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1 Proof of Theorem 3
For simplicity, we focus on the bivariate case (X and Y are each one-dimensional
variables). The extension to proof in multivariate case is straight forward. We first work
on the mutual information, then show the similar arguments on the copula distances.
To prove the theorem, we use Le Cam [1973]’s method to find the lower bound on the
minimax risk of the estimating mutual information MI . To do this, we will use a more
convenient form of Le Cam’s method developed by Donoho and Liu [1991]. Define
the module of continuity of a functional T over the class F with respect to Hellinger
distance as in equation (1.1) of Donoho and Liu [1991]:

w(ε) = sup{|T (F1)− T (F2)| : H(F1, F2) ≤ ε, Fi ∈ F}. (1)

Here H(F1, F2) denotes the Hellinger distance between F1 and F2. Then the mini-
max rate of convergence for estimating T (F ) over the class F is bounded below by
w(n−1/2).

We now look for a pair of density functions c1(u, v) and c2(u, v) on the unit square
for distributions that are close in Hellinger distance but far away in their mutual infor-
mation. This provides a lower bound on the module of continuity for mutual informa-
tion MI over the class C, and hence leads to a lower bound on the minimax risk. We
outline the proof here.
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We first divide the unit square into three disjoint regions R1, R2 and R3 with R1 ∪
R2 ∪ R3 = [0, 1] × [0, 1]. The first density function c1(u, v) puts probability masses
δ, a and 1 − a − δ respectively on the regions R1, R2 and R3 each uniformly. The
a is an arbitrary small fixed value, for example, a = 0.01. For now, we take δ to be
another small fixed value. The area of the region is chosen so that c1(u, v) = M on
region R2 and c1(u, v) = M∗ on region R1 for a very big M∗. The second density
function c2(u, v), compared to c1(u, v), moves a small probability mass ε from R1 to
R2. We will see that the Hellinger distance between c1 and c2 is of the same order as
ε, but the change in MI is unbounded for big M∗. Hence module of continuity w(ε)
is unbounded for mutual information MI. Therefore the MI can not be consistently
estimated over the class C.

Specifically, the region R1 is chosen to be a narrow strip immediately above the
diagonal, R1 = {(u, v) : −δ1 < u − v < 0}; and R2 is chosen to be a narrow strip
immediately below the diagonal, R2 = {(u, v) : 0 ≤ u − v < δ2}. The remaining
region is R3 = [0, 1] × [0, 1] \ (R1 ∪ R2). The values of δ1 and δ2 are chosen so
that the areas of regions R1 and R2 are δ/M∗ and a/M respectively. Then clearly
c1(u, v) = M∗ onR1; c1(u, v) = M onR2; c1(u, v) = (1−a−δ)/(1−a/M−δ/M∗)
on R3. And c2(u, v) = M∗ − ε(M∗/δ) on R1; c2(u, v) = M + ε(M/a) on R2;
c2(u, v) = c1(u, v) on R3. See the Figure 1.
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Figure 1: The plot shows the regions R1, R2 and R3. The other two narrow strips
neighboring R1 and R2 are for the continuity correction mentioned at the end of the
proof.
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Then we have

2H2(c1, c2) =
∫∫

(
√
c2(u, v)−

√
c1(u, v))2dudv

= (
√
M∗ − ε(M∗/δ)−

√
M∗)2δ/M∗ + (

√
M + ε(M/a)−

√
M)2a/M

= δ(
√

1− ε/δ − 1)2 + a(
√

1 + ε/a− 1)2

= δ(ε/2δ)2 + a(ε/2a)2 + o(ε2)
= ε2( 1

4δ + 1
4a ) + o(ε2).

Hence the Hellinger distance is of the same order as ε:

H(c1, c2) = ε

√
1

8δ
+

1

8a
+ o(ε).

On the other hand, the difference in the mutual information is

MI(c1)−MI(c2)
= δ log(M∗) + a log(M)− (δ − ε) log[M∗ − ε(M∗/δ)]− (a+ ε) log[M + ε(M/a)]
= ε log(M∗)− ε log(M)− (δ − ε) log(1− ε/δ)− (a+ ε) log(1 + ε/a).

(2)
Here M , δ and a are fixed constants. Hence when M∗ → ∞, this difference in MI
also goes to ∞. For example, if we let M∗ = e1/(ε)2 , then the module of continuity
w(ε) ≥ O(1/ε). That means, the rate of convergence is at least O(w(n−1/2)) =
O(n1/2)→∞. In other words, MI can not be consistently estimated.

