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Abstract

Pairwise learning usually refers to a learn-
ing task which involves a loss function de-
pending on pairs of examples, among which
most notable ones are bipartite ranking, met-
ric learning and AUC maximization. In
this paper, we focus on online learning algo-
rithms for pairwise learning problems with-
out strong convexity, for which all previously
known algorithms achieve a convergence rate
of O(1/

√
T ) after T iterations. In particu-

lar, we study an online learning algorithm
for pairwise learning with a least-square loss
function in an unconstrained setting. We
prove that the convergence of its last iter-
ate can converge to the desired minimizer at
a rate arbitrarily close to O(1/T ) up to log-
arithmic factor. The rates for this algorithm
are established in high probability under the
assumptions of polynomially decaying step
sizes.

1 INTRODUCTION

This paper is concerned with an important fam-
ily of learning problems that, for simplicity, we re-
fer to as pairwise learning. In contrast to regres-
sion and classification, such learning problems in-
volve pairwise loss functions, i.e. the loss function
depends on a pair of examples which can be ex-
pressed by `(f, (x, y), (x′, y′)) for a hypothesis func-
tion f : X × X → R. Many machine learning tasks
can be formulated as pairwise learning problems. For
instance, bipartite ranking [1, 6, 14] is to correctly
predict the ordering of pairs of binary labeled sam-
ples, which can be formulated as a pairwise learning
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problem. It generally involves the use of a misranking
loss `(f, (x, y), (x′, y′)) = I{(y−y′)f(x,x′)<0} or its sur-
rogate loss `(f, (x, y), (x′, y′)) = (1− (y−y′)f(x, x′))2,
where I(·) is the indicator function. Apart from bipar-
tite ranking, many other learning tasks fit this pair-
wise learning framework well, such as metric learning
[5, 19, 20, 21] and AUC maximization [7, 9, 24].

In practice, pairwise learning usually involves pairs
of training samples that are not independently and
identically distributed (i.i.d.). Consequently, stan-
dard generalization analysis techniques do not apply
to these algorithms. Generalization analysis for pair-
wise learning algorithms in the batch learning setting
has been conducted relying on U-statistics [3, 6, 14]
and algorithmic stability [1]. The algorithmic chal-
lenge in pairwise learning is the big volume of data in
the sense that the number of pairs of examples grows
quadratically in the number of examples. Specifically,
if we have n examples, then we have n2 possible pairs
of examples. Online learning algorithms are scalable
to large scale datasets and have been well studied
theoretically in classification and regression, see e.g.
[2, 4, 8, 13, 15, 16, 17, 22, 25]. However, there is rela-
tively little work on generalization analysis for online
learning algorithms for pairwise learning, in spite of
their capability of dealing with large scale datasets.
Wang et al. [18] established the first generalization
analysis of online learning methods for pairwise learn-
ing. In particular, they proved online-to-batch con-
version bounds for online learning methods, which are
combined with regret bounds to obtain generalization
error bounds. This is in the same spirit as the results
in [4] for online learning algorithms in classification
and regression. Kar et al. [9] derived tighter bounds
than those in [18] using an extension of Rademacher
complexities instead of covering numbers. Such results
are based on the assumption of a uniformly bounded
loss function with a rate O(1/

√
T ) in the general con-

vex case and O(1/T ) if, moreover, the loss function is
strongly convex.

In this paper we focus on online learning algorithms
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for pairwise learning without strong convexity. In par-
ticular, we study an online pairwise learning algorithm
with a least-square loss function in an unconstrained
setting. We prove that the convergence of its last it-
erate can converge to the desired minimizer at a rate
arbitrarily close to O(log2 T/T ). The rates for this al-
gorithm are established in high probability under the
assumptions of polynomially decaying step sizes. In
contrast with previous work [9, 18], the algorithm does
not require the loss function to be strongly convex nor
the the loss function is uniformly bounded.

Apart from the direct implementation of online pair-
wise algorithms leading to the usual O(T 2d) complex-
ity where d is the dimensionality of the data, we intro-
duce an efficient algorithm in O(Td2) time and O(d2)
space complexity. This algorithm directly benefits ap-
plications with large amount of data and can be used
to tackle cases where the volume of streaming data is
such that it cannot be entirely saved in memory be-
forehand and has to be processed in real time.

The paper is organized as follows. Section 2 illustrates
the main result and discusses the related work. Section
3 proves the main result, Section 4 presents experimen-
tal results and Section 5 concludes the paper.

2 MAIN RESULTS

Let samples z = {(xi, yi), i = 1, . . . , T} be drawn i.i.d.
from an unknown distribution ρ on Z = X ×Y where
is X is compact domain of Rd and Y ⊆ [−M,M ] with
a constant M > 0.

For any w ∈ Rd, given the pairwise least-square loss
`(w, (x, y), (x′, y′)) = (w>(x − x′) − y + y′)2, we are
interested in solving the expected risk minimization
problem, i.e.

inf
w∈Rd

E(w), where E(w) =

∫∫

Z×Z
(w>(x− x′)

− y + y′)2dρ(x, y)dρ(x′, y′).

