NYTRO: When Subsampling Meets Early Stopping

A Some useful results

Proposition 1 (Spectral functions). Let f,g
[0,T] — R be continuous functions and A € R™*™
symmetric with ||A|| < T, forT >0, n > 1. Let A =
USUT be its eigenvalue decomposition with U € R™<™
an orthonormal matriz, U'U = UUT =1 and ¥ a
diagonal matriz, then

fA)=UfE)UT,
f(A) +g(A) = (f+9)(4), [f(A)g(A)=(fg9)(A)

where f(X) = diag(f(o1),...,f(on)). Moreover, let
B € R™™ with n,m > 1, then

f(B"B)BT =BT f(BB™).

Proposition 2. With the notation of Section 2.3 let
R € R™*P sych that K!, = RR" and A = K,,,R.

mm
Then, for any A\,m > 0, Gy, x 45 characterized by Equa-

tion 18.

Proof. By Equation 7.7 of Rifkin et al. we have that

=RR'K, (K,nRR"K, + )"y
= RAT(AAT + \nl)™y
=R(ATA+ A nI)"tATy,

where the last step is due to Prop. 1. O

Proposition 3. Let k : X x X — R be a kernel
function on X, x1,...,z, be the given points and
y = (Y1,-.-,Yn) be the labels of the dataset. For
any function of the form f(z) =Y 1 wik(z,x;) with
w = Cy for any x € X, with C € R™"*" independent
from y, the following holds

o’ 2 1 2
B R(f) = T T(@) + =P - Qull,

Variance V(Q) Bias B(Q)

with Q@ = KC € R"*"™ K the kernel matriz, n = Ey €
R™ and P = KTK the projection operator on the range
of K.

Proof. A function f € H is of the form f(z) =
S aik(x,x;) for any x € X. If we compute it
on a point of the dataset x;, with i € {1,...,n} we
have f(z;) = Y7, ajk(xi, x5) = kjw with w = Cy
and k; = (k(z;,21),...,k(x;,z,)). Note that K =
(K1, . kn).

Rewriting of E, R for fixed design. We have

Elw) = % Z]E(k?w —y) = % Z(E (k) w — i)’
-2 (k:w - ,ui) (yi — p) + (yi — Mz‘)2)

1 o2 o2 1
==Y (klw— )+ — = — + —[|[Kw — pl?,
n “ n n n

Now note that PK = K and (I — P)K = 0, that
lgll> = |PalP> + [[(Z — P)q|* for any g € H and that
inf,ex E(v) = 02 + ||(I — P)ul|?, then the excess risk
can be rewritten as

1 1
Rw) = ~ | Kw = * = ~ (I = Py
1 1
= Z||P(Kw - )]* + ~ (T - P)(Kw - )|

1 1
— Z(I = P)u|? = =||P(Kw — u)||2.

Expected Excess Risk. Now we focus on the ex-
pectation of R with respect to the dataset for linear
functions that depend linearly on the observed labels
y. Indeed we have

1
ER(w) = - B| P(KCy - Pp)|?

_ %EHPQ(@/ — )+ P(I - Q)
— %E Tr(Q(y — p)(y — 1) " Q) + %IIP(I - Q)ul?

- %E(y - )" QPI-Q)u

= L T(QE(y — i)y~ 1) Q) + I~ Q)
- % Tr(Q?) + %IIP(I —Q)ul*.

Here the third step is due to ||a — b||? = ||a]|*> + ||b]|*> —
2aTb and that ||al|? = Tr(aa'), for any vector a,b.
The last term in the third step vanishes due to the fact
that y — p is a zero mean random variable. Moreover,
note that (E(y — u)(y —p) ")ij = E(yi — i) (y; — 1) =
0267, therefore E(y — p)(y — p) " = o>1. O

B Proofs

Proof of Theorem 1. By applying Prop. 3 to the esti-
mator of Equation 3 we have Qs = KK = P. Now
note that P? = P by definition, Tr(P) = d* and that
P(I — P) =0, therefore

o2 1 o2d*
ER(for) = 2 Te(P?) + — | P(T - Pjul| = .
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Proof of Theorem 2. Let K = UXUT be the eigen-
decomposition of K with U an orthonormal matrix
and ¥ a diagonal matrix with oy > --- > 0, > 0. Let
Qr = (K+ M) 'K, B = U"Pu with p = Ey as
in Eq. (5), P = KTK the projection operator on the
range of K. By applying Prop. 3 to the estimator of
Eq. (3), considering that P(I —Qy) = (I —Q»)P, that
I—Qx = (K + MI)~! and that o; = 3; = 0 for
i > d*, we have

o? ~ 1 ~

— Tr(QX) + ~ | P(I = Q)
n n

2

T T(Q}) +

ER(f))

T~ Q) Pul?

