A Robust-Equitable Copula Dependence Measure for Feature
Selection

Yale Chang
Department of ECE
Northeastern University

Yi Li

Northeastern University

Abstract

Feature selection aims to select relevant fea-
tures to improve the performance of predic-
tors. Many feature selection methods depend
on the choice of dependence measures. To
select features that have complex nonlinear
relationships with the response variable, the
dependence measure should be equitable; i.e.,
it should treat linear and nonlinear relation-
ships equally. In this paper, we introduce
the concept of robust-equitability and iden-
tify a robust-equitable dependence measure
robust copula dependence (RCD). This mea-
sure has the following advantages compared
to existing dependence measures: it is robust
to different relationship forms and robust to
unequal sample sizes of different features. In
contrast, existing dependence measures can-
not take these factors into account simulta-
neously. Experiments on synthetic and real-
world datasets confirm our theoretical anal-
ysis, and illustrate its advantage in feature
selection.

1 Introduction

In many applications, data samples are represented by
features which domain experts assume to be important
for the learning task. However not all of these features
are useful: some may be irrelevant and some may be
redundant. Therefore, feature selection is needed to
improve the performance of learning tasks, decrease
computational cost with fewer variables, and aid in
understanding the factors that are important for pre-
diction.

Feature selection algorithms [14, 8, 30] can be catego-
rized as either filter, wrapper, or embedded methods.
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In filter methods [13, 30, 21, 10, 26], features are pre-
selected without running the learning algorithm and
are evaluated only through the intrinsic properties of
the data. Wrapper methods [14, 9, 2] select features
by “wrapping” the search around the learning algo-
rithm and evaluate feature subsets based on classifier
performance in each candidate feature subset. Embed-
ded methods [28, 29] incorporate feature search and
the learning algorithm (e.g., classifier) into a single
optimization problem formulation. Contrary to filter
methods, wrapper and embedded methods select fea-
tures specific to the learning algorithm. Hence, they
are most likely to be more accurate than filter meth-
ods on a particular classifier, but the features they
choose may not be appropriate for other classifiers.
Another limitation of wrapper methods is that wrap-
pers are computationally expensive because they need
to train and test the classifier for each feature sub-
set candidate, which can be prohibitive when working
with high-dimensional data.

Filter methods evaluate features based on some depen-
dence criterion between features and the target vari-
able. The goal is to select a subset of features that
optimizes this criterion. An exhaustive search of 2¢
possible feature subsets (where d is the number of fea-
tures) is computationally impractical. Heuristic search
strategies such as greedy approaches (e.g., sequential
forward /backward search [23]) are commonly used but
can lead to local optima. Random search methods,
such as genetic algorithms, add some randomness to
help escape from local optima. In some cases when
the dimensionality is very high, one can only afford
an individual search. Individual search methods eval-
uate each feature individually according to a crite-
rion [8, 10]. They then select features, which either sat-
isfy a condition or are top-ranked. The problem with
individual search methods is that they ignore feature
interaction and dependencies. One way of accounting
for such interactions and dependencies is to select rel-
evant features individually and then add a separate
redundancy removal step to account for linear corre-
lation between features [30]. Another way is to maxi-
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mize relevance and minimize redundancy (mRMR) to-
gether [21].

Besides search strategies, the performances of filter
methods also depend heavily on the choice of depen-
dence measures. How to measure the dependence be-
tween random variables is a fundamental problem in
statistics and machine learning. A commonly used
dependence measure is the Pearson correlation coef-
ficient (pjin). However, this measure prefers linear re-
lationships. Another popular measure is mutual infor-
mation (MI). MI can handle nonlinear dependencies,
but it is difficult to estimate [3, 24] (see Theorem 3 in
Section 2). Kernel-based dependence measures [7, 6],
such as the Hilbert-Schmidt Independence Criterion
(HSIC), have been introduced as an alternative to MI
which does not require explicitly learning joint dis-
tributions. However, HSIC depends on the choice of
kernels. Hilbert-Schmidt Normalized Information Cri-
terion (HSNIC or NOCCO) [5, 6] is kernel-free, mean-
ing it does not depend on the choice of kernels in the
limit of infinite data. While HSNIC is kernel-free, both
HSIC and HSNIC’s values can vary when we use dif-
ferent scales. To make the kernel-based dependence
measures invariant to strictly monotone transforma-
tion of the marginal variables, [22] applied Maximum
Mean Discrepancy (MMD), which can be written in
HSIC formulation, after empirical copula transforma-
tion (CMMD). Similarly, [11] applied HSNIC after
empirical copula transformation (CHSNIC). However,
CMMD and CHSNIC are only invariant to strictly
monotone transformations; they fail to treat non-
monotonic relations equally. [24] proposed the concept
of equitability, which states that a dependence measure
should give equal importance to all relations: linear
and nonlinear. For example, we expect a fair depen-
dence measure to treat a perfectly linear relationship
and a perfectly sinusoid relationship equally. [12] re-
defined equitability by proposing self-equitability — un-
der a nonlinear regression model with additive noise, a
dependence measure should be invariant to any deter-
ministic transformation of the marginal variables. [12]
proved that MI is self-equitable. The self-equitable de-
pendence measure will treat all forms of relationships
equally in the large data limit for the additive noise
model.