This paper considers the following online learning al-
gorithm: w1 = w2 = 0 and, for 2 ≤ t ≤ T ,

wt+1 = wt − γt
[ 1

t− 1

t−1∑

j=1

(w>t (xt − xj)

− yt + yj)(xt − xj)
]
, (1)

where {γt : t ∈ N} is a sequence of step sizes.
The above algorithm is an online learning algorithm
as it only needs a sequential access to the training
data. Specifically, at each time step t + 1, the above
algorithm presumes a hypothesis wt upon which a
new data zt = (xt, yt) is revealed. The quality of

wt is then estimated on the local empirical error
1

2(t−1)
∑t−1
j=1(yt − yj − w>t (xt − xj))2. The next iter-

ate wt+1 given by equation (1) is exactly obtained by
performing a gradient descent step from the current it-
erate wt based on the local empirical error. A similar
form of algorithm (1) has been studied in [9, 18, 23].
For instance, a variant of the stochastic gradient de-
scent algorithm was studied in [9, 18] which, at each
iteration, requires an additional projection of wt to a
prescribed bounded ball.

Before stating our main result, consider a minimizer
w∗ = arg infw∈Rd E(w). The existence of a minimizer
itself follows from the calculus of variations’ direct
method, as E(w) is lower bounded by zero, coercive
after quotienting by the nullspace, and convex. How-
ever, the minimizer w∗ may not be unique. To see
this, denote the covariance matrix

Cρ =

∫∫

X×X
(x− x′)(x− x′)>dρX (x)dρX (x),

where ρX is the marginal distribution of ρ on X . De-
note by V0 the eigenspace of Cρ associated with the
zero eigenvalue. Then, any w∗ + v0 with v0 ∈ V0 is
also a minimizer. Let w∗ be the minimizer with zero
component in the space V0, denote by λρ the smallest
positive eigenvalue of matrix Cρ and by κ the quantity
supx,x′∈X ‖x− x′‖.
Theorem 1. Let γt = t−θ

µ for any t ∈ N with some θ ∈
( 1
2 , 1) and µ ≥ λρ + κ2, and {wt : t = 1, . . . , T + 1} be

given by algorithm (1). Let w∗ be the minimizer with
zero component in the space V0. Then, with probability
1− δ,

‖wT+1 −w∗‖2 ≤ C̄θ,ρ,µ T−(2θ−1) log2
(4T

δ

)
, (2)

where C̄θ,ρ,µ > 0 is a constant depending on θ, µ and
λρ of matrix Cρ but independent of T (see its explicit
form in the proof of the theorem).

In [23], an online learning algorithm for pairwise learn-
ing similar to (1) was studied in the setting of a re-
producing kernel Hilbert space (RKHS). Specifically,
in order to translate the results there in the linear
case, for each vector w ∈ Rd we associate the func-
tion fw(x, x′) = w>(x − x′). Theorem 2 from [23]
proved that the convergence rate for

‖fwT+1
− fw∗‖2ρ :=

∫∫

X×X
|fwT+1

(x, x′)

− fw∗(x, x′)|2dρX (x)dρX (x′)

is of O(log2 T/T 1/3). Notice that

‖fwT+1
− fw∗‖ρ ≤ κ‖wT+1 −w∗‖.
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Consequently, in the linear case, our rate arbitrarily
close to O(log2 T/T ) is a sharp improvement over the
rate of O(log2 T/T 1/3) in [23].

2.1 Related Work

We now review existing work related to our work.
Firstly, we discuss most recent work on online learn-
ing algorithms for pairwise learning. Generalization
analysis were first done in [18] which provided online-
to-batch conversion bounds for online pairwise learn-
ing algorithms. In [9], tighter bounds were estab-
lished using Rademacher complexities. Algorithm (1)
is closely related to the algorithm proposed in [18]
which, however, needs a projection at each iteration
to a bounded domain after the gradient descent step.
This, in practice, leads to the difficult problem of se-
lecting a bounded domain beforehand. On the con-
trary, the update step in Algorithm (1) is performed
in the unconstrained setting and theoretically guaran-
teed to converge when the step sizes are in the form
of O(t−θ) with θ ∈ (1/2, 1). In particular, the rate can
be arbitrarily close to O(1/T ) when θ is close 1. To
the best of our knowledge, this is the first result on
the fast convergence of online pairwise learning algo-
rithms without assuming strong convexity for the loss
function.

Secondly, we review online learning algorithms in the
univariate case. Online learning and stochastic ap-
proximation for the univariate loss [2, 4, 8, 11, 13,
15, 16, 22, 23] is well studied. For strongly convex
loss, the optimal rate is O(1/T ) [13]. For general
convex loss, the convergence rate of the last iterate
are O(log(T )/

√
T ) and O(log(T )/T ) for strongly con-

vex loss [15]. Recently, it was proved in [2] that on-
line learning with the least-square loss, although be-
ing non-strongly convex, still achieves the optimal rate
O(1/T ) through an averaging scheme with constant
step sizes. In infinite-dimensional RKHSs, conver-
gence of the last iterate of stochastic gradient descent
was established for strongly-convex losses [16] and non-
strongly convex least-square loss [22]. .