2
T T(SAS+AD ) + %n(z +AD7' B

2 + )\2,”2[32

B 1%:02@ s
n (0; +Mn)2

i=1

1 i 0252 + N2 2
n (0i+A)?
with 6; = o;/n for 1 < i < d*. Note that, by defining
T = 0;1/2& for 1 <i < d*, we have

n

||fopt||’2H = Z (topt,ik(@i, -), Qopt, ik (25, )y

]
= oeoptKozopt MTKTKKTM = uTPKTP,u
2
=W PUSIUTPp=pT8ip =372
i=1

Now we study ER(fy-). When \* = ¢2/T with T =
[l fopt[I7,- We have

2 4" 27}
- o o; 0O;+o
02 o2 Ti2
:72 +F) - F0-%)
g —|—>\* ai+%2
_02§: 7 1—712/T
T n — Gy + A" 1+7T6;/0?
o2 d o2 d” o
<— [ v
- Zal—l—)\* n;@—i—)\*n

0’2 0'2
= —Tr(2(Z + Xnl)™h) = —deg(\F).
n n

O

Proof of Theorem 3. It is an application of Theorem 5
when we select the whole training set (m = n) for the
Nystrom approximation. In that case the expected
excess risks of Nystrom KRLS and NYTRO are just
equal to the ones of KRLS and Early Stopping, indeed
when m = n we have that K,,,, = K,,m, = K. If we

)

call Qy and Qn » the @Q-matrices for the two algorithms
(see Prop. 3) and R such that RR" = for any
A > 0 we have

mm’

Q= (K +MI) 'K = (KK'K + MnI)'KK'K
=(KRR'K + nI)'KRR"K
= KR(R"K?R+ M) 'RTK = Q..

O

Proof of Theorem 5. In the following we assume with-
out loss of generality that the selected points
T1,...,Tm are the first m points in the dataset. In
Prop. 3 we have seen that the behavior of an algo-
rithm in a fixed design setting is completely described
by a matrix ) = KC when the coefficients of the es-
timator of the algorithm are of the form Cy. Now we
find the associated @ for NYTRO, that is Qmmt. By
solving the recursion of Equation (19), we have for any
ie{l,...,n}

fmﬁ () = k' Cy, with C = ( Crm oyt >’
O(n m)Xxn

t—1
Ot =7 ) R =4 ATAPAT,
p=0
with A = K,,,, R and k; = (k(x;,z1),. .., k(z;, x,)).
Therefore, we have
. t—1
Qmoit=KC =7 KynR(I —yATAPAT
p=0
t—1
=7 A(I—yATAPAT.
p=0

Rewriting of QAmmt. Now we rewrite Qmmt in a
suitable form to bound the bias and variance error.
First of all we apply Prop. 1 to Qmﬁt Let f(o) =
S o(1 = y/no)P with o € [0,1/4], we have that

Qi =Af(ATA)AT = F(AAT)AAT = g(AAT),
where g(0) = f(o)o. Now note that
t—1
g(o) =70 (1—=7/no)? =1—(1—~/no),
=0

therefore we have

Qi =g(AAT) =T — (I —~/nAAT).

