A Some useful results

Proposition 1 (Spectral functions). Let \(f, g : [0, T] \rightarrow \mathbb{R} \) be continuous functions and \(A \in \mathbb{R}^{n \times n} \) symmetric with \(\| A \| \leq T \), for \(T > 0, n \geq 1 \). Let \(A = U \Sigma U^\top \) be its eigenvalue decomposition with \(U \in \mathbb{R}^{n \times n} \) an orthonormal matrix, \(U^\top U = UU^\top = I \) and \(\Sigma \) a diagonal matrix, then

\[
\begin{align*}
 f(A) & = U f(\Sigma) U^\top, \\
 f(A) + g(A) &= (f + g)(A), \\
 f(A)g(A) &= (fg)(A)
\end{align*}
\]

where \(f(\Sigma) = \text{diag}(f(\sigma_1), \ldots, f(\sigma_n)) \). Moreover, let \(B \in \mathbb{R}^{n \times m} \) with \(n, m \geq 1 \), then

\[
f(B^\top B)B^\top = B^\top f(BB^\top).
\]

Proposition 2. With the notation of Section 2.3 let \(R \in \mathbb{R}^{m \times p} \) such that \(K_{mm} = RR^\top \) and \(A = K_{nm}R \). Then, for any \(\lambda, m > 0 \), \(\alpha_{m, \lambda} \) is characterized by Equation 18.

Proof. By Equation 7.7 of Rifkin et al. we have that

\[
\begin{align*}
 \hat{\alpha}_{m, \lambda} &= K_{mm}^\top K_{mm}(K_{nm} K_{nm}^\top K_{mm} + \lambda nI)^{-1} y \\
 &= RR^\top (RR^\top K_{nm} RR^\top K_{nm}^\top + \lambda nI)^{-1} y \\
 &= RA^\top (AA^\top + \lambda nI)^{-1} y \\
 &= R(A^\top A + \lambda nI)^{-1} A^\top y,
\end{align*}
\]

where the last step is due to Prop. 1.

Proposition 3. Let \(k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) be a kernel function on \(\mathcal{X} \), \(x_1, \ldots, x_n \) be the given points and \(y = (y_1, \ldots, y_n) \) be the labels of the dataset. For any function of the form \(f(x) = \sum_{i=1}^n w_i k(x, x_i) \) with \(w = Cy \) for any \(x \in \mathcal{X} \), with \(C \in \mathbb{R}^{n \times m} \) independent from \(y \), the following holds

\[
E_y R(f) = \frac{\sigma^2}{n} \text{Tr}(Q^2) + \frac{1}{n} \| P(I-Q)\mu \|_2^2. \tag{Variance \text{Var}(Q)}
\]

\[
+ \frac{1}{n} \| P(I-Q)\mu \|_2^2. \tag{Bias \text{Bias}(Q)}
\]

with \(Q = KC \in \mathbb{R}^{n \times n} \), \(K \) the kernel matrix, \(\mu = E y \in \mathbb{R}^n \) and \(P = K^\top K \) the projection operator on the range of \(K \).

Proof. A function \(f \in \mathcal{H} \) is of the form \(f(x) = \sum_{i=1}^n \alpha_i k(x, x_i) \) for any \(x \in \mathcal{X} \). If we compute it on a point of the dataset \(x_i \), with \(i \in \{1, \ldots, n\} \) we have \(f(x_i) = \sum_{j=1}^n \alpha_j k(x_i, x_j) = k_i^\top w \) with \(w = Cy \) and \(k_i = (k(x_i, x_1), \ldots, k(x_i, x_n)) \). Note that \(K = (k_1, \ldots, k_n) \).