Algorithm 1, as for algorithms in the univariate case,
substitutes the true gradient by a computationally-
cheap estimator but does not assume the objective
function to be strongly convex nor to work in a con-
strained setting. In these aspects, algorithm (1) is
closer to the following stochastic gradient descent in
a RKHS HG introduced in [22]:

{
g1 = 0 and ,∀t ∈ 1, 2, . . . , T
gt+1 = gt − γt(gt(xt)− yt)Gxt .

The analysis in [22] heavily depends on the fact that
the randomized gradient (gt(xt) − yt)Gxt is an un-
biased estimator of the true gradient

∫∫
X (gt(x) −

y)Gxdρ(x, y). This is actually the main difficulty of
analysing the convergence of algorithm (1) as the ran-

domized gradient
∑t−1
j=1(wt(xt−xj)−yt+yj)(xt−xj)

is not an unbiased estimator of the true gradient∫∫
X×X (wt(xt−xj)−yt+yj)(xt−xj)dρ(x, y)dρ(x′, y′).

This is due to the fact that the T (T − 1)/2 pairs
(xi − xj , yi − yj) are not independent although the
sampling is i.i.d itself. It is still possible to obtain T/2
independent pairs out of T samples, in that case the
pairwise problem can be reduced to the univariate case
and analysed using [22, 2]. In practice, people prefer
not to discard the potential information contained in
those T(T-1)/2 non i.i.d pairs and this trick is not
used, Section 4 illustrates the reason.

Lastly, we discuss existing pairwise learning frame-
works related to our work. In [1], the pairwise discrete
ranking loss

I[(yt−yj)(f(xt)−f(xj))<0] +
1

2
I[f(xt)=f(xj)]

is considered, resulting in a batch learning algorithm
minimizing the following empirical risk

1(
T
2

)
T∑

t=2

t−1∑

j=1

max(0, |yt−yj |−(f(xt)−f(xj))sgn(yt−yj))

where the indicator function was replaced by the hinge
loss as a convex surrogate. For AUC maximization, [9]
provided an online algorithm aimed at minimizing the
following

1

T − 1

T∑

t=2

1

t− 1

t−1∑

j=1

max(0, 1− (yt − yj)w>(xt − xj)),

and where AUC, the underlying quantity quantity be-
ing optimised is simply the loss I[w>(xt−xj)<0] when
yt < yj and 0 otherwise. In [7], the online learning
algorithm optimizes the quantity

1

T − 1

T∑

t=2

t−1∑

j=1

I[yt 6=yj ](1− ytw>(xt − xj))2
2|{1 : yjyt = −1}| ,

which directly corresponds to the empirical AUC risk
when the least square loss is used as a convex upper
bound of the indicator function. Those frameworks
simply differ in the loss functions used and to a cer-
tain extent to the penalty received for sample pairs
of same label. We note that algorithm (1) relies on
a slightly different least square loss formulation based
on a similar local empirical error

1

T − 1

2∑

t=2

t−1∑

j=1

(w>(xt − xj)− yt + yj)
2.

In the particular case of the bipartite ranking setting
with Y = {0, 1}, we remark that (1− (yt−yj)w>(xt−
xj))

2 = (w>(xt − xj)− yt + yj)
2 when yt 6= yj , which

can also be seen as an upper bound of the AUC loss.
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3 PROOF OF MAIN RESULTS

We now turn our attention to the proof of Theo-
rem 1 by introducing some notations. Let Ĉt =
1
t−1

∑t−1
`=1(xt−x`)(xt−x`)>, C̃t = 1

t−1
∑t−1
`=1

∫
X (x−

x`)(x − x`)
>dρX (x), and Cρ =

∫∫
X×X (x −

x′)(x − x′)>dρX (x)dρX (x). Likewise, let Ŝt =
1
t−1

∑t−1
`=1(yt−y`)(xt−x`), S̃t = 1

t−1
∑t−1
`=1

∫
X (fρ(x)−

y`)(x − x`)dρX (x), and Sρ =
∫∫
X×X f̃ρ(x, x

′)(x −
x′)dρX (x)dρX (x′). Here f̃ρ(x, x

′) = fρ(x)−fρ(x′) with
the regression function fρ being defined by fρ(x) =∫
Y ydρ(y|x), where ρ(·|x) is the conditional distribu-

tion of ρ on Y.
Notice that, for any minimizer w∗ = arg infw∈Rd E(w),
there holds

∫∫

Z×Z
((x−x′)>w∗−y+y′)(x−x′)dρ(x, y)dρ(x′, y′)

= 0,

which implies that Cρw∗ = Sρ. We additionally define

Ât = (C̃t−Cρ)wt− (S̃t−Sρ), and B̂t = (Ĉt−C̃t)wt−
(Ŝt−S̃t). Using the above notations, algorithm (1) can
be written as

wt+1 −w∗ = (I − γtCρ)(wt −w∗)
+ γt(Cρ − Ĉt)wt + γt(Ŝt − Sρ)

