A Some useful results

Proposition 1 (Spectral functions). Let f, g : $[0, T] \rightarrow \mathbb{R}$ be continuous functions and $A \in \mathbb{R}^{n \times n}$ symmetric with $\|A\| \leq T$, for $T>0, n \geq 1$. Let $A=$ $U \Sigma U^{\top}$ be its eigenvalue decomposition with $U \in \mathbb{R}^{n \times n}$ an orthonormal matrix, $U^{\top} U=U U^{\top}=I$ and Σa diagonal matrix, then

$$
\begin{aligned}
f(A) & =U f(\Sigma) U^{\top}, \\
f(A)+g(A) & =(f+g)(A), \quad f(A) g(A)=(f g)(A)
\end{aligned}
$$

where $f(\Sigma)=\operatorname{diag}\left(f\left(\sigma_{1}\right), \ldots, f\left(\sigma_{n}\right)\right)$. Moreover, let $B \in \mathbb{R}^{n \times m}$ with $n, m \geq 1$, then

$$
f\left(B^{\top} B\right) B^{\top}=B^{\top} f\left(B B^{\top}\right)
$$

Proposition 2. With the notation of Section 2.3 let $R \in \mathbb{R}^{m \times p}$ such that $K_{\tilde{\sim}}^{\dagger} \tilde{\sim}_{m}=R R^{\top}$ and $A=K_{n m} R$. Then, for any $\lambda, m>0, \tilde{\alpha}_{m, \lambda}$ is characterized by Equation 18.

Proof. By Equation 7.7 of Rifkin et al. we have that

$$
\begin{aligned}
\tilde{\alpha}_{m, \lambda} & =K_{m m}^{\dagger} K_{n m}^{\top}\left(K_{n m} K_{m m}^{\dagger} K_{n m}^{\top}+\lambda n I\right)^{-1} y \\
& =R R^{\top} K_{n m}^{\top}\left(K_{n m} R R^{\top} K_{n m}^{\top}+\lambda n I\right)^{-1} y \\
& =R A^{\top}\left(A A^{\top}+\lambda n I\right)^{-1} y \\
& =R\left(A^{\top} A+\lambda n I\right)^{-1} A^{\top} y
\end{aligned}
$$

where the last step is due to Prop. 1.
Proposition 3. Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a kernel function on $\mathcal{X}, x_{1}, \ldots, x_{n}$ be the given points and $y=\left(y_{1}, \ldots, y_{n}\right)$ be the labels of the dataset. For any function of the form $f(x)=\sum_{i=1}^{n} w_{i} k\left(x, x_{i}\right)$ with $w=C y$ for any $x \in \mathcal{X}$, with $C \in \mathbb{R}^{n \times n}$ independent from y, the following holds

$$
\mathbb{E}_{y} R(f)=\underbrace{\frac{\sigma^{2}}{n} \operatorname{Tr}\left(Q^{2}\right)}_{\text {Variance } V(Q)}+\underbrace{\frac{1}{n}\|P(I-Q) \mu\|^{2}}_{\text {Bias } B(Q)},
$$

with $Q=K C \in \mathbb{R}^{n \times n}$, K the kernel matrix, $\mu=\mathbb{E} y \in$ \mathbb{R}^{n} and $P=K^{\dagger} K$ the projection operator on the range of K.

Proof. A function $f \in \mathcal{H}$ is of the form $f(x)=$ $\sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right)$ for any $x \in \mathcal{X}$. If we compute it on a point of the dataset x_{i}, with $i \in\{1, \ldots, n\}$ we have $f\left(x_{i}\right)=\sum_{j=1}^{n} \alpha_{j} k\left(x_{i}, x_{j}\right)=k_{i}^{\top} w$ with $w=C y$ and $k_{i}=\left(k\left(x_{i}, x_{1}\right), \ldots, k\left(x_{i}, x_{n}\right)\right)$. Note that $K=$ $\left(k_{1}, \ldots, k_{n}\right)$.