Now, let us consider the CDα =
∫∫
I2
|c(u, v) − 1|αdudv, for α > 1, where I2 is

the unit square.

CDα(c1)− CDα(c2)
= |M∗ − 1|αδ/M∗ + |M−1|αa/M − |M∗ − 1− ε(M∗/δ)|αδ/M∗ + |M − 1 + ε(M/a)|αa/M
= [|M∗ − 1|α − |M∗ − 1− ε(M∗/δ)|α]δ/M∗ + [|M−1|α − |M − 1 + ε(M/a)|α]a/M
= α[(M∗ − 1)α−1M∗/δ − (M − 1)α−1M/α]ε+ o(ε2).

(3)
Again, M , δ and a are fixed constants. Hence when M∗ → ∞, this difference in
CDα, α > 1 also goes to∞. For example, if we let M∗ = (ε−2 +Mα)

1
α−1 + 1, then

the module of continuity w(ε) ≥ O(1/ε). Note that α > 1 is essential here. That
means, the rate of convergence is at least O(w(n−1/2)) = O(n1/2) → ∞. In other
words, CDα, α > 1 can not be consistently estimated.

The above outlines the main idea of the proof, ignoring some mathematical sub-
tleties. One is that the example densities c1 and c2 are only piecewise continuous on
the three regions, but not truly continuous as required for the class C. This can be eas-
ily remedied by connecting the three pieces linearly. Specifically we set the densities
ci(u, v) = M , i = 1, 2, on the boundary between R1 and R3, {(u, v) : u− v = −δ1},
and on the boundary between R2 and R3, {(u, v) : u − v = δ2}. Then we use two
narrow strips withinR3, {(u, v) : −δ3 ≤ u−v ≤ −δ1} and {(u, v) : δ2 ≤ u−v ≤ δ4}
to connect the constant ci(u, v) values on the rest of regionR3 with the boundary value
ci(u, v) = M continuously through linear (in u − v) ci(u, v)’s on the two strips that
satisfies the Hölder condition (17) of the main text. By the Hölder conditionp, the
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connection can be made with strips of width at most (M − 1 + a+ δ)/M1. This con-
tinuity modification does not affect the calculation of the difference MI(c1) −MI(c2)
or CDα(c1) − CDα(c2) above as c1 and c2 only differ on regions R1 and R2. Within
regions R1 and R2, the densities c1 and c2 can be further similarly connected continu-
ously linearly in u− v. As there is no Hölder condition on AcM , the connection within
R1 and R2 can be as steep as we want. Clearly the order obtained through above cal-
culations will not change if we make these connections very steep so that their effect is
negligible.

Another technical subtlety is that the c1 and c2 defined above are only densities on
the unit square but not copula densities which require uniform marginal distributions.
However, it is clear that the marginal densities for cis are uniform over the interval
(δ3, 1 − δ4) and linear in the rest of interval near the two end points 0 and 1. The
copulas densities c∗i ’s corresponding to ci’s can be calculated directly through Sklar’s
decomposition (1) in the main text. It is easy to see that the order for the module of
continuity w(ε) remains the same for using the corresponding copula densities c∗i ’s.

2 Proof of Theorem 4
Proof. The first two terms in (9) corresponds to bias and standard deviation of kernel
density estimation when the copula density is bounded. When the copula density is
unbounded, the kernel density estimation ĉ(Z) is not consistent. However, a smaller
order O( 1

nhd
) term bounds the overall error contribution to R̂CD resulting from ĉ(Z)

in the unbounded copula density region.
Let M2 = M+1

2 , AM2 = {Z|c(Z) ≤ M2} , T1(c) =
∫
AM2

(1 − c(Z))+dZ,

T2(c) =
∫
AcM2

(1− c(Z))+dZ, RCD = T1(c) + T2(c), and R̂CD = T1(ĉ) + T2(ĉ)

Firstly, we consider the region AM2
with bounded copula density. Here we cal-

culate the bias and variance of the kernel density estimator using standard methods
first.

c̄n(Z) = E[ĉkde(Z)] =
1

hd

∫
K(

z− Z

h
)c(z)dz =

∫
K(s)c(Z + sh)ds.