To choose among the many self-equitable dependence
measures, we further propose a new robust-equitability
concept such that the measure also treats all forms
of relationships equally in the mixture noise model.
That is, in a mixture distribution with p proportion
of deterministic signal hidden in continuous indepen-
dent background noise, the measure should reflect the
signal strength p. The mixture noise model reflects
real applications where measurements (features) are

often corrupted with noise. For example, sensor data
maybe corrupted by noise from hardware and envi-
ronmental factors. We define a dependence measure
robust copula dependence (RCD) as half the L; dis-
tance between copula density and uniform (indepen-
dence) density. RCD is equivalent to the Silvey’s
Delta measure [25]. We show that, among a class of
self-equitable copula-based dependence measures, only
RCD (i.e. Silvey’s Delta) is also robust-equitable. In
the literature, Silvey’s Delta (RCD) was only cited
as an abstract benchmark. We propose a k-nearest-
neighbor (KNN)-based estimator for RCD and prove
its consistency. Corresponding to the RCD definition,
we define CDs as the Lo distance between copula den-
sity and uniform density. CDs is the theoretical value
of HSNIC in large data limit [6]. We also prove that
although both MI and CDs, are self-equitable, they are
not robust-equitable. Therefore, MI and CDy may not
rank features correctly by dependence strength in some
cases, even in the large data limit. We confirm this
phenomena on both synthetic and real-world datasets.
As for kernel-based dependence measures, HSIC and
CMMD are neither self-equitable nor robust-equitable,
HSNIC and CHSNIC are self-equitable but not robust-
equitable and their estimators converge very slowly.
Since RCD is the only measure that is both self-
equitable and robust-equitable among all dependence
measures that we have found in the literature, it can
be very useful for feature selection.

The contributions of this work are: (1) the introduc-
tion of the concept of robust-equitability and the pro-
posal of a practical consistent estimator for the robust-
equitable dependence measure RCD; (2) theoretically
proving that non-robust-equitable measures MI and
CD2 cannot be consistently estimated and showing
that this can lead to incorrect selection of features
when sample size is large or when sample sizes are
unequal for different features; and finally, (3) demon-
strating that the robust-equitable RCD is a better de-
pendence measure for feature selection compared to
existing dependence measures through experiments on
synthetic and real-world datasets, in terms of robust-
ness to function types, correctness in large sample size
and correctness in unequal sample sizes.

2 A Robust-Equitable Dependence
Measure

As the feature selection results depend critically on
the dependence measures used, we investigate the the-
oretical properties of different dependence measures.
Particularly, we would like the dependence measures
to rank features with less noise as having stronger de-
pendence with the response variable. We want mea-
sures that do not prefer a particular type of relation-
ship (such as linear). Also we do not want the con-
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clusions to be too sensitive to sample size. That is,
when we have unequal sample sizes on different fea-
tures, the dependence measure should not prefer the
feature with more samples, but still rank the features
by the strength of the deterministic signal compared
to noise. Note that databases with unequal sample
sizes on different features are now becoming more com-
mon due to the prevalence of collecting data from het-
erogeneous sources (for example, often there will be
more samples with clinical features compared to sam-
ples with genomic information). Rather than throwing
away samples from the larger set to get equal sample
sizes for all features, we would like to use all data avail-
able to perform feature selection. We formalize these
ideas through the recently proposed equitability con-
cept. That is, we want to use dependence measures
that reflect the noise level, regardless of types of rela-
tionships.