Rewriting of \(E, R \) for fixed design. We have

\[
E(w) = \frac{1}{n} \sum_{i=1}^n E(k_i^\top w - y_i) = \frac{1}{n} \sum_{i=1}^n (E(k_i^\top w - \mu_i)^2 \\
- 2(k_i^\top w - \mu_i)(y_i - \mu_i) + (y_i - \mu_i)^2) \\
= \frac{1}{n} \sum_{i=1}^n (k_i^\top w - \mu_i)^2 + \frac{\sigma^2}{n} + \frac{1}{n} \| Kw - \mu \|_2^2,
\]

Now note that \(PK = K \) and \((I-P)K = 0\), that \(\|q\|_2 = \|Pq\|_2 + \|(I-P)q\|_2 \) for any \(q \in \mathcal{H} \) and that \(\inf_{v \in \mathcal{H}} E(v) = \sigma^2 + \|(I-P)\mu\|_2^2 \), then the excess risk can be rewritten as

\[
R(w) = \frac{1}{n} \| Kw - \mu \|_2^2 - \frac{1}{n} \| (I-P)\mu \|_2^2 \\
= \frac{1}{n} \| PKw - \mu \|_2^2 + \frac{1}{n} \| (I-P)(Kw - \mu) \|_2^2 \\
- \frac{1}{n} \| (I-P)\mu \|_2^2 = \frac{1}{n} \| PKw - \mu \|_2^2.
\]

Expected Excess Risk. Now we focus on the expectation of \(R \) with respect to the dataset for linear functions that depend linearly on the observed labels \(y \). Indeed we have

\[
\begin{align*}
 \mathbb{E} R(w) &= \frac{1}{n} \mathbb{E} \| PKC y - P \mu \|_2^2 \\
 &= \frac{1}{n} \mathbb{E} \| P(Q(y - \mu) + P(I-Q)\mu \|_2^2 \\
 &= \frac{1}{n} \mathbb{E} \text{Tr}(Q(y - \mu)(y - \mu)^\top) + \frac{1}{n} \| P(I-Q)\mu \|_2^2 \\
 - \frac{2}{n} \mathbb{E}(y - \mu)^\top QP(I-Q)\mu \\
 &= \frac{1}{n} \text{Tr}(QE(y - \mu)(y - \mu)^\top) + \frac{1}{n} \| P(I-Q)\mu \|_2^2 \\
 &= \frac{\sigma^2}{n} \text{Tr}(Q^2) + \frac{1}{n} \| P(I-Q)\mu \|_2^2.
\end{align*}
\]

Here the third term is due to \(\| a - b \|_2 = \| a \|_2 + \| b \|_2 - 2a^\top b \) and that \(\| a \|_2^2 = \text{Tr}(aa^\top) \), for any vector \(a, b \). The last term in the third step vanishes due to the fact that \(y - \mu \) is a zero mean random variable. Moreover, note that \((\mathbb{E}(y - \mu)(y - \mu)^\top)_{ij} = \mathbb{E}(y_i - \mu_i)(y_j - \mu_j) = \sigma^2 \delta_{ij} \), therefore \(\mathbb{E}(y - \mu)(y - \mu)^\top = \sigma^2 I \).

B Proofs

Proof of Theorem 1. By applying Prop. 3 to the estimator of Equation 3 we have \(Q_{obs} = K^\top K = P \). Now note that \(P^2 = P \) by definition, \(\text{Tr}(P) = d^* \) and that \(P(I-P) = 0 \), therefore

\[
\mathbb{E} R(f_{obs}) = \frac{\sigma^2}{n} \text{Tr}(P^2) + \frac{1}{n} \| P(I-P)\mu \|_2 = \frac{\sigma^2 d^*}{n}.
\]

\]
Proof of Theorem 2. Let $K = UΣU^\top$ be the eigen-decomposition of K with U an orthonormal matrix and $Σ$ a diagonal matrix with $σ_1 ≥ · · · ≥ σ_n ≥ 0$. Let $Q_λ = (K + λnI)^{-1}K$, $β = U^\top P_μ$ with $μ = E_y$ as in Eq. (5), $P = K^\dagger K$ the projection operator on the range of K. By applying Prop. 3 to the estimator of Eq. (3), considering that $P(I - Q_λ) = (I - Q_λ)P$, that $I - Q_λ = λn(K + λnI)^{-1}$ and that $σ_i = β_i = 0$ for $i > d^*$, we have

$$
ER(\tilde{f}_λ) = \frac{σ^2}{n} \text{Tr}(\bar{Q}_λ^2) + \frac{1}{n} \|P(I - Q_λ)μ\|^2
$$