Rewriting of \mathbf{E}, \mathbf{R} for fixed design. We have

$$
\begin{aligned}
\mathcal{E}(w) & =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(k_{i}^{\top} w-y_{i}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbb{E}\left(k_{i}^{\top} w-\mu_{i}\right)^{2}\right. \\
& \left.-2\left(k_{i}^{\top} w-\mu_{i}\right)\left(y_{i}-\mu_{i}\right)+\left(y_{i}-\mu_{i}\right)^{2}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(k_{i}^{\top} w-\mu_{i}\right)^{2}+\frac{\sigma^{2}}{n}=\frac{\sigma^{2}}{n}+\frac{1}{n}\|K w-\mu\|^{2}
\end{aligned}
$$

Now note that $P K=K$ and $(I-P) K=0$, that $\|q\|^{2}=\|P q\|^{2}+\|(I-P) q\|^{2}$ for any $q \in \mathcal{H}$ and that $\inf _{v \in \mathcal{X}} \mathcal{E}(v)=\sigma^{2}+\|(I-P) \mu\|^{2}$, then the excess risk can be rewritten as

$$
\begin{aligned}
R(w)= & \frac{1}{n}\|K w-\mu\|^{2}-\frac{1}{n}\|(I-P) \mu\|^{2} \\
= & \frac{1}{n}\|P(K w-\mu)\|^{2}+\frac{1}{n}\|(I-P)(K w-\mu)\|^{2} \\
& -\frac{1}{n}\|(I-P) \mu\|^{2}=\frac{1}{n}\|P(K w-\mu)\|^{2}
\end{aligned}
$$

Expected Excess Risk. Now we focus on the expectation of R with respect to the dataset for linear functions that depend linearly on the observed labels y. Indeed we have

$$
\begin{aligned}
\mathbb{E} R(w)= & \frac{1}{n} \mathbb{E}\|P(K C y-P \mu)\|^{2} \\
= & \frac{1}{n} \mathbb{E}\|P Q(y-\mu)+P(I-Q) \mu\|^{2} \\
= & \frac{1}{n} \mathbb{E} \operatorname{Tr}\left(Q(y-\mu)(y-\mu)^{\top} Q\right)+\frac{1}{n}\|P(I-Q) \mu\|^{2} \\
& -\frac{2}{n} \mathbb{E}(y-\mu)^{\top} Q P(I-Q) \mu \\
= & \frac{1}{n} \operatorname{Tr}\left(Q \mathbb{E}(y-\mu)(y-\mu)^{\top} Q\right)+\frac{1}{n}\|P(I-Q) \mu\|^{2} \\
= & \frac{\sigma^{2}}{n} \operatorname{Tr}\left(Q^{2}\right)+\frac{1}{n}\|P(I-Q) \mu\|^{2} .
\end{aligned}
$$

Here the third step is due to $\|a-b\|^{2}=\|a\|^{2}+\|b\|^{2}-$ $2 a^{\top} b$ and that $\|a\|^{2}=\operatorname{Tr}\left(a a^{\top}\right)$, for any vector a, b. The last term in the third step vanishes due to the fact that $y-\mu$ is a zero mean random variable. Moreover, note that $\left(\mathbb{E}(y-\mu)(y-\mu)^{\top}\right)_{i j}=\mathbb{E}\left(y_{i}-\mu_{i}\right)\left(y_{j}-\mu_{j}\right)=$ $\sigma^{2} \delta_{i j}$, therefore $\mathbb{E}(y-\mu)(y-\mu)^{\top}=\sigma^{2} I$.