2.1 Equitability

[24] first proposed the concept of equitability: a de-
pendence measure should treat all types of (linear and
nonlinear) relationships equally. This property ex-
tends beyond copula-based dependence measures (e.g.,
CMMD and CHSNIC) which treat all monotone re-
lationships equally. Sklar’s theorem decomposes the
joint distribution function (CDF), Fx y(x,y), into the
marginal distributions and the copula function

Fxy(z,y) = Pr(X <z,Y <y) = C[Fx(z), Fy (y)],

(1)
for all x,y. Here Fx(z) = Pr(X < z) and Fy(y) =
Pr(Y < y) are the marginal CDFs of X and Y re-
spectively. The copula C(u,v) = Pr(U < u,V <w) is
the CDF of copula-transformed, uniformly distributed,
variables U = Fx(X) and V = Fy(Y). In this way,
dependence measures on the copula transformed vari-
ables are invariant to strictly monotone transforma-
tions. Moreover, the copula decomposition separates
the dependence (copula) from any marginal effects.
Figure 1 shows the data from two distributions with
different marginals but the same dependence struc-
ture.

Figure 1: Left: Bivariate Gaussian with p = 0.75.
Middle: Data with exponential marginal for X. Right:
The Gaussian copula. The first two distributions have
the same copula as in the right figure.

Table 1 shows three simple examples and their respec-
tive copula transformations. We can see that the linear

correlation py;, prefers the linear relationship in (A).
Applying on the copula-transformed variables on the
right half of Table 1, py, (now equivalent to Spear-
man’s p) becomes invariant to monotone transforma-
tion in (B), but still cannot capture the non-monotone
nonlinear relationship in (C).

To treat non-monotone functions equally, we further
choose among copula-based measures by their equi-
tability. [12] defined self-equitability by extending the
invariance property to all nonlinear relationships in
the regression model Y = f(X)+e¢, where f is a deter-
ministic function, € is the random noise variable whose
distribution may depend on f(X) as long as € has no
additional dependence on X.

Definition 1 A dependence measure D[ X;Y] is self-
equitable if and only if D[X;Y] = D[f(X);Y] when-
ever f is the function in model Y = f(X) + €.

A self-equitable dependence measure will have the
same values in all three examples (A), (B) and (C) in
Table 1. Using a self-equitable dependence measure in
feature selection avoids (in the large data limit) pref-
erence for certain types of relationships such as linear
or monotone relationship, in the additive noise model.

Mutual information (MI) is self-equitable and
is based on copula density c(u,v), MI =
[[;2 logle(u, v)]e(u, v)dudv, where I* is the unit
square. We now consider a large class of self-equitable
copula-based measures. Since the marginal variables
X,Y are independent if and only if the corresponding
copula distribution is uniform, we measure the de-
pendence between X, Y through the distance between
their copula distribution and the uniform distribution.
Let the Copula Distance CD, be the L, distance
between a copula density and the uniform copula
density m(u,v) = 1.

D, = // le(u,0) — 1°dudv, a>0. (2)

Combining Eq.4 gn [6] and Eq.(2) here, CDy is the
theoretical value of HSNIC in the large data limit. Our
first result is that, the Copula Distance is self-equitable
when a > 1.

Lemma 1 The Copula-Distance CD, with o > 1 is
self-equitable.

The proof follows from Theorems S3 and S4 of [12],
since g(x) = |z — 1]|“ is convex when a > 1.

However, in practice, regression Y = f(X)+e with ad-
ditive noise does not capture all types of noise. In some
cases, for example in sensor measurements, the de-
terministic signal is hidden in continuous background
noise. Figure 2 illustrates these two types of noise.
The Left subfigure shows additive noise on a deter-
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Table 1: Pearson correlation coefficient on three function relationships.

ministic sinusoidal function. The Right subfigure is
the same deterministic signal on a uniform background
noise. This is mathematically described by a mixture
copula: the uniform copula II(u,v) = uwv on a unit
square I? is added to a deterministic signal Cy, which
is a singular copula [20]. An equitable dependence
measure should give the same value for all types of
deterministic signal Cs.

