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A Some useful results

Proposition 1 (Spectral functions). Let f, g :
[0, T ] → R be continuous functions and A ∈ Rn×n
symmetric with ‖A‖ ≤ T , for T > 0, n ≥ 1. Let A =
UΣU> be its eigenvalue decomposition with U ∈ Rn×n
an orthonormal matrix, U>U = UU> = I and Σ a
diagonal matrix, then

f(A) = Uf(Σ)U>,

f(A) + g(A) = (f + g)(A), f(A)g(A) = (fg)(A)

where f(Σ) = diag(f(σ1), . . . , f(σn)). Moreover, let
B ∈ Rn×m with n,m ≥ 1, then

f(B>B)B> = B>f(BB>).

Proposition 2. With the notation of Section 2.3 let
R ∈ Rm×p such that K†mm = RR> and A = KnmR.
Then, for any λ,m > 0, α̃m,λ is characterized by Equa-
tion 18.

Proof. By Equation 7.7 of Rifkin et al. we have that

α̃m,λ = K†mmK
>
nm(KnmK

†
mmK

>
nm + λnI)−1y

= RR>K>nm(KnmRR
>K>nm + λnI)−1y

= RA>(AA> + λnI)−1y

= R(A>A+ λnI)−1A>y,

where the last step is due to Prop. 1.

Proposition 3. Let k : X × X → R be a kernel
function on X , x1, . . . , xn be the given points and
y = (y1, . . . , yn) be the labels of the dataset. For
any function of the form f(x) =

∑n
i=1 wik(x, xi) with

w = Cy for any x ∈ X , with C ∈ Rn×n independent
from y, the following holds

EyR(f) =
σ2

n
Tr(Q2)︸ ︷︷ ︸

Variance V (Q)

+
1

n
‖P (I −Q)µ‖2︸ ︷︷ ︸

Bias B(Q)

,

with Q = KC ∈ Rn×n, K the kernel matrix, µ = Ey ∈
Rn and P = K†K the projection operator on the range
of K.

Proof. A function f ∈ H is of the form f(x) =∑n
i=1 αik(x, xi) for any x ∈ X . If we compute it

on a point of the dataset xi, with i ∈ {1, . . . , n} we
have f(xi) =

∑n
j=1 αjk(xi, xj) = k>i w with w = Cy

and ki = (k(xi, x1), . . . , k(xi, xn)). Note that K =
(k1, . . . , kn).

Rewriting of E, R for fixed design. We have

E(w) =
1

n

n∑
i=1

E(k>i w − yi) =
1

n

n∑
i=1

(E
(
k>i w − µi

)2
− 2

(
k>i w − µi

)
(yi − µi) + (yi − µi)2)

=
1

n

n∑
i=1

(k>i w − µi)2 +
σ2

n
=
σ2

n
+

1

n
‖Kw − µ‖2,

Now note that PK = K and (I − P )K = 0, that
‖q‖2 = ‖Pq‖2 + ‖(I − P )q‖2 for any q ∈ H and that
infv∈X E(v) = σ2 + ‖(I − P )µ‖2, then the excess risk
can be rewritten as

R(w) =
1

n
‖Kw − µ‖2 − 1

n
‖(I − P )µ‖2

=
1

n
‖P (Kw − µ)‖2 +

1

n
‖(I − P )(Kw − µ)‖2

− 1

n
‖(I − P )µ‖2 =

1

n
‖P (Kw − µ)‖2.

Expected Excess Risk. Now we focus on the ex-
pectation of R with respect to the dataset for linear
functions that depend linearly on the observed labels
y. Indeed we have

ER(w) =
1

n
E‖P (KCy − Pµ)‖2

=
1

n
E‖PQ(y − µ) + P (I −Q)µ‖2

=
1

n
ETr(Q(y − µ)(y − µ)>Q) +

1

n
‖P (I −Q)µ‖2

− 2

n
E(y − µ)>QP (I −Q)µ

=
1

n
Tr(QE(y − µ)(y − µ)>Q) +

1

n
‖P (I −Q)µ‖2

=
σ2

n
Tr(Q2) +

1

n
‖P (I −Q)µ‖2.