B Proofs

Proof of Theorem 1. By applying Prop. 3 to the estimator of Equation 3 we have $Q_{\text {ols }}=K^{\dagger} K=P$. Now note that $P^{2}=P$ by definition, $\operatorname{Tr}(P)=d^{*}$ and that $P(I-P)=0$, therefore

$$
\mathbb{E} R\left(f_{\text {ols }}\right)=\frac{\sigma^{2}}{n} \operatorname{Tr}\left(P^{2}\right)+\frac{1}{n}\|P(I-P) \mu\|=\frac{\sigma^{2} d^{*}}{n}
$$

Proof of Theorem 2. Let $K=U \Sigma U^{\top}$ be the eigendecomposition of K with U an orthonormal matrix and Σ a diagonal matrix with $\sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0$. Let $\bar{Q}_{\lambda}=(K+\lambda n I)^{-1} K, \beta=U^{\top} P \mu$ with $\mu=\mathbb{E} y$ as in Eq. (5), $P=K^{\dagger} K$ the projection operator on the range of K. By applying Prop. 3 to the estimator of Eq. (3), considering that $P\left(I-\bar{Q}_{\lambda}\right)=\left(I-\bar{Q}_{\lambda}\right) P$, that $I-\bar{Q}_{\lambda}=\lambda n(K+\lambda n I)^{-1}$ and that $\sigma_{i}=\beta_{i}=0$ for $i>d^{*}$, we have

$$
\begin{aligned}
\mathbb{E} R\left(\bar{f}_{\lambda}\right) & =\frac{\sigma^{2}}{n} \operatorname{Tr}\left(\bar{Q}_{\lambda}^{2}\right)+\frac{1}{n}\left\|P\left(I-\bar{Q}_{\lambda}\right) \mu\right\|^{2} \\
& =\frac{\sigma^{2}}{n} \operatorname{Tr}\left(\bar{Q}_{\lambda}^{2}\right)+\frac{1}{n}\left\|\left(I-\bar{Q}_{\lambda}\right) P \mu\right\|^{2} \\
& =\frac{\sigma^{2}}{n} \operatorname{Tr}\left(\Sigma^{2}(\Sigma+\lambda I)^{-2}\right)+\frac{\lambda}{n}\left\|(\Sigma+\lambda I)^{-1} \beta\right\|^{2} \\
& =\frac{1}{n} \sum_{i=1}^{d^{*}} \frac{\sigma^{2} \sigma_{i}^{2}+\lambda^{2} n^{2} \beta_{i}^{2}}{\left(\sigma_{i}+\lambda n\right)^{2}}=\frac{1}{n} \sum_{i=1}^{d^{*}} \frac{\sigma^{2} \bar{\sigma}_{i}^{2}+\lambda^{2} \beta_{i}^{2}}{\left(\bar{\sigma}_{i}+\lambda\right)^{2}},
\end{aligned}
$$

with $\bar{\sigma}_{i}=\sigma_{i} / n$ for $1 \leq i \leq d^{*}$. Note that, by defining $\tau_{i}=\sigma_{i}^{-1 / 2} \beta_{i}$ for $1 \leq i \leq d^{*}$, we have

$$
\begin{aligned}
\left\|f_{\mathrm{opt}}\right\|_{\mathcal{H}}^{2} & =\sum_{i, j=1}^{n}\left\langle\alpha_{\mathrm{opt}, i} k\left(x_{i}, \cdot\right), \alpha_{\mathrm{opt}, j} k\left(x_{j}, \cdot\right)\right\rangle_{\mathcal{H}} \\
& =\alpha_{\mathrm{opt}}^{\top} K \alpha_{\mathrm{opt}}=\mu^{\top} K^{\dagger} K K^{\dagger} \mu=\mu^{\top} P K^{\dagger} P \mu \\
& =\mu^{\top} P U \Sigma^{\dagger} U^{\top} P \mu=\beta^{\top} \Sigma^{\dagger} \beta=\sum_{i=1}^{d^{*}} \tau_{i}^{2} .
\end{aligned}
$$