$$
= \frac{σ^2}{n} \text{Tr}(\bar{Q}_λ^2) + \frac{1}{n} \|P(I - Q_λ)Pμ\|^2
$$

$$
= \frac{σ^2}{n} \text{Tr}(Σ^2(Σ + λI)^{-2}) + \frac{λ}{n} \|Pμ\|^2
$$

$$
= \frac{1}{n} \sum_{i=1}^{d^*} \frac{σ_i^2 + λ^2n^2β_i^2}{(σ_i + λn)^2} = \frac{1}{n} \sum_{i=1}^{d^*} \frac{σ_i^2 + β_i^2}{(σ_i + λ)^2},
$$

with $σ_i = σ_i/n$ for $1 ≤ i ≤ d^*$. Note that, by defining $τ_i = σ_i^{-1/2}β_i$ for $1 ≤ i ≤ d^*$, we have

$$
\|f_\text{opt}\|_H^2 = \sum_{i,j=1}^{n} \langle α_{i,\text{opt}}, k(x_i, ·), α_{j,\text{opt}}, k(x_j, ·) \rangle_H
$$

$$
= α_{i,\text{opt}}^\top Kα_{\text{opt}} = μ^\top KK^\dagger μ = μ^\top PK^\dagger Pμ
$$

$$
= μ^\top PUSU^\top Pμ = β^\top Σβ = \sum_{i=1}^{d^*} τ_i^2.
$$

Now we study $ER(\tilde{f}_λ^\ast)$. When $λ^\ast = σ^2/T$ with $T = \|f_\text{opt}\|_H^2$. We have

$$
ER(\tilde{f}_λ^\ast) = \frac{σ^2}{n} \sum_{i=1}^{d^*} \frac{σ_i + λ^\ast}{σ_i + λ^\ast n} \bar{σ}_i + \frac{σ^2}{n} \bar{λ}^\ast
$$

$$
= \frac{σ^2}{n} \sum_{i=1}^{d^*} \frac{σ_i}{σ_i + λ^\ast} \left(1 - \frac{1 - σ_i^2}{T}\right)
$$

$$
≤ \frac{σ^2}{n} \sum_{i=1}^{d^*} \frac{σ_i}{σ_i + λ^\ast n} \sum_{i=1}^{d^*} \frac{σ_i}{σ_i + λ^\ast n}
$$

$$
= \frac{σ^2}{n} \text{Tr}(Σ(Σ + λ^\ast nI)^{-1}) = \frac{σ^2}{n} d^\text{eff}(λ^\ast).
$$

Proof of Theorem 5. In the following we assume without loss of generality that the selected points $\tilde{x}_1, \ldots, \tilde{x}_m$ are the first m points in the dataset. In Prop. 3 we have seen that the behavior of an algorithm in a fixed design setting is completely described by a matrix $Q = KC$ when the coefficients of the estimator of the algorithm are of the form C_y. Now we find the associated Q for NYTRO, that is $Q_{m,γ,t}$. By solving the recursion of Equation (19), we have for any $i ∈ \{1, \ldots, n\}$

$$
\hat{f}_{m,γ,t}(x_i) = k_i^\top C_y, \text{ with } C = \left(\begin{array}{c} C_{m,γ,t} \\ 0_{(n-m)×n} \end{array}\right),
$$

$$
C_{m,γ,t} = γ \sum_{p=0}^{t-1} R(I - γA^\top A)^p A^\top,
$$

with $A = K_{nm}R$ and $k_i = (k(x_i,x_1),\ldots,k(x_i,x_n))$. Therefore, we have

$$
Q_{m,γ,t} = KC = γ \sum_{p=0}^{t-1} K_{nm}R(I - γA^\top A)^p A^\top
$$

$$
= γ \sum_{p=0}^{t-1} A(I - γA^\top A)^p A^\top.
$$

Rewriting of $Q_{m,γ,t}$. Now we rewrite $Q_{m,γ,t}$ in a suitable form to bound the bias and variance error. First of all we apply Prop. 1 to $Q_{m,γ,t}$. Let $f(σ) = γ \sum_{i=0}^{t-1} (1 - γ/nσ)^p$ with $σ ∈ [0,n/γ]$, we have that

$$
Q_{m,γ,t} = Af(A^\top A)A^\top = f(AA^\top)AA^\top = g(AA^\top),
$$

where $g(σ) = f(σ)σ$. Now note that

$$
g(σ) = γσ \sum_{i=0}^{t-1} (1 - γ/nσ)^p = 1 - (1 - γ/nσ)^t,
$$

therefore we have

$$
Q_{m,γ,t} = g(AA^\top) = I - (I - γ/nAA^\top)^t.
$$

Bound of the bias. Now we are going to bound the
bias for NYTRO. Let $\lambda = 1/(\gamma t)$ and $Z = AA^T$, then