Hence

|Bias(Z)| = |
∫
K(s)c(Z + sh)ds− c(Z)| ≤

∫
B0
K(s)|c(Z + sh)− c(Z)|ds

≤
∫
B0
K(s)M1hds

= M1h.
(4)

|V ar(Z)| = 1
nV ar[

1
hd
K(Z1−Z

h )] ≤ 1
nE[ 1

h2dK
2(Z1−Z

h )]
= 1

nhd

∫
B0
K2(s)c(Z + sh)ds

≤ 1
nhd

∫
B0
K2(s)[c(Z) +M1h]ds

=
µ2
2

nhd
[c(Z) +M1h].

(5)
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Hence the integrated mean square error of the density estimator ĉn(Z) over regions
AM2 is

IMSE(Z) =
∫
AM2

[Bias2(Z) + V ar(Z)]dZ

≤
∫
AM2

[M2
1h

2 +
µ2
2

nhd
[c(Z) +M1h]dZ ≤M2

1h
2 +

µ2
2

nhd
[1 +M1h]

≤M2
1h

2 +
2µ2

2

nhd

(6)
Hence the error of R̂CD on AM2 is bounded by

E|T1(ĉ)− T1(c)| ≤ E
∫
AM2
|(1− ĉn(Z))+ − (1− c(Z))+|dZ

≤ E
∫
AM2
|ĉn(Z)− c(Z)|dZ

≤
√
E
∫
AM2

(ĉn(Z)− c(Z))2dZ

≤
√
d2M2

1h
2 +

2µ2
2

nhd

≤ dM1h+
√

2µ2( 1
nhd

)1/2.

Now we consider the region AcM2
with unbounded copula density. For Z ∈ AcM2

,
ĉ(Z) does not have a finite variance bound in (5). But we can bound the variance by
the expectation c̄n(Z) = E[ĉn(Z)]. LetM3 = M2+1

2 , when h small, Z ∈ AcM2
implies

Z + sh ∈ AcM3
. Hence

|V ar(Z)| ≤ 1

nhd

∫
B0

K2(s)c(Z + sh)ds ≤ MK

nhd

∫
B0

K(s)c(Z + sh)ds =
MK

nhd
c̄n(Z)

Using Chebyshev’s inequality,

E[1{ĉn(Z)<1}] = P (ĉn(Z) < 1) ≤ P (|c̄n(Z)− ĉn(Z)| > c̄n(Z)− 1)

≤ V ar[ĉn(Z)]

[ĉn(Z)− 1]2

≤ MK

nhd
c̄n(Z)

[c̄n(Z)− 1]2
≤ MKM4

nhd

where M4 = M3

(M3−1)2 .

Hence the error of R̂CD on AcM2
is bounded by

E|T2(ĉ)− T2(c)| = E[T2(ĉ)] ≤
∫
AcM2

E[1{ĉn(Z)<1}]dZ ≤
MKM4

nhd

Combining the above results:

E[|R̂CD −RCD|] ≤M1h+

√
2µ2√
nhd/2

+
MKM4

nhd
. (7)
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Note that we can use any Lp norm (1 ≤ p ≤ ∞) in the Hölder condition: equation
(3) in maintext. The kernel K is then assumed to have support in the unit ball B0

corresponding to that Lp norm. The proof remains exactly the same. We in fact will
use L∞ norm in our estimator for computational simplicity. In that case, the unit ball
B0 = {Z : ‖Z‖l∞ ≤ 1} is in fact the d-dimensional cube.

3 Proof of Theorem 5
We can estimate RCD by plugging in the k-NN estimator [Loftsgaarden and Quesen-
berry, 1965] of the copula density

ĉknn(Z) =
k(n)
n

Ar(k(n),n),Z
, (8)

where Z1,Z2, · · · ,Zn are the copula based observations, r(k(n), n) is the distance
from Z to the kth closest of Z1,Z2, · · · ,Zn and Ar(k(n),n),Z is the volume of the
d-dimensional hyper-ball with radius r(k(n), n).

In the following, without ambiguity, we denote r(k(n), n) by r, and k(n) by k.
Hence the volume Ar,Z is vd · rd, where vd is the volume of the d-dimensional unit
ball B0. And ĉknn(Z) = k/(vdnr

d). For l2 norm, vd = πd/2/Γ[(d+ 2)/2] where Γ(·)
denotes the Gamma function.

Moore and Yackel [1977a] showed that, for bounded densities, there is equivalence
between the consistency of the KDE density estimator and the consistency of the k-NN
estimator.