Now we study $\mathbb{E} R\left(\bar{f}_{\lambda^{*}}\right)$. When $\lambda^{*}=\sigma^{2} / T$ with $T=$ $\left\|f_{\text {opt }}\right\|_{\mathcal{H}}^{2}$. We have

$$
\begin{aligned}
\mathbb{E} R\left(\bar{f}_{\lambda^{*}}\right) & =\frac{\sigma^{2}}{n} \sum_{i=1}^{d^{*}} \frac{\bar{\sigma}_{i}}{\bar{\sigma}_{i}+\lambda^{*}} \frac{\bar{\sigma}_{i}+\sigma^{2} \frac{\tau_{i}^{2}}{T^{2}}}{\bar{\sigma}_{i}+\frac{\sigma^{2}}{T}} \\
& =\frac{\sigma^{2}}{n} \sum_{i=1}^{d^{*}} \frac{\bar{\sigma}_{i}}{\bar{\sigma}_{i}+\lambda^{*}} \frac{\left(\bar{\sigma}_{i}+\frac{\sigma^{2}}{T}\right)-\frac{\sigma^{2}}{T}\left(1-\frac{\tau_{i}^{2}}{T}\right)}{\bar{\sigma}_{i}+\frac{\sigma^{2}}{T}} \\
& =\frac{\sigma^{2}}{n} \sum_{i=1}^{d^{*}} \frac{\bar{\sigma}_{i}}{\bar{\sigma}_{i}+\lambda^{*}}\left(1-\frac{1-\tau_{i}^{2} / T}{1+T \bar{\sigma}_{i} / \sigma^{2}}\right) \\
& \leq \frac{\sigma^{2}}{n} \sum_{i=1}^{d^{*}} \frac{\bar{\sigma}_{i}}{\bar{\sigma}_{i}+\lambda^{*}}=\frac{\sigma^{2}}{n} \sum_{i=1}^{d^{*}} \frac{\sigma_{i}}{\sigma_{i}+\lambda^{*} n} \\
& =\frac{\sigma^{2}}{n} \operatorname{Tr}\left(\Sigma\left(\Sigma+\lambda^{*} n I\right)^{-1}\right)=\frac{\sigma^{2}}{n} d_{\mathrm{eff}}\left(\lambda^{*}\right) .
\end{aligned}
$$

Proof of Theorem 3. It is an application of Theorem 5 when we select the whole training set $(m=n)$ for the Nyström approximation. In that case the expected excess risks of Nyström KRLS and NYTRO are just equal to the ones of KRLS and Early Stopping, indeed when $m=n$ we have that $K_{m m}=K_{n m}=K$. If we
call \bar{Q}_{λ} and $\tilde{Q}_{n, \lambda}$ the Q-matrices for the two algorithms (see Prop. 3) and R such that $R R^{\top}=K_{m m}^{\dagger}$, for any $\lambda>0$ we have

$$
\begin{aligned}
\bar{Q}_{\lambda} & =(K+\lambda n I)^{-1} K=\left(K K^{\dagger} K+\lambda n I\right)^{-1} K K^{\dagger} K \\
& =\left(K R R^{\top} K+\lambda n I\right)^{-1} K R R^{\top} K \\
& =K R\left(R^{\top} K^{2} R+\lambda n I\right)^{-1} R^{\top} K=\tilde{Q}_{n, \lambda}
\end{aligned}
$$

Proof of Theorem 5. In the following we assume without loss of generality that the selected points $\tilde{x}_{1}, \ldots, \tilde{x}_{m}$ are the first m points in the dataset. In Prop. 3 we have seen that the behavior of an algorithm in a fixed design setting is completely described by a matrix $Q=K C$ when the coefficients of the estimator of the algorithm are of the form $C y$. Now we find the associated Q for NYTRO, that is $\hat{Q}_{m, \gamma, t}$. By solving the recursion of Equation (19), we have for any $i \in\{1, \ldots, n\}$

$$
\begin{aligned}
\hat{f}_{m, \gamma, t}\left(x_{i}\right) & =k_{i}^{\top} C y, \text { with } C=\binom{C_{m, \gamma, t}}{0_{(n-m) \times n}} \\
C_{m, \gamma, t} & =\gamma \sum_{p=0}^{t-1} R\left(I-\gamma A^{\top} A\right)^{p} A^{\top}
\end{aligned}
$$