Definition 2 A dependence measure D[X;Y] is
robust-equitable if and only if D|X;Y] = p when-
ever (X,Y) follows a distribution with copula C' =
pCs + (1 — p)I, for a singular copula Cs.

Additive Noise Mixture Noise

Figure 2: Left: Additive noise for self-equitability.
Right: Mixture noise for robust-equitability.

Both MI and CDy are not robust-equitable since their
theoretical values are always oo for this setting when
p > 0. Thus in practice, their ranking of features under
this type of noise is mostly affected by the estimation
errors in MI and CDy, which is very sensitive to sample
size. They are very difficult to estimate in this setting,
which cause inconsistencies in feature selection, and
can result in large prediction errors.

2.2 Robust Copula Dependence

Robust copula dependence is defined as RCD =
3CDy = 1 [[}5 |e(u,v) — 1|dudv. RCD is a copula
density-based measure that agrees with the Pearson
correlation coefficient when the deterministic signal
in Definition 2 is linear. RCD is self-equitable by
Lemma 1. Moreover, RCD is also robust-equitable,
which means it can deal with both noise types in Fig-
ure 2.

Lemma 2 The robust copula dependence RCD is
robust-equitable.

Proof.
tion and robust-equitability definition 2:

By the robust copula dependence defini-
RCD =

3D [s Cldu, dv)+ [ 12 s |(1=p)~1|dudv] = 5[p+p] =
p, where S is the support of the singular copula Cs.

Mathematically, RCD is equivalent to Silvey’s
Delta [25]: A = [[._ [p(z.y) — px(x)py (y)]dzdy,
where px and py are the marginal probability densities
for X and Y, p is the joint probability density for X
and Y, and ¢(z,y) = p(z,y)/[px (2)py (y)]. [25] inter-
prets ¢ as the Radon-Nikodym derivative of the joint
distribution with respect to the product of marginal
distributions and can cover the possibility of singular-
ity. Also the definition holds for X and Y with higher
dimensions dx > 1 and dy > 1. We study the estima-
tion errors next, and provide a practical estimator for

RCD.

2.3 Statistical Estimation Errors

Feature selection with a non-self-equitable dependence
measure prefers certain types of relationships. Feature
selection with a non-robust-equitable dependence mea-
sure (such as MI and CD3) is often sensitive to sample
size. Even for a tiny proportion of deterministic sig-
nal, MI = oo and CDs = oo in the large data limit.
Their ranking of features in finite sample size is very
much determined by the estimation errors in MI and
CDs.

We theoretically show that MI and CDs are much
harder to estimate compared to the robust-equitable
RCD. This is due to the instability in the theoretical
values of MI and CDs. For example, MI = oo when
10% of linear deterministic data ¥ = X is mixed with
continuous uniform background noise on I?. In con-
trast, MI = 1 when these 10% of data instead fall
around the line Y = X in a very small strip of area
0.1/exp(10) = 4.5 x 1076, No estimator can do well in
these two almost indistinguishable distributions with
very different MI values (co and 1). We formally quan-
tify the estimation difficulty through the minimax con-
vergence rate over a family €. Denote z = (u,v). Let
¢ be the family of continuous copulas with the density
satisfying the following Holder condition on the region
where ¢(z) is bounded above by some constant M > 1,
denoted as Aj;:

le(z1) — c(2z2)| < Mi||z1 — 221, 3)
for a constant M; and for all z; € Ay, 2o € Ay, and
| - 1];;, denotes the I; norm.
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The Holder condition (only possible on bounded den-
sity regions) is a standard condition for studying den-
sity estimation errors. However, all common copula
densities, except the independent copula [20], are un-
bounded and cannot satisfy the Holder condition on
the whole I2. Thus the estimation errors should be
studied over the family ¢ instead. MI has infinite min-
imax risk over the family €, thus it cannot be consis-
tently estimated.

Theorem 3 Let MI be any estimator of the mu-
tual information MI based on the observations Z, =
(U1,V), ..., Zy, = (Upn, Vy,) from a copula distribution
Cec. And let C/’ba be any estimator of the CD,, in
equation (2). Then

sup E[|MI(C) — MI(C)]]
CcCece

oo, and
sup E[|CDo(C) — CD,(C)]] =
Ccee¢

(4)

The detailed proof is provided in the supplementary