$$B(\hat{Q}_{m, \gamma, t}, t) = \frac{1}{n} \| P(I - \hat{Q}_{m, \gamma, t}) \mu \|^2$$

$$= \frac{1}{n} \| P(I - \frac{\gamma}{n} Z) \mu \|^2 = \frac{1}{n} \| (I - \frac{\gamma}{n} Z)^t P \mu \|^2$$

$$= \frac{1}{n} \| (I - \frac{\gamma}{n} Z)^t (Z + \lambda n I)(Z + \lambda n I)^{-1} P \mu \|^2$$

$$\leq \frac{1}{n} q(A, \lambda n) \| (Z + \lambda n I)^{-1} P \mu \|^2$$

and $q(A, \lambda n) = \| (I - \gamma/n A A^T)^t (A A^T + \lambda n I) \|^2$. Note that the third step is due to the fact that ran $Z \subseteq \text{ran } K = \text{ran } P$ and Z is symmetric, therefore $Ph(Z) = h(Z)P$ as a consequence of Prop. 1 for any spectral function h. Let $\sigma_1, \ldots, \sigma_n$ be the singular values of Z, we have

$$q(A, \gamma t) = \sup_{i \in \{1, \ldots, n\}} (1 - \gamma/n \sigma_i)^t \sigma_i + n \frac{\gamma t}{\sigma_i}$$

$$\leq \sup_{0 \leq \sigma \leq n \gamma} (1 - \gamma/n \sigma)^t \left(\sigma + \frac{n \gamma t}{\sigma} \right) \leq \frac{n^2}{\gamma^2 t^2}.$$

Therefore we have

$$B(\hat{Q}_{m, \gamma, t}) \leq \lambda^2 n \| (Z + \lambda n I)^{-1} P \mu \|^2.$$

Bound for the Variance. Let $t \geq 2$, $\lambda = \frac{1}{\sqrt{t}}$, $r(\sigma) = (1 - \gamma/n \sigma)^t$ and

$$v(\sigma) = \frac{\sigma}{(t - 1) + \sigma(1 + r(\sigma))} - \lambda n(1 - r(\sigma)).$$

We have $v(\sigma) \geq 0$ for $0 \leq \sigma \leq n / \gamma$. Indeed for $\lambda n < \sigma \leq n / \gamma$ we have $v(\sigma) \geq 0$ since $0 \leq r(\sigma) \leq 1$, while for $0 \leq \sigma \leq \lambda n$ we have

$$\lambda n(1 - r(\sigma)) = \lambda n \left(1 - e^{-t \log \frac{1}{1 - \frac{\sigma}{\gamma}}} \right) \leq \frac{n \gamma}{\gamma t} \left(1 - \frac{1}{1 - \frac{\sigma}{\gamma}} \right) = \sigma \frac{\gamma}{t - 1} + \sigma$$

$$\leq \frac{\sigma}{t - 1} + \sigma(1 + r(\sigma)),$$

therefore $v(\sigma) \geq 0$. Now let $0 \leq \sigma \leq n / \gamma$. Since $v(\sigma) \geq 0$, the function $w(\sigma) = v(\sigma) / (\sigma + \lambda n)$ is $w(\sigma) \geq 0$. Now we rewrite w a bit. First of all, note that

$$w(\sigma) = \frac{(2t - 1)(t - 1)}{t} w_1(\sigma) - g(\sigma),$$

with $w_1(\sigma) = \sigma / (\sigma + \lambda n)$. The fact that $w(\sigma) \geq 0$ and that $g(\sigma) \geq 0$ implies that

$$\left(\frac{2t - 1}{t - 1} \right)^2 w_1(\sigma) \geq g(\sigma)^2. \quad \forall 0 \leq \sigma \leq \frac{n}{\gamma}, t \geq 2.$$

Now we focus on $\text{Tr}(\hat{Q}_{m, \gamma, t}^2)$. Let $Z = U \Sigma U^T$ be its eigenvalue decomposition with U an orthonormal matrix and $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \geq \cdots \geq \sigma_n \geq 0$.