Here the third step is due to ‖a− b‖2 = ‖a‖2 + ‖b‖2−
2a>b and that ‖a‖2 = Tr(aa>), for any vector a, b.
The last term in the third step vanishes due to the fact
that y − µ is a zero mean random variable. Moreover,
note that (E(y−µ)(y−µ)>)ij = E(yi−µi)(yj−µj) =
σ2δij , therefore E(y − µ)(y − µ)> = σ2I.

B Proofs

Proof of Theorem 1. By applying Prop. 3 to the esti-
mator of Equation 3 we have Qols = K†K = P . Now
note that P 2 = P by definition, Tr(P ) = d∗ and that
P (I − P ) = 0, therefore

ER(fols) =
σ2

n
Tr(P 2) +

1

n
‖P (I − P )µ‖ =

σ2d∗

n
.
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Proof of Theorem 2. Let K = UΣU> be the eigen-
decomposition of K with U an orthonormal matrix
and Σ a diagonal matrix with σ1 ≥ · · · ≥ σn ≥ 0. Let
Q̄λ = (K + λnI)−1K, β = U>Pµ with µ = Ey as
in Eq. (5), P = K†K the projection operator on the
range of K. By applying Prop. 3 to the estimator of
Eq. (3), considering that P (I− Q̄λ) = (I− Q̄λ)P , that
I − Q̄λ = λn(K + λnI)−1 and that σi = βi = 0 for
i > d∗, we have

ER(f̄λ) =
σ2

n
Tr(Q̄2

λ) +
1

n
‖P (I − Q̄λ)µ‖2

=
σ2

n
Tr(Q̄2

λ) +
1

n
‖(I − Q̄λ)Pµ‖2

=
σ2

n
Tr(Σ2(Σ + λI)−2) +

λ

n
‖(Σ + λI)−1β‖2

=
1

n

d∗∑
i=1

σ2σ2
i + λ2n2β2

i

(σi + λn)2
=

1

n

d∗∑
i=1

σ2σ̄2
i + λ2β2

i

(σ̄i + λ)2
,

with σ̄i = σi/n for 1 ≤ i ≤ d∗. Note that, by defining

τi = σ
−1/2
i βi for 1 ≤ i ≤ d∗, we have

‖fopt‖2H =

n∑
i,j=1

〈αopt,ik(xi, ·), αopt,jk(xj , ·)〉H

= α>optKαopt = µ>K†KK†µ = µ>PK†Pµ

= µ>PUΣ†U>Pµ = β>Σ†β =

d∗∑
i=1

τ2
i .

Now we study ER(f̄λ∗). When λ∗ = σ2/T with T =
‖fopt‖2H. We have

ER(f̄λ∗) =
σ2

n

d∗∑
i=1

σ̄i
σ̄i + λ∗

σ̄i + σ2 τ
2
i

T 2

σ̄i + σ2

T

=
σ2

n

d∗∑
i=1

σ̄i
σ̄i + λ∗

(σ̄i + σ2

T )− σ2

T (1− τ2
i

T )

σ̄i + σ2

T

=
σ2

n

d∗∑
i=1

σ̄i
σ̄i + λ∗

(
1− 1− τ2

i /T

1 + T σ̄i/σ2

)

≤ σ2

n

d∗∑
i=1

σ̄i
σ̄i + λ∗

=
σ2

n

d∗∑
i=1

σi
σi + λ∗n

=
σ2

n
Tr(Σ(Σ + λ∗nI)−1) =

σ2

n
deff(λ∗).

Proof of Theorem 3. It is an application of Theorem 5
when we select the whole training set (m = n) for the
Nyström approximation. In that case the expected
excess risks of Nyström KRLS and NYTRO are just
equal to the ones of KRLS and Early Stopping, indeed
when m = n we have that Kmm = Knm = K. If we

call Q̄λ and Q̃n,λ theQ-matrices for the two algorithms
(see Prop. 3) and R such that RR> = K†mm, for any
λ > 0 we have

Q̄λ = (K + λnI)−1K = (KK†K + λnI)−1KK†K

= (KRR>K + λnI)−1KRR>K

= KR(R>K2R+ λnI)−1R>K = Q̃n,λ.