Bound of the bias. Now we are going to bound the
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bias for NYTRO. Let A = 1/(yt) and Z = AAT, then

R 1 .
B(Qm,'y,t) = H”P(I - Qm7~/7t)u||2
1 Yot g2 L
SIP = Lzyp)p = 2|
1
=~ (I = 12)"(Z + AnD)(Z + AnD)~ Pyl

Y ot 2
I——=Z)P
(1= 22y P

1
< —q(A, M)[|(Z + And) =t Pul?

and q(A,\n) = |[[(I —~/nAAT)Y(AAT + Anl)|?.
Note that the third step is due to the fact that
ranZ C ran K = ran P and Z is symmetric, there-
fore Ph(Z) = h(Z)P as a consequence of Prop. 1 for
any spectral function h. Let o1, ..., 0, be the singular
values of Z, we have

2
n n
q A,) sup (1 —~/no; 2t<ai+ )
( gl ie{l,...,n}( /mei) 7t

(1 —~/no)? (a+ ”)2 <

S sup ’yt - 72t2

0<o<n/vy
Therefore we have

B(Qm.t) < Nn[(Z + An) ™ Py,

Bound for the Variance. Let t > 2, A = %, r(o) =
(1 —~/no)t and

vio)=c/(t—1)+o(l+r(c)) — In(l —r(0)).
We have v(o) > 0 for 0 < 0 < n/v. Indeed for An <

o < n/y we have v(o) > 0 since 0 < r(o) < 1, while
for 0 < o < An we have

—tlog —L1
an(l—r(o)) =An (l—e ' gl‘%> < ntlog
v

Tt C1-2
n vy/no o o
— < —
_Wl—v/na_l—% t—1+0
o
§m+0(1+r(0))7

therefore v(c) > 0. Now let 0 < o < n/v. Since
v(o) > 0, the function w(o) = v(o)/(o+An) is w(o) >
0. Now we rewrite w a bit. First of all, note that

w(o) = (2t = 1)/(t = Dwi (o) — g(0),

with wy(0) = 0/(0+ An). The fact that w(o) > 0 and
that g(o) > 0 implies that

2

,t

v

(32 it 2 o, W<

n
t—1 Y

Now we focus on Tr(@%t). Let Z = UXUT be its
eigenvalue decomposition with U an orthonormal ma-
trix and ¥ = diag(oy,...,0,) with oy > -+- > 0, > 0,

Te(Qh ) = Tr(g*(2) = TH(UF(E)UT) = Tr(g*(2))
= z:g(ai)2 < Z wy(04)? = ¢; Tr(wy (X)?)
i=1 i=1
= ¢, Tr(Uwy (2)2U ") = ¢; Tr(wi(2)?)
= ¢, Te(Z%(Z + \nl)~?)
where we applied many times Prop. 1 and the fact that
the trace is invariant to unitary transforms. Thus,
2t —1
t—1

o2

V(Qm,'y,hn) < ; (

)QTr (Z (Z+n/('yt)l)_1)2

The expected excess risk for Nystrom KRLS
The Nystrom KRLS estimator with linear kernel is a
function of the form

Flay =k Cy wimo =, O ).
O(n—m)><n
Conx = R(ATA+ MI)TAT,
with &k = (k(xs,z1),...,k(x;,x,)) for any ¢ €
{1,...,n}. Now, by applying Prop. 1 we have
Qm,)\ =KC = Knmé’m,)\
= A(ATA4+ D) TPA = AAT(AAT 4 aD)7?
=Z(Z+MI)™ !

Thus we have
2

~ g ~ 2 02 —1 2
V(Qna) = % Tr(Qa)? = 2= Tr (Z (Z + Anl) )
~ 1 _
B(@ma) = P = Z(Z + XnD) " )ul?
— N2n||P(Z + M)~
— \2n||(Z + AnI) " PP,
where the last step is due to the same reasoning as in
the bound for the bias of NYTRO. Finally, by applying

2
twice Prop. 3 and calling ¢; = (%) , we have that

R(fm,'y,t) = V(Qm,’y,ta TL) + B(Qm,*y,t)

< &V(Qu2m) + B(@Qp, 1)

<¢ (V(Qm,ﬁyn) + B(Qm,ﬁ))

= i R(frn,2)

for |Z|| < n/y and t > 2. Now the choice v =
1/(maxi<i<n k(x;, ;) is valid, indeed

'7||Z||2 = ’Y”KnmRRTKJm” = V||KanLmKJ H

m

< < U oy
< YIKI < an max (K = yn max k(zi, 2),
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where | K K, K] || < ||K| can be found in Bach
(2013); Alaoui and Mahoney (2014). O

Proof of Corollary 1. Theorem 5 combined with The-
orem 1 of Bach (2013). O