To cite the results of [Moore and Yackel, 1977a], we assume a slightly stronger
version of the Hölder condition: equation (3) in maintext. That is, we assume that c
also has bounded continuous second order derivative in AM . Let Q(Z) = tr[∂

2c(Z)
∂Z2 ]

denote the trace of the Hessian matrix of copula density c(Z). For the d-dimensional
vector Z = (z1, ..., zd), the Hessian matrix ∂2c(Z)/∂Z2 has entries

[
∂2c(Z)

∂Z2
]ij =

∂2c(Z)

∂zi∂zj
.

We derive convergence properties for the k-NN estimator R̂CDknn = RCD(ĉknn).

Theorem 5. We assume c in C has bounded and continuous second order derivative in
AM , k →∞ and k

n → 0 when n→∞. Then the plug-in estimator R̂CD = RCD(ĉ)
has a risk bound

sup
C∈C

E[|R̂CD −RCD|] ≤ 2Q̄(
k

nε
)

2
d +

2M√
k

+ 2ε, (9)

where Q̄ = 1
2(d+2)πΓ2/d(d+2

2 ) supZ∈AM Q(Z), and ε = ε(n) is any sequence con-
verging to 0 slower than k/n. We suppress the n from the notation in ε without ambi-
guity as in k and r above.
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Proof. We shall use the following asymptotic results on k-NN density estimator in
Mack and Rosenblatt [1979]. Denote Q̃(Z) = 1

2(d+2)πΓ2/d(d+2
2 )Q(Z). Then

Bias[ĉknn(Z)] = Q̃(Z)
c(Z)2/d

( kn )2/d +O( c(Z)
k ) + o(( kn )2/d),

V ar[ĉknn(Z)] = c2(Z)
k + o( 1

k ).
(10)

These expressions provide control on the error contribution of ĉ(Z) to R̂CD when
c(Z) is bounded both from above and from below. Similar to the proof of KDE-based
R̂CD, we prove that the error contribution to R̂CD from the big copula density region
is of a smaller order O(1/k). Different from the KDE, the k-NN density estimator also
does not have finite bias bound in (10) when the copula density c(Z) is not bounded
below. Therefore, we also need to control the error contribution to R̂CD from the
small (< ε) copula density region separately.

As before, let M2 be a constant between 1 and M , say, M2 = M+1
2 . We now

separate the three regions by copula density: AcM2
= {Z : c(Z) > M2} (big),AM2,ε =

{Z : ε ≤ c(Z) ≤ M2} (middle) and Aε = {Z : c(Z) < ε} (small). Then we
can separate RCD into three components RCD = T1(c) + T2(c) + T3(c): T1(c) =∫
AMc2

[1− c(Z)]+dZ, T2(c) =
∫
AM2,ε

[1− c(Z)]+dZ and T3(c) =
∫
Aε

[1− c(Z)]+dZ.

Firstly, we look at the error bound onAcM2
, the region of big copula density. Similar

to the KDE, the error in ĉknn(Z) can be arbitrarily large for Z ∈ AcM2
. However, the

error only leads to the error in R̂CD if ĉknn(Z) < 1. From equation (8), ĉknn(Z) < 1
if and only if

r > (
k

nvd
)1/d def

= r̄.

This occurs when at most k−1 of observations Z1,Z2, · · · ,Zn fall into the ball B(Z; r̄)
which is centered at Z with radius r̄.

Let N̄(Z) denotes the number of observations falling into B(Z; r̄). Then N̄(Z)
follows a binomial distribution with mean np̄, where p̄ =

∫
B(Z;r̄)

c(z)dz. Since k/n→
0, r̄ → 0. Hence M1r̄ < (M2 − 1)/2 when n is large enough. Then the whole
ball B(Z; r̄) is contained in AcM3

with M3 = (M2 + 1)/2 as before. Hence p̄ =∫
B(Z;r̄)

c(z)dz ≥M3vdr̄
d = M3k/n. Using Chebyshev’s inequality,

Pr[ĉknn(Z) < 1] = E[1{N̄(Z) < k}] ≤ V ar[N̄(Z)]
{E[N̄(Z)]−k}2 = np̄(1−p̄)

(np̄−k)2

≤ 1
np̄[1−k/(np̄)]2 ≤

1
M3k[1−1/M3]2

= O( 1
k ).

Hence

E|T1(c)− T1(ĉknn)| =
∫
AcM2

E[1{ĉknn(Z)<1}]dZ ≤
1

M3k[1− 1/M3]2
= O(

1

k
).