Proof of Theorem 5. In the following we assume with-
out loss of generality that the selected points
x̃1, . . . , x̃m are the first m points in the dataset. In
Prop. 3 we have seen that the behavior of an algo-
rithm in a fixed design setting is completely described
by a matrix Q = KC when the coefficients of the es-
timator of the algorithm are of the form Cy. Now we
find the associated Q for NYTRO, that is Q̂m,γ,t. By
solving the recursion of Equation (19), we have for any
i ∈ {1, . . . , n}

f̂m,γ,t(xi) = k>i Cy, with C =

(
Cm,γ,t

0(n−m)×n

)
,

Cm,γ,t = γ

t−1∑
p=0

R(I − γA>A)pA>,

with A = KnmR and ki = (k(xi, x1), . . . , k(xi, xn)).
Therefore, we have

Q̂m,γ,t = KC = γ

t−1∑
p=0

KnmR(I − γA>A)pA>

= γ

t−1∑
p=0

A(I − γA>A)pA>.

Rewriting of Q̂m,γ,t. Now we rewrite Q̂m,γ,t in a
suitable form to bound the bias and variance error.
First of all we apply Prop. 1 to Q̂m,γ,t. Let f(σ) =

γ
∑t−1
i=0(1− γ/nσ)p with σ ∈ [0, n/γ], we have that

Q̂m,γ,t = Af(A>A)A> = f(AA>)AA> = g(AA>),

where g(σ) = f(σ)σ. Now note that

g(σ) = γσ

t−1∑
i=0

(1− γ/nσ)p = 1− (1− γ/nσ)t,

therefore we have

Q̂m,γ,t = g(AA>) = I − (I − γ/nAA>)t.

Bound of the bias. Now we are going to bound the
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bias for NYTRO. Let λ = 1/(γt) and Z = AA>, then

B(Q̂m,γ,t) =
1

n
‖P (I − Q̂m,γ,t)µ‖2

=
1

n
‖P (I − γ

n
Z)tµ‖2 =

1

n
‖(I − γ

n
Z)tPµ‖2

=
1

n
‖(I − γ

n
Z)t(Z + λnI)(Z + λnI)−1Pµ‖2

≤ 1

n
q(A, λn)‖(Z + λnI)−1Pµ‖2

and q(A, λn) = ‖(I − γ/nAA>)t(AA> + λnI)‖2.
Note that the third step is due to the fact that
ranZ ⊆ ranK = ranP and Z is symmetric, there-
fore Ph(Z) = h(Z)P as a consequence of Prop. 1 for
any spectral function h. Let σ1, . . . , σn be the singular
values of Z, we have

q

(
A,

n

γt

)
= sup
i∈{1,...,n}

(1− γ/nσi)2t

(
σi +

n

γt

)2

≤ sup
0≤σ≤n/γ

(1− γ/nσ)2t

(
σ +

n

γt

)2

≤ n2

γ2t2
.

Therefore we have

B(Q̂m,γ,t) ≤ λ2n‖(Z + λn)−1Pµ‖2.

Bound for the Variance. Let t ≥ 2, λ = 1
γt , r(σ) =

(1− γ/nσ)t and

v(σ) = σ/(t− 1) + σ(1 + r(σ))− λn(1− r(σ)).