= (I − γtCρ)(wt −w∗)− γtÂt − γtB̂t.
(3)

Let ωtj(Cρ) =
∏t
`=j(I − γ`Cρ) for any j ≤ t, and in-

troduce the conventional notations
∑t
`=t+1 γ` = 0 and

ωtt+1(Cρ) = I. Then, we can derive from the equality
(3), for any 2 ≤ t ≤ T , that

wt+1 −w∗ = −ωt2(Cρ)w∗

−
t∑

j=2

γjω
t
j+1(Cρ)Âj −

t∑

j=2

γjω
t
j+1(Cρ)B̂j . (4)

The strong convergence of ‖wt+1−w∗‖ stated in The-
orem 1 will be proved by estimating the terms on the
righthand of (4). To this end, we needs some lem-
mas. The first lemma states that wt are almost surely
orthogonal to the eigenspace V0. This observation is
inspired by the recent study on the randomized Kacz-
marz algorithm [10] for regression.

Lemma 1. Let the learning sequence {wt : t =
1, 2, . . . , T + 1} be produced by (1). Then, for any t,
wt is almost surely orthogonal to the eigenspace V0.

Proof. We prove the lemma by induction. The result
holds true for t ≤ 2 since w1 = w2 = 0. Assume, for
some t ≥ 3, that wt is almost surely orthogonal to the
eigenspace V0. We are going to prove a similar result

for wt+1 from (3). To see this, for any v ∈ V0 and
t, j ∈ N, observe that
∫∫

X 2

|v>(xt − xj)|2dρX (xt)dρX (xj) = v>Cρv = 0.

Similarly,

|v>Sρ|2

≤
(∫∫

X×X
|f̃ρ(x, x′)||v>(x− x′)|dρX (x)dρX (x′)

)2

≤
(∫∫

X×X
|f̃ρ(x, x′)|2dρX (x)dρX (x′)

)2

·
(∫∫

X×X
|v>(x− x′)|2dρX (x)dρX (x′)

)2

=
(∫∫

X×X
|f̃ρ(x, x′)|2dρX (x)dρX (x′)

)2(
v>Cρv

)

= 0.

In addition, for any ` ≤ t− 1, there holds
∫

X

∣∣
∫

X
v>(x− x`)(x− x`)>dρX (x)wt

∣∣dρX (x`)

≤
(∫

X

∫

X
|v>(x− x`)|2dρX (x)dρX (x`)

)1/2

·
(∫

X

∫

X
|w>t (x− x`)|2dρX (x)dρX (x`)

)1/2

= (v>Cρv)1/2

·
(∫

X

∫

X
|w>t (x− x`)|2dρX (x)dρX (x`)

)1/2
= 0,

and
∫

Z

∣∣
∫

X
v>(fρ(x)− y`)(x− x`)dρX (x)

∣∣dρ(z`)

≤
(∫

Z
(fρ(x)− y`)2dρ(x, y`)

)1/2

·
(∫

X

∫

X
|v>(x− x`)|2dρX (x)dρX (x`)

)1/2

=
(∫

Z
(fρ(x)− y`)2dρ(x, y`)

)1/2
(v>Cρv)1/2 = 0.

In summary, the above inequalities imply that xt −
xj ⊥ V0,

∫
X (x − x`)(x − x`)

>dρX (x)wt ⊥ V0,∫
X (fρ(x) − y`)(x − x`)dρX (x) ⊥ V0, and Sρ ⊥ V0 al-

most surely, which by the definition of Ât and B̂t, leads
to Ât ⊥ V0 and B̂t ⊥ V0 almost surely. Consequently,
from (3), wt+1 is orthogonal to V0. This completes the
proof of the lemma.

The above lemma indicates that the error decompo-
sition equality (4) holds true in V ⊥0 , the orthogo-
nal complement of V0 in Rd. Denote by ωtj+1(λρ) =∏t
`=j+1(1 − γ`λρ) for any j ≤ t. Then, we have the

following result.

Lemma 2. Assume that γ`κ
2 ≤ 1 for any ` ∈ N.

Then, for any j ≤ t, there holds ‖ωtj+1(Cρ)Âj‖ ≤
ωtj+1(λρ)‖Âj‖ and ‖ωtj+1(Cρ)B̂j‖ ≤ ωtj+1(λρ)‖B̂j‖,
where ‖ · ‖ denotes the Euclidean norm.
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Proof. Let us prove the first inequality. To this end,
recall from the proof of Lemma 1 that Âj ⊥ V0. For
any v ∈ V0, observe that v>ωtj+1(Cρ)Âj = v>Âj =

0. Hence, ωtj+1(Cρ)Âj ⊥ V0. Moreover, we can write

Âj =
∑
k:λk>0(v>k Âj)vk, where {vk} and {λk} are the

eigenvectors and eigenvalues of Cρ. Consequently,

‖ωtj+1(Cρ)Âj‖ = ‖∑k:λk>0(v>k Âj)ωtj+1(Cρ)vk‖
= ‖∑k:λk>0(v>k Âj)ωtj+1(λk)vk‖
=
(∑

k:λk>0 |(v>k Âj)ωtj+1(λk)|2
)1/2

≤ ωtj+1(λρ)
(∑

k:λk>0 |v>k Âj |2
)1/2

= ωtj+1(λρ)‖Âj‖,

where the second to the last inequality used the fact
that λk ≤ ‖Cρ‖ ≤ supx,x′∈X ‖x−x′‖2 = κ2 and γ`λk ≤
γ`κ

2 ≤ 1 for any ` ∈ N. The proof for the second
inequality can be done similarly. This completes the
proof of the lemma.