with $A=K_{n m} R$ and $k_{i}=\left(k\left(x_{i}, x_{1}\right), \ldots, k\left(x_{i}, x_{n}\right)\right)$. Therefore, we have

$$
\begin{aligned}
\hat{Q}_{m, \gamma, t} & =K C=\gamma \sum_{p=0}^{t-1} K_{n m} R\left(I-\gamma A^{\top} A\right)^{p} A^{\top} \\
& =\gamma \sum_{p=0}^{t-1} A\left(I-\gamma A^{\top} A\right)^{p} A^{\top}
\end{aligned}
$$

Rewriting of $\hat{Q}_{m, \gamma, t}$. Now we rewrite $\hat{Q}_{m, \gamma, t}$ in a suitable form to bound the bias and variance error. First of all we apply Prop. 1 to $\hat{Q}_{m, \gamma, t}$. Let $f(\sigma)=$ $\gamma \sum_{i=0}^{t-1}(1-\gamma / n \sigma)^{p}$ with $\sigma \in[0, n / \gamma]$, we have that

$$
\hat{Q}_{m, \gamma, t}=A f\left(A^{\top} A\right) A^{\top}=f\left(A A^{\top}\right) A A^{\top}=g\left(A A^{\top}\right)
$$

where $g(\sigma)=f(\sigma) \sigma$. Now note that

$$
g(\sigma)=\gamma \sigma \sum_{i=0}^{t-1}(1-\gamma / n \sigma)^{p}=1-(1-\gamma / n \sigma)^{t}
$$

therefore we have

$$
\hat{Q}_{m, \gamma, t}=g\left(A A^{\top}\right)=I-\left(I-\gamma / n A A^{\top}\right)^{t}
$$

Bound of the bias. Now we are going to bound the
bias for NYTRO. Let $\lambda=1 /(\gamma t)$ and $Z=A A^{\top}$, then

$$
\begin{aligned}
B\left(\hat{Q}_{m, \gamma, t}\right) & =\frac{1}{n}\left\|P\left(I-\hat{Q}_{m, \gamma, t}\right) \mu\right\|^{2} \\
& =\frac{1}{n}\left\|P\left(I-\frac{\gamma}{n} Z\right)^{t} \mu\right\|^{2}=\frac{1}{n}\left\|\left(I-\frac{\gamma}{n} Z\right)^{t} P \mu\right\|^{2} \\
& =\frac{1}{n}\left\|\left(I-\frac{\gamma}{n} Z\right)^{t}(Z+\lambda n I)(Z+\lambda n I)^{-1} P \mu\right\|^{2} \\
& \leq \frac{1}{n} q(A, \lambda n)\left\|(Z+\lambda n I)^{-1} P \mu\right\|^{2}
\end{aligned}
$$

and $q(A, \lambda n)=\left\|\left(I-\gamma / n A A^{\top}\right)^{t}\left(A A^{\top}+\lambda n I\right)\right\|^{2}$. Note that the third step is due to the fact that $\operatorname{ran} Z \subseteq \operatorname{ran} K=\operatorname{ran} P$ and Z is symmetric, therefore $\operatorname{Ph}(Z)=h(Z) P$ as a consequence of Prop. 1 for any spectral function h. Let $\sigma_{1}, \ldots, \sigma_{n}$ be the singular values of Z, we have

$$
\begin{aligned}
q\left(A, \frac{n}{\gamma t}\right) & =\sup _{i \in\{1, \ldots, n\}}\left(1-\gamma / n \sigma_{i}\right)^{2 t}\left(\sigma_{i}+\frac{n}{\gamma t}\right)^{2} \\
& \leq \sup _{0 \leq \sigma \leq n / \gamma}(1-\gamma / n \sigma)^{2 t}\left(\sigma+\frac{n}{\gamma t}\right)^{2} \leq \frac{n^{2}}{\gamma^{2} t^{2}}
\end{aligned}
$$

