically
independent. The last 10 days were used for testing.
Due to the small time horizon T = 84 in comparison to
the number of sensors, we restrict the domain to con-
tain 50 sensors, chosen randomly from the 357. Our
results (✏ = 0.04, �2 = 5.0 or 5% of the signal vari-
ance, T = 84, c1 = 0.2, c2 = 0.4) were averaged over
20 di↵erent initially activated sensors.

In Figure 3, in final two columns, we show the outcome
of the experiment for 4 testing days (for the results on
the rest of the days see Appendix G). TV-GP-UCB
outperforms GP-UCB on most testing days, with the

3In [1], the same data was used to test GP-UCB in a
di↵erent way; in each experiment, the function f(x) was
taken to be the set of temperatures at a single time.
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Figure 3: Numerical performance of upper confidence bound algorithms on real data.

two being comparable for a few of the days (e.g., see
Figure 3f). The latter situation arises when the indices
of the best sensors do not change drastically over the
time horizon, which is not always the case. In general,
both algorithms su↵er a large regret when sensors that
were reporting high speeds suddenly change and start
to report small speeds. However, TV-GP-UCB recov-
ers more quickly from this compared to GP-UCB, due
to its forgetting mechanism.

Note that we have omitted R-GP-UCB from this ex-
periment, since we found it to be unsuitable due to the
small time horizon. Moreover, this is the same reason
that GP-UCB performs reasonably, unlike the tem-
perature sensor example. Essentially, GP-UCB suf-
fers more with a longer time horizon due to the larger
amount of stale data.

6 Conclusion

We have studied the bandit optimization problem with
time-varying rewards, taking a new approach based on
a GP that evolves according to a simple Markov model.
We introduced the R-GP-UCB and TV-GP-UCB al-
gorithms, which, in contrast to previous algorithms,
simultaneously trade o↵ forgetting and remembering
while also exploiting both spatial and temporal corre-
lations. Our regret bounds for these algorithms pro-
vide, to our knowledge, the first explicit characteriza-
tions of the trade-o↵ between the time horizon T and
rate at which the function varies ✏ in a bandit setting.

We also provided an algorithm-independent bound re-
vealing that a linear dependence on T for fixed ✏ is
unavoidable. Despite the simplicity of our theoretical
model, we saw that the algorithms performed well on
real world data sets that need not be matched to this
model.

An immediate direction for future research is to de-
termine to what extent the dependence on ✏ can be
improved in our upper and lower bounds. Moreover,
one could move to the non-Bayesian setting and con-
sider classes of time-varying functions whose smooth-
ness is dictated by an RKHS norm; see [1] for the time-
invariant counterpart. Furthermore, while our time-
varying model is primarily suited to handling steady
changes, it could potentially be made even more e↵ec-
tive by explicitly handling sudden changes, e.g., by a
combination of our techniques with those from previ-
ous works studying changepoint detection [23, 24].
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