$$\text{Tr}(\hat{Q}_{m, \gamma, t}^2) = \text{Tr}(g^2(Z)) = \text{Tr}(U g^2(\Sigma) U^T) = \text{Tr}(g^2(\Sigma))$$

$$= \sum_{i=1}^n q(\sigma_i)^2 \leq c_t \sum_{i=1}^n w_1(\sigma_i)^2 = c_t \text{Tr}(w_1(\Sigma)^2)$$

$$= c_t \text{Tr}(U w_1(\Sigma)^2 U^T) = c_t \text{Tr}(w_1(Z)^2)$$

$$= c_t \text{Tr}(Z^2(Z + \lambda n I)^{-2})$$

where we applied many times Prop. 1 and the fact that the trace is invariant to unitary transforms. Thus,

$$V(\hat{Q}_{m, \gamma, t}, n) \leq \frac{\sigma^2}{n} \left(\frac{2t - 1}{t - 1} \right)^2 \text{Tr} \left(Z(Z + n/(\gamma t I)^{-1}) \right)^2.$$

The expected excess risk for Nyström KRLS

The Nyström KRLS estimator with linear kernel is a function of the form

$$\tilde{f}(x_i) = k_i^T C y, \quad \text{with } C = \left(\tilde{C}_{m, \lambda} \right)_{0 \leq \lambda \leq n_m \times n},$$

$$\tilde{C}_{m, \lambda} = R(A^T A + \lambda n I)^{-1} A^T,$$

with $k_i = (k(x_i, x_1), \ldots, k(x_i, x_n))$ for any $i \in \{1, \ldots, n\}$. Now, by applying Prop. 1 we have

$$\hat{Q}_{m, \lambda} = K C = K_{nm} \tilde{C}_{m, \lambda},$$

$$= A(A^T A + \lambda n I)^{-1} A = A A^T (A A^T + \lambda I)^{-1}$$

$$= Z(Z + \lambda n I)^{-1}$$

Thus we have

$$V(\hat{Q}_{m, \lambda}) = \frac{\sigma^2}{n} \text{Tr}(\hat{Q}_{m, \lambda})^2 = \frac{\sigma^2}{n} \text{Tr} \left(Z(Z + \lambda n I)^{-1} \right)^2$$

$$\leq \frac{1}{n} \| P(I - Z(Z + \lambda n I)^{-1}) \mu \|^2$$

$$= \frac{1}{n} \| P(Z + \lambda n I)^{-1} \mu \|^2$$

$$= \frac{\lambda^2 n}{Z(Z + \lambda n I)^{-1} P \mu \|^2},$$

where the last step is due to the same reasoning as in the bound for the bias of NYTRO. Finally, applying twice Prop. 3 and calling $c_t = \left(\frac{2t - 1}{t - 1} \right)^2$, we have that

$$R(f_{m, \gamma, t}, t) = V(\hat{Q}_{m, \gamma, t}, n) + B(\hat{Q}_{m, \gamma, t})$$

$$\leq c_t V(\hat{Q}_{m, \gamma, t}, n) + B(\hat{Q}_{m, \gamma, t})$$

$$= c_t \left(V(\hat{Q}_{m, \gamma, t}, n) + B(\hat{Q}_{m, \gamma, t}) \right)$$

$$= c_t R(f_{m, \gamma, t}),$$

for $\| Z \| \leq n / \gamma$ and $t \geq 2$. Now the choice $\gamma = 1/((\max_{1 \leq i \leq n} k(x_i, x_i))$ is valid, indeed

$$\gamma \| Z \|^2 = \gamma \| K_{nm} R R^T K_{nm}^\dagger \| = \gamma \| K_{nm} K_{nm}^\dagger K_{nm}^\top \|$$

$$\leq \gamma \| K \| \leq \gamma n \max_{1 \leq i \leq n} (K)_{ii} \gamma n \max_{1 \leq i \leq n} k(x_i, x_i),$$
where $\|K_{nm}K_{mm}^tK_{nm}\| \leq \|K\|$ can be found in Bach (2013); Alaoui and Mahoney (2014).

Proof of Corollary 1. Theorem 5 combined with Theorem 1 of Bach (2013).