Therefore we have

$$
B\left(\hat{Q}_{m, \gamma, t}\right) \leq \lambda^{2} n\left\|(Z+\lambda n)^{-1} P \mu\right\|^{2} .
$$

Bound for the Variance. Let $t \geq 2, \lambda=\frac{1}{\gamma t}, r(\sigma)=$ $(1-\gamma / n \sigma)^{t}$ and

$$
v(\sigma)=\sigma /(t-1)+\sigma(1+r(\sigma))-\lambda n(1-r(\sigma)) .
$$

We have $v(\sigma) \geq 0$ for $0 \leq \sigma \leq n / \gamma$. Indeed for $\lambda n<$ $\sigma \leq n / \gamma$ we have $v(\sigma) \geq 0$ since $0 \leq r(\sigma) \leq 1$, while for $0 \leq \sigma \leq \lambda n$ we have

$$
\begin{aligned}
\lambda n(1-r(\sigma)) & =\lambda n\left(1-e^{-t \log \frac{1}{1-\frac{\gamma \sigma}{n}}}\right) \leq \frac{n}{\gamma t} t \log \frac{1}{1-\frac{\gamma \sigma}{n}} \\
& \leq \frac{n}{\gamma} \frac{\gamma / n \sigma}{1-\gamma / n \sigma} \leq \frac{\sigma}{1-\frac{1}{t}}=\frac{\sigma}{t-1}+\sigma \\
& \leq \frac{\sigma}{t-1}+\sigma(1+r(\sigma)),
\end{aligned}
$$

therefore $v(\sigma) \geq 0$. Now let $0 \leq \sigma \leq n / \gamma$. Since $v(\sigma) \geq 0$, the function $w(\sigma)=v(\sigma) /(\sigma+\lambda n)$ is $w(\sigma) \geq$ 0 . Now we rewrite w a bit. First of all, note that

$$
w(\sigma)=(2 t-1) /(t-1) w_{1}(\sigma)-g(\sigma)
$$

with $w_{1}(\sigma)=\sigma /(\sigma+\lambda n)$. The fact that $w(\sigma) \geq 0$ and that $g(\sigma) \geq 0$ implies that

$$
\left(\frac{2 t-1}{t-1}\right)^{2} w_{1}(\sigma)^{2} \geq g(\sigma)^{2} . \quad \forall 0 \leq \sigma \leq \frac{n}{\gamma}, t \geq 2
$$

Now we focus on $\operatorname{Tr}\left(\hat{Q}_{\gamma t}^{2}\right)$. Let $Z=U \Sigma U^{\top}$ be its eigenvalue decomposition with U an orthonormal matrix and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0$,

$$
\begin{aligned}
\operatorname{Tr}\left(\hat{Q}_{m, \gamma, t}^{2}\right) & =\operatorname{Tr}\left(g^{2}(Z)\right)=\operatorname{Tr}\left(U g^{2}(\Sigma) U^{\top}\right)=\operatorname{Tr}\left(g^{2}(\Sigma)\right) \\
& =\sum_{i=1}^{n} g\left(\sigma_{i}\right)^{2} \leq c_{t} \sum_{i=1}^{n} w_{1}\left(\sigma_{i}\right)^{2}=c_{t} \operatorname{Tr}\left(w_{1}(\Sigma)^{2}\right) \\
& =c_{t} \operatorname{Tr}\left(U w_{1}(\Sigma)^{2} U^{\top}\right)=c_{t} \operatorname{Tr}\left(w_{1}(Z)^{2}\right) \\
& =c_{t} \operatorname{Tr}\left(Z^{2}(Z+\lambda n I)^{-2}\right)
\end{aligned}
$$

where we applied many times Prop. 1 and the fact that the trace is invariant to unitary transforms. Thus,
$V\left(\hat{Q}_{m, \gamma, t}, n\right) \leq \frac{\sigma^{2}}{n}\left(\frac{2 t-1}{t-1}\right)^{2} \operatorname{Tr}\left(Z(Z+n /(\gamma t) I)^{-1}\right)^{2}$.