We have v(σ) ≥ 0 for 0 ≤ σ ≤ n/γ. Indeed for λn <
σ ≤ n/γ we have v(σ) ≥ 0 since 0 ≤ r(σ) ≤ 1, while
for 0 ≤ σ ≤ λn we have

λn(1− r(σ)) = λn

(
1− e

−t log 1
1− γσ

n

)
≤ n

γt
t log

1

1− γσ
n

≤ n

γ

γ/nσ

1− γ/nσ
≤ σ

1− 1
t

=
σ

t− 1
+ σ

≤ σ

t− 1
+ σ(1 + r(σ)),

therefore v(σ) ≥ 0. Now let 0 ≤ σ ≤ n/γ. Since
v(σ) ≥ 0, the function w(σ) = v(σ)/(σ+λn) is w(σ) ≥
0. Now we rewrite w a bit. First of all, note that

w(σ) = (2t− 1)/(t− 1)w1(σ)− g(σ),

with w1(σ) = σ/(σ+λn). The fact that w(σ) ≥ 0 and
that g(σ) ≥ 0 implies that(

2t− 1

t− 1

)2

w1(σ)2 ≥ g(σ)2. ∀0 ≤ σ ≤ n

γ
, t ≥ 2

Now we focus on Tr(Q̂2
γt). Let Z = UΣU> be its

eigenvalue decomposition with U an orthonormal ma-
trix and Σ = diag(σ1, . . . , σn) with σ1 ≥ · · · ≥ σn ≥ 0,

Tr(Q̂2
m,γ,t) = Tr(g2(Z)) = Tr(Ug2(Σ)U>) = Tr(g2(Σ))

=

n∑
i=1

g(σi)
2 ≤ ct

n∑
i=1

w1(σi)
2 = ct Tr(w1(Σ)2)

= ct Tr(Uw1(Σ)2U>) = ct Tr(w1(Z)2)

= ct Tr(Z2(Z + λnI)−2)

where we applied many times Prop. 1 and the fact that
the trace is invariant to unitary transforms. Thus,

V (Q̂m,γ,t, n) ≤ σ2

n

(
2t− 1

t− 1

)2

Tr
(
Z (Z + n/(γt)I)

−1
)2

.

The expected excess risk for Nyström KRLS
The Nyström KRLS estimator with linear kernel is a
function of the form

f̃(xi) = k>i Cy, with C =

(
C̃m,λ

0(n−m)×n

)
,

C̃m,λ = R(A>A+ λnI)†A>,

with ki = (k(xi, x1), . . . , k(xi, xn)) for any i ∈
{1, . . . , n}. Now, by applying Prop. 1 we have

Q̃m,λ = KC = KnmC̃m,λ

= A(A>A+ λnI)−1A = AA>(AA> + λI)−1

= Z(Z + λnI)−1

Thus we have

V (Q̃m,λ) =
σ2

n
Tr(Q̃m,λ)2 =

σ2

n
Tr
(
Z (Z + λnI)

−1
)2

B(Q̃m,λ) =
1

n
‖P (I − Z (Z + λnI)

−1
)µ‖2

= λ2n‖P (Z + λnI)−1µ‖2

= λ2n‖(Z + λnI)−1Pµ‖2,

where the last step is due to the same reasoning as in
the bound for the bias of NYTRO. Finally, by applying

twice Prop. 3 and calling ct =
(

2t−1
t−1

)2

, we have that

R(f̂m,γ,t) = V (Q̂m,γ,t, n) +B(Q̂m,γ,t)

≤ ctV (Q̃m, 1
γt
, n) +B(Q̃m, 1

γt
)

≤ ct
(
V (Q̃m, 1

γt
, n) +B(Q̃m, 1

γt
)
)

= ctR(f̃m, 1
γt

)

for ‖Z‖ ≤ n/γ and t ≥ 2. Now the choice γ =
1/(max1≤i≤n k(xi, xi)) is valid, indeed

γ‖Z‖2 = γ‖KnmRR
>K>nm‖ = γ‖KnmK

†
mmK

>
nm‖

≤ γ‖K‖ ≤ γn max
1≤i≤n

(K)ii = γn max
1≤i≤n

k(xi, xi),
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where ‖KnmK
†
mmK

>
nm‖ ≤ ‖K‖ can be found in Bach

(2013); Alaoui and Mahoney (2014).

Proof of Corollary 1. Theorem 5 combined with The-
orem 1 of Bach (2013).