The following lemma gives an upper-bound of the
norms of the learning sequence {wt : t ∈ N}.
Lemma 3. Let the learning sequence {wt : t ∈ N} be
given by (1) and assume, for any t ∈ N, that γtκ

2 ≤ 1.

Then, for any t ∈ N we have ‖wt‖ ≤ 2M
(∑t−1

j=2 γj
) 1

2 .

Proof. For t = 1 or t = 2, by definition w1 = w2 = 0
which trivially satisfy the desired inequality. It suffices
to prove the case of t ≥ 2 by induction. By recalling
the recursive equality (1), we have

‖wt+1‖2 ≤ ‖wt‖2 +
γ2t κ

2

t− 1

t−1∑

j

(w>t (xt, xj)− yt + yj)
2

− 2γt
t− 1

t−1∑

j=1

(w>t (xt − xj)− yt + yj)w
>
t (xt − xj).

Define a univariate function Fj by Fj(s) = κ2γt(s −
yt + yj)

2 − 2(s − yt + yj)s. It is easy to see that

sups∈R Fj(s) =
(yt−yj)2
2−κ2γt

≤ (2M)2 since γtκ
2 ≤ 1 and

|yj |+ |yt| ≤ 2M. Therefore, from the above estimation
we can get, for t ≥ 2, that

‖wt+1‖2 ≤ ‖wt‖2 + γt
t−1

∑t−1
j=1 supj Fj(s)

≤ ‖wt‖2 + (2M)2γt.

Combining the above inequality with the induction

assumption that ‖wt‖ ≤ 2M
√∑t−1

j=2 γj implies the

desired result. This completes the proof of the
lemma.

We also need the following probabilistic inequalities in
a Hilbert space. The first one is the Bennett’s inequal-
ity for random variables in Hilbert spaces, which can
be derived from [16, Theorem B4].

Lemma 4. Let {ξi : i = 1, 2, . . . , t} be independent
random variables in a Hilbert space H with norm ‖ · ‖.
Suppose that almost surely ‖ξi‖ ≤ B and E‖ξi‖2 ≤
σ2 < ∞. Then, for any 0 < δ < 1, there holds, with
probability at least 1− δ,

∥∥∥1

t

t∑

i=1

[ξi − Eξi]
∥∥∥ ≤

2B log 2
δ

t
+ σ

√
log 2

δ

t
.

The second probabilistic inequality is the Pinelis-
Bernstein inequality for martingale difference sequence
in a Hilbert space, which is derived from [12, Theorem
3.4].

Lemma 5. Let {Sk : k ∈ N} be a martingale differ-
ence sequence in a Hilbert space. Suppose that almost
surely ‖Sk‖ ≤ B and

∑t
k=1 E[‖Sk‖2|S1, . . . , Sk−1] ≤

σ2
t . Then, for any 0 < δ < 1, there holds, with proba-

bility at least 1− δ,

sup
1≤j≤t

∥∥∥∥∥

j∑

k=1

Sk

∥∥∥∥∥ ≤ 2

(
B

3
+ σt

)
log

2

δ
.

After the above preparations, we can now present the
following bounds for the terms on the righthand side
of the error decomposition (4).

Theorem 2. Assume that γ`(κ
2 +λρ) ≤ 1 for any ` ∈

N. Then, for any 0 < δ < 1, the following estimations
hold true.

(a) With probability 1− δ, there holds

‖
t∑

j=2

γjω
t
j+1(Cρ)Âj‖ ≤ 6

√
2(1 + κ)κM log

(2t

δ

)

t∑

j=2

γjω
t
j+1(λρ)√
j

(
1 + (

j−1∑

`=2

γ`
)1/2

).

(b) With probability 1− δ, we have

‖
t∑

j=2

γjω
t
j+1(Cρ)B̂j‖ ≤

32
√

2

3
(1 + κ)κM log

(2

δ

)

( t∑

j=2

γ2j (ωtj+1(λρ))
2(1 +

j−1∑

`=2

γ`)
)1/2

.