Secondly, we look at the error bound onAM2,ε, the region of middle copula density.
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Using (10), for Z ∈ AM2,ε, the mean squared error of ĉknn(Z) is

E[(ĉn(Z)− c(Z))2] = bias2(Z) + V ar(Z)

= [
Q̃(Z)

c(Z)2/d
(
k

n
)2/d]2 +

c2(Z)

k
+ o((

k

n
)4/d +

1

k
)

≤ (
Q̄2

ε4/d
)(
k

n
)4/d +

M2
2

k
+ o((

k

n
)4/d +

1

k
).

Hence

E|ĉknn(Z)− c(Z)| ≤
√
E[(ĉn(Z)− c(Z))2] ≤

√
2[Q̄(

k

nε
)2/d +

M2√
k

][1 + o(1)].

We get

E[T2(ĉknn)−T2(c)] ≤ E[

∫
AM2,ε

|ĉknn(Z)−c(Z)|dZ] ≤
√

2[Q̄(
k

nε
)2/d+

M2√
k

][1+o(1)].

(11)
Thirdly, we look at the error bound onAε, the region of small copula density. From

equation (8), ĉknn(Z) ≥ 2ε if and only if

r ≤ (
k

n2εvd
)1/d def

= r∗.

This occurs when at least k of observations Z1,Z2, · · · ,Zn fall into the ball B(Z; r∗).
Since k/(nε)→ 0, r∗ → 0.

Let N∗(Z) denotes the number of observations falling into B(Z; r∗). Then N̄(Z)
follows a binomial distribution with mean np∗, where p∗ =

∫
B(Z;r∗)

c(z)dz.
Using Taylor expansion, we have (from last line page 228 in Biau et al. [2011])∫

B(Z;r)

c(z)dz = c(Z)vdr
d + Q̃(Z)vdr

d+2 + o(rd+2).

Therefore, using r∗ → 0, we have p∗ = c(Z)vd(r
∗)d[1 + o(1)] ≤ εvd(r

∗)d[1 + o(1)]
which converges to k/(2n). Hence for n big, p∗ < 0.6k/n. Using Chebyshev’s
inequality,

Pr[ĉknn(Z) > 2ε] = E[1{N∗(Z) < k}] ≤ V ar[N∗(Z)]
[k−E(N∗(Z))]2 = np∗(1−p∗)

(k−np∗)2

≤ 0.6k
(0.4k)2 <

3
k

= O( 1
k ).

Since c(Z) ≤ ε, if ĉknn(Z) ≤ 2ε, then |ĉknn(Z)− c(Z)| ≤ 2ε. Hence

E|T3(c)− T3(ĉknn)| ≤
∫
Aε
E|ĉknn(Z)− c(Z)|dZ ≤

∫
Aε
{2ε+ Pr[ĉknn(Z) > 2ε]}dZ

< 2ε+ 3
k = O(ε+ 1

k ).

Finally, when combining the three parts, the terms O(1/k) = o(1/
√
k) < (2 −√

2)/
√
k. We have

sup
C∈C

E[|R̂CD −RCD|] ≤ 2[Q̄(
k

nε
)2/d +

M2√
k

+ ε]. (12)
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Note that we can use other lp norms, which changes the vd in the proof to the
volume of the unit ball under the corresponding norm. The rate does not change.

We can also prove the consistency under Hölder condition (equation (3) in main-
text) without assuming continuous second derivatives. However, that involve tedious
derivation of bias and variance bounds similar to (10) for k-NN density estimators. We
provide the simple proof here by citing (10) from Mack and Rosenblatt [1979].

To minimize the error bound in (9), we get ε = (k/n)2/(d+2) and k = n4/(d+6).
So in bivariate (d = 2) case, we take k = O(n1/2). Taking k below the n4/(d+6) rate
will make the O(1/

√
k) term dominant in the error bound. In that case, the asymptotic

results on the k-NN density estimation states that
√
k[ĉ(Z) − c(Z)]/c(Z) converge to

a standard Gaussian distribution. Then
√
k[R̂CD −RCD] converges to an integral of

a Gaussian process.