The expected excess risk for Nyström KRLS

The Nyström KRLS estimator with linear kernel is a function of the form

$$
\begin{aligned}
& \tilde{f}\left(x_{i}\right)=k_{i}^{\top} C y, \quad \text { with } C=\binom{\tilde{C}_{m, \lambda}}{0_{(n-m) \times n}}, \\
& \tilde{C}_{m, \lambda}=R\left(A^{\top} A+\lambda n I\right)^{\dagger} A^{\top},
\end{aligned}
$$

with $k_{i}=\left(k\left(x_{i}, x_{1}\right), \ldots, k\left(x_{i}, x_{n}\right)\right)$ for any $i \in$ $\{1, \ldots, n\}$. Now, by applying Prop. 1 we have

$$
\begin{aligned}
\tilde{Q}_{m, \lambda} & =K C=K_{n m} \tilde{C}_{m, \lambda} \\
& =A\left(A^{\top} A+\lambda n I\right)^{-1} A=A A^{\top}\left(A A^{\top}+\lambda I\right)^{-1} \\
& =Z(Z+\lambda n I)^{-1}
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
V\left(\tilde{Q}_{m, \lambda}\right) & =\frac{\sigma^{2}}{n} \operatorname{Tr}\left(\tilde{Q}_{m, \lambda}\right)^{2}=\frac{\sigma^{2}}{n} \operatorname{Tr}\left(Z(Z+\lambda n I)^{-1}\right)^{2} \\
B\left(\tilde{Q}_{m, \lambda}\right) & =\frac{1}{n}\left\|P\left(I-Z(Z+\lambda n I)^{-1}\right) \mu\right\|^{2} \\
& =\lambda^{2} n\left\|P(Z+\lambda n I)^{-1} \mu\right\|^{2} \\
& =\lambda^{2} n\left\|(Z+\lambda n I)^{-1} P \mu\right\|^{2},
\end{aligned}
$$

where the last step is due to the same reasoning as in the bound for the bias of NYTRO. Finally, by applying twice Prop. 3 and calling $c_{t}=\left(\frac{2 t-1}{t-1}\right)^{2}$, we have that

$$
\begin{aligned}
R\left(\hat{f}_{m, \gamma, t}\right) & =V\left(\hat{Q}_{m, \gamma, t}, n\right)+B\left(\hat{Q}_{m, \gamma, t}\right) \\
& \leq c_{t} V\left(\tilde{Q}_{m, \frac{1}{\gamma t}}, n\right)+B\left(\tilde{Q}_{m, \frac{1}{\gamma t}}\right) \\
& \leq c_{t}\left(V\left(\tilde{Q}_{m, \frac{1}{\gamma t}}, n\right)+B\left(\tilde{Q}_{m, \frac{1}{\gamma t}}\right)\right) \\
& =c_{t} R\left(\tilde{f}_{m, \frac{1}{\gamma t}}\right)
\end{aligned}
$$

for $\|Z\| \leq n / \gamma$ and $t \geq 2$. Now the choice $\gamma=$ $1 /\left(\max _{1 \leq i \leq n} k\left(x_{i}, x_{i}\right)\right)$ is valid, indeed

$$
\begin{aligned}
\gamma\|Z\|^{2} & =\gamma\left\|K_{n m} R R^{\top} K_{n m}^{\top}\right\|=\gamma\left\|K_{n m} K_{m m}^{\dagger} K_{n m}^{\top}\right\| \\
& \leq \gamma\|K\| \leq \gamma n \max _{1 \leq i \leq n}(K)_{i i}=\gamma n \max _{1 \leq i \leq n} k\left(x_{i}, x_{i}\right),
\end{aligned}
$$

where $\left\|K_{n m} K_{m m}^{\dagger} K_{n m}^{\top}\right\| \leq\|K\|$ can be found in Bach (2013); Alaoui and Mahoney (2014).

Proof of Corollary 1. Theorem 5 combined with Theorem 1 of Bach (2013).