Proof. We start with the proof of part (a). From
Lemma 2 and Lemma 3, we have

‖
t∑

j=2

γjω
t
j+1(Cρ)Âj‖ ≤

t∑

j=2

γjω
t
j+1(λρ)‖Âj‖

≤
t∑

j=2

γjω
t
j+1(λρ)(‖Cρ − C̃j‖‖wj‖+ ‖S̃j − Sρ‖)

≤∑t
j=2 γjω

t
j+1(λρ)

·
(

2M‖Cρ − C̃j‖(
∑j−1
`=2 γ`)

1/2 + ‖S̃j − Sρ‖
)
,
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where, for any 2 ≤ j ≤ t, ‖Cρ − C̃j‖ denotes the

Frobenius norm of matrix Cρ− C̃j . Applying Lemma 4
with B = σ = κ2, with probability 1 − δ

t there holds

‖Cρ−C̃j‖ ≤ 2κ2 log 2t
δ

j−1 +κ2
√

log 2t
δ

j−1 ≤ 3
√

2κ2 log( 2t
δ )/
√
j.

Similarly, applying Lemma 4 with B = σ = 2κM im-
plies, with probability 1− δ

t , that

‖S̃j − Sρ‖ ≤ 4Mκ log 2t
δ

j−1 + 2κM
√

log 2t
δ /(j − 1)

≤ 6
√

2κM log( 2t
δ )/
√
j.

Putting these estimation into (3) implies part (a).

For part (b), observe that {ξj := γjω
t
j+1(Cρ)B̂j : j =

2, . . . , t} is a martingale difference sequence. we will
apply Lemma 5 to prove part (b). To this end, it needs
to estimate B and σ. Indeed, by Lemma 3, we get that

‖B̂j‖ ≤ ‖Ĉj − C̃j‖‖wj‖+ ‖Ŝj − S̃j‖
≤ 4κ2M

(∑j−1
`=2 γ`

) 1
2 + 2κM

≤ 4
√

2κ(1 + κ)M
(
1 +

∑j−1
`=2 γ`

) 1
2 .

From Lemma 2 and the above estimation, we have that

σ2
t =

t∑

j=2

γ2jE(‖ωtj+1(Cρ)B̂j‖2|z1, . . . , zj−1)

≤
t∑

j=2

γ2j (ωtj+1(λρ))
2E(‖B̂j‖2|z1, . . . , zj−1)

≤ 32κ2(1 + κ)2M2

·∑t
j=2 γ

2
j (ωtj+1(λρ))

2(1 +

j−1∑

`=2

γ`),

(5)

and

B = sup2≤j≤t
[
γjω

t
j+1(λρ)‖B̂j‖

]

≤ (
∑t
j=2

[
γjω

t
j+1(λρ)‖B̂j‖

]2
)1/2

≤ 4
√

2κ(1 + κ)M

·
(∑t

j=2 γ
2
j (ωtj+1(λρ))

2(1 +

j−1∑

`=2

γ`)
)1/2

.

(6)
Applying Lemma 5 with the estimation of B and σt
being given by (5) and (6) implies the desired result in
part (b). This completes the proof of the theorem.

Theorem 1 can be derived from Theorem 2 by using
the following technical lemma.

Lemma 6. Let γj = j−θ

µ for any j ∈ N with some

θ ∈ (1/2, 1). Then, there holds

∑t
j=2

γjω
t
j+1(λρ)√
j

(
1 +

(∑j−1
`=2 γ`

)1/2
)

≤ 2max(1,(µ(1−θ))−1/2)
µ

·
(
1+
(
µ2

5θ
2

λρ
+
(

µ(2+3θ)
2λρ(1−2θ−1)e

) 2+3θ
2(1−θ)

))
t−

θ
2 ,

(7)

and

(∑t
j=2 γ

2
j (ωtj+1(λρ))

2(1 +
∑j−1
`=2 γ`)

)1/2

≤ max(1,(µ(1−θ))−1/2)
µ

·
(

1+
(
µ24θ−1

2λρ
+
(

3µθ
2λρ(1−2θ−1)e

) 3θ
1−θ
))1/2

t−(θ−
1
2 ).

(8)

Proof. The proof needs the elementary inequality (see
e.g. [17, Lemma 2]): for any ν > 0, a > 0, 0 < q1 < 1,
and q2 ≥ 0, then, for any t ∈ N,

t−1∑

j=1

j−q2 exp
(
−ν

t∑

`=j+1

`−q1
)
≤
(2q1+q2

ν

+
( 1 + q2
ν(1− 2q1−1)e

) 1+q2
1−q1

)
tq1−q2 . (9)

To this end, denote the lefthand term of (7) by I =∑t
j=2

γj√
j

[∏t
`=j+1(1−λργ`)

]
(1+(

∑j−1
`=2 γ`)

1/2). Indeed,

we have

I ≤ t−θ−
1
2

µ

(
1 + ( 1

µ(1−θ) ((t− 1)1−θ − 1))1/2
)

+

t−1∑

j=2

j−θ−
1
2

µ
exp
(
−λρ
µ

t∑

`=j+1

`−θ
)

·
[
1 + ( 1

µ(1−θ) ((j − 1)1−θ − 1))1/2
]

≤ 2max(1,(µ(1−θ))−1/2)
µ

·
(
t−

3θ
2 +

t−1∑

j=2

j−
3θ
2 exp

(
−λρ
µ

t∑

`=j+1

`−θ
))