4 Selection of Tuning Parameter in the Practical Esti-
mator

For a practical estimator for R̂CD, we need to decide the bandwidth in KDE-based
estimator or the number of neighbors k in KNN-based estimator. Theorem 4 and The-
orem 5 provides the rates. For bivariate case, h = O(n−1/4) and k = O(

√
n). To

decide the constant coefficient, we used empirical simulations.
First, for KDE estimators, we tested R̂CD on nine functions (listed in Table 1)

with various levels of additive noises. Four sample sizes of n = 102, 103, 104 and
105 are used.Figure 2 plots the simulation results using h = 0.25n−1/4. We can see
that the performance of R̂CD improves as sample size increases, and gives very accu-
rate estimates for RCD under big sample sizes. For illustration, we showed the plots
with bandwidth h = 0.1n−1/4 and h = 0.5n−1/4 in Figure 3 and Figure 4 respec-
tively. Those bandwidth choices are clearly either too small (h = 0.1n−1/4 estimator
overshoot in several cases when RCD is small) or too big (h = 0.5n−1/4 estimator
converges slowly when RCD is large). Hence the bandwidth h = 0.25n−1/4 is a good
choice.

A Linear y = x
B Quadratic y = x2

C Square Root y =
√
x

D Cubic y = x3

E Centered Cubic y = 4(x− 1/2)3

F Centered Quadratic y = 4x(1− x)
G Cosine (Period 1) y = [cos(2πx) + 1]/2
H Circle (x− 1/2)2 + y2 = 1/4
I Cross y = ±(x− 1/2)

Table 1: The function relationships used in Figures 2 - 7.

According to the equivalence results between the KDE and the KNN estimator by
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[Moore and Yackel, 1977b], the k in the KNN density estimation corresponds to the
bandwidth in KDE estimator as c(z)(2h)2 = k/n. As the mean of copula density c(α)
is one, h = 0.25n−1/4 corresponds to k = n(2h)2 = 0.25

√
n. The simulation results

for KNN-based R̂CD with k = 0.25
√
n, k = 0.1

√
n and k = 0.5

√
n are plotted

in Figures 5 - 7. Similar pattern as in KDE-based estimator are observed. Hence we
propose the practical KNN-based R̂CD to use k = 0.25

√
n.

Furthermore, we also checked the KNN-based R̂CD on the mixture noise setting
used in definition 2: a proportion (p) of deterministic function is hidden in indepen-
dent continuous noise. Six types of deterministic function are used, as listed in Table
2. When n = 5000, the R̂CD is close to the true value p in the simulations. And
compared to the two choices of k = 0.1

√
n and k = 0.5

√
n, k = 0.25

√
n provide a

good balance of approximating the true values when RCD is small or large.

A Linear y = x
B Centered Quadratic y = 4(x− 1/2)2

C Cosine y = cos(4πx)
D Cross y = ±x1{0≤x≤1}
E Circle (2x− 1)2 + y2 = 1
F Cross 2 y = ±(x− 1/2)1{0≤x≤1}

Table 2: The function relationships used in Figures 8.

5 The Performance of the HSNIC Estimator
In this section, we examine the performance of the convergence of the HSNIC esti-
mator to its theoretical value CD2 with a simulation. Let us consider the regression
model Y = X + ε with support [0, 1]. For simplicity, ε follows uniform distribution
with various bandwidth. Two estimators, the HSNIC and the KDE, are compared with
increasing sample sizes. As we can see from figure 9, the x-axis is the noise level for
the uniform noise ε, while the y-axis is the value for the estimated CD2. The sample
sizes ranges from N = 1000 to N = 20000. Results show that the HSNIC converges
relatively slow J Reddi and Póczos [2013] to the true value, especially when the signal
is strong. On the other hand, the KDE estimator for CD2 becomes better when the
sample size increases.
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Figure 2: The comparison of RCD with its estimated values under different sample
sizes. This estimator uses the square kernel density estimator with bandwidth h =
0.25n−1/4.
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Figure 3: The comparison of RCD with its estimated values under different sample
sizes. This estimator uses the square kernel density estimator with bandwidth h =
0.1n−1/4.
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Figure 4: The comparison of RCD with its estimated values under different sample
sizes. This estimator uses the square kernel density estimator with bandwidth h =
0.5n−1/4.
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Figure 5: Additive noise with k = 0.25
√
n.
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Figure 6: Additive noise with k = 0.1
√
n.
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Figure 7: Additive noise with k = 0.5
√
n.
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Figure 8: Mixture noise with k = c
√
n, where c = 0.1, 0.25, 0.5.
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Figure 9: The comparison of the estimator of HSNIC and the KDE estimator.
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