≤ 2max(1,(µ(1−θ))−1/2)
µ

·
(
t−

3θ
2 +
(
µ2

5θ
2

λρ
+
(

µ(2+3θ)
2λρ(1−2θ−1)e

) 2+3θ
2(1−θ)

)
t−θ/2

)

≤ 2max(1,(µ(1−θ))−1/2)
µ

·
(

1+
(
µ2

5θ
2

λρ
+
(

µ(2+3θ)
2λρ(1−2θ−1)e

) 2+3θ
2(1−θ)

))
t−

θ
2 ,

(10)
where the third to last inequality used inequality 9
with q1 = θ, q2 = 3θ

2 , and ν =
λρ
µ . This completes the

estimation of (7).

Now we turn to the estimation of (8) where the term
on the lefthand side is denoted by J . Similarly we
have

(J )2 ≤ 1
µ2 t
−2θ(1 + (t−1)1−θ−1

µ(1−θ)
)

+
∑t−1
j=2

j−2θ

µ2 exp
(
− 2λρ

µ

∑t
`=j+1 `

−θ)(1 + (j−1)1−θ−1
µ(1−θ)

)

≤ 2max(1,(µ(1−θ))−1)
µ2

·
[
t1−3θ +

∑t−1
j=2 j

−(3θ−1) exp
(
− 2λρ

µ

∑t
`=j+1 `

−θ)]

≤ 2max(1,(µ(1−θ))−1)
µ2

·
(

1+
(
µ24θ−1

2λρ
+
(

3µθ
2λρ(1−2θ−1)e

) 3θ
1−θ
))
t−(2θ−1),
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where, in the last inequality, we used 9 with q1 =
θ, q2 = 3θ − 1, and ν =

2λρ
µ . Hence,

J ≤
√

2 max(1, (µ(1− θ))−1/2)

µ

(
1+
(µ24θ−1

2λρ

+
( 3µθ

2λρ(1− 2θ−1)e

) 3θ
1−θ
))1/2

t−(θ−
1
2 ).

This completes the proof of the lemma.

We are finally ready to prove Theorem 1 by using The-
orem 2 and Lemma 6.

Proof of Theorem 1. By (4), there holds

‖wT+1−w∗‖ ≤ ‖ωT2 (Cρ)w∗‖+ ‖
T∑

j=2

γjω
T
j+1(Cρ)Âj‖

+ ‖
T∑

j=2

γjω
T
j+1(Cρ)B̂j‖. (11)

In addition, recall that w∗ ⊥ V0. Then, there holds

‖ωt2(Cρ)w∗‖ ≤
t∏

j=2

(1− λργj)‖w∗‖. (12)

we have

‖ωT2 (Cρ)w∗‖
≤ exp(−λρµ

∑T
j=2 `

−θ)‖w∗‖
≤ 2κM

λρ
exp
(
− λρ
µ(1−θ) (T

1−θ − 2)
)

≤ 2κM
λρ

exp(
2λρ

µ(1−θ) ) exp(− λρ
µ(1−θ)T

1−θ)

≤ 2κM
λρ

exp(
2λρ

µ(1−θ) )
(
µ(2θ−1)
2λρe

) 2θ−1
2(1−θ)

T−(θ−
1
2 ).

(13)
The second inequality in the above estimation relies
on the fact (from the proof of from Lemma 1) that
Cρw∗, Sρ ⊥ V0. This implies that ‖w∗‖ = ‖C−1ρ Sρ‖
holds true in the eigenspace corresponding to non-zero
eigenvalues of Cρ for which C−1ρ is well defined (i.e. it
equals to the pseudo inverse of Cρ). The last inequality
of the above estimation used the elementary inequality
(see e.g. [17, Lemma 2]): for any x > 0, exp(−νx) ≤
( aνe )ax−a.

Combining (7), (8), and (13) with Theorem 2, we ob-
tain from inequality (11), with probability 1− δ, that

‖wT+1 −w∗‖2 ≤ C̄2
θ,ρ,µ T

−(2θ−1) log2
(
4T
δ

)
, where

C̄θ,ρ,µ = (12
√

2+
128

3
)(1+κ)κM

max(1, (µ(1− θ))−1)

µ

·
[
2 +

µ2
5θ
2

λρ
+
( µ(2 + 3θ)

2λρ(1− 2θ−1)e

) 2+3θ
2(1−θ)

+
(µ24θ−1

2λρ

+
( 3µθ

2λρ(1− 2θ−1)e

) 3θ
1−θ
))1/2]

+
2κM

λρ
exp(

2λρ
µ(1− θ) )

·
(µ(2θ − 1)

2λρe

) 2θ−1
2(1−θ)

.

This completes the proof of the theorem. �

4 PRELIMINARY EXPERIMENTS

In this section we first introduce an efficient imple-
mentation of algorithm (1) and then evaluate its per-
formance on benchmark datasets. We stress that those
results are preliminary, aimed at empirically studying
the convergence of algorithm (1) on pairwise learning
problems.

4.1 Implementation

We remark that algorithm (1) can be implemented in
linear time with respect to the number of samples and
not quadratic, as the double sum in (1) would suggest,
by updating the following four quantities at each it-
eration: XXt = 1

t−1
∑t−1
j=1 xjx

>
j , Xt = 1

t−1
∑t−1
j=1 xj ,

Yt = 1
t−1

∑t−1
j=1 yj and Y Xt = 1

t−1
∑t−1
j=1 yjxj .

The resulting algorithm has a time complexity of
O(Td2) and a space complexity of O(d2). Inciden-
tally, the more straightforward implementation yields
a O(T 2d) time complexity which could be preferred
when working with high-dimensional datasets were the
number of features far exceeds the sample size.

Algorithm 1

Input: θ, µ
Initialization: w0 = w1 = 0, XX1 = [0]d×d, X1 =
0, Y1 = 0, Y X1 = 0

1: for t = 2, . . . , T do
2: Receive training pair (xt, yt)
3: XXt = ((t− 2)XXt−1 + xtx

>
t )/(t− 1)

4: Xt = ((t− 2)Xt−1 + xt)/(t− 1)
5: Yt = ((t− 2)Yt−1 + yt)/(t− 1)
6: Y Xt = ((t− 2)Y Xt−1 + ytxt)/(t− 1)

7: wt+1 = wt− t−θ

µ ([w>t (xt−Xt)]xt−[w>t xt]Xt+

XXtwt + (yt − Y )xt − Y Xt + ytXt)
8: end for

210



Fast Convergence of Online Pairwise Learning Algorithms

Table 1: benchmark datasets

datasets T d datasets T d
sonar 208 60 splice 3175 60

ionosphere 351 34 a9a 32561 123
diabetes 768 8 w8a 49749 300
german 1000 24 ijcnn1 141691 22

svmguide3 1243 22 covtype 581012 54

Table 2: Comparison of AUC values (mean±std) on
benchmark datasets

datasets (1) SGD OPAUC
sonar .8213±.0679 .7968±.0487 .8038±.0574
ionosphere .9438±.0330 .9352±.0333 .9131±.0419
diabetes .8278±.0277 .8233±.0237 .8291±.0381
german .7914±.0318 .7728±.0352 .7962±.0203
svmguide3 .7199±.0438 .7005±.0536 .7078±.0397
splice .9246±.0092 .9160±.0090 .9179±.0095
a9a .8960±.0037 .8947±.0042 .8996±.0042
w8a .9557±.0069 .9524±.0050 .9508±.0049
ijcnn1 .9251±.0033 .9227±.0034 .9365±.0025
covtype .8230±.0012 .8222±.0016 .8226±.0012

4.2 Comparison on Benchmark Data

We measured the performance on AUC optimization
tasks, and report results on 10 standard binary clas-
sification datasets of different sample sizes and class
imbalance1. We compared Algorithm 1 to the online
algorithms OPAUC [7] as well as the stochastic ver-
sion of Algorithm 1 where T/2 independent pairs are
used. Hyperparameters were selected on the training
fold, and AUC values obtained by overaging over five
trials of 5-fold cross validation (Table 2) after one pass
over the dataset.

Our results show that algorithm (1) fared always bet-
ter than the sgd variant relying only on T/2 truly
independent pairs but also competed fairly against
OPAUC the state of the art for online AUC algorithms.
This is promising as algorithm (1) its current form
was not adapted to directly optimize pairs of oppo-
site classes as in other AUC maximization algorithms.
While simply minimising over all pairs, algorithm (1)
performs well on AUC tasks and enjoys an efficient
implementation as well as a fast convergence rate.

In addition, Figure 1 shows the evolution of the AUC
over several epochs for the first four datasets. The
same experimental protocol was used and the dataset
was additionally shuffled between each pass. It is quite
clear that reducing pairwise problems to the univariate
case by discarding dependent pairs, although having
the same assymptotic convergence, is subefficient in

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/

Figure 1: Influence of epochs on AUC

practice.

5 CONCLUSION

In this paper, we proved the fast convergence rate
for an online pairwise learning algorithm with a
non-strongly-convex loss in an unconstrained setting.
Specifically, under the assumption of polynomially de-
caying step sizes, we established that the convergence
rate of the last iterate to the minimizer of the true risk
is arbitrarily close to O(log2 T/T ). We are currently
exploring ideas to improve the scalability of algorithm
(1). From a practical point of view, algorithm (1) has
a linear time implementation that only needs to store
the first two moments of the data. However, when the
implementation in O(T 2d) is favored, algorithm (1) is
not a fully online learning algorithm since it needs to
store previous samples. One possibility is to work with
a truly stochastic update consisting of only a pair of
examples at each iteration, or to rely only on a buffer-
ing set of past training samples, as used in [9, 18],
when computing the gradient estimator. Finally, we
notice that our rate O(1/T ) depends on the smallest
positive eigenvalue of Cρ. It would be interesting to
exploit strategies such as an averaging scheme of the
iterates to relax such a dependency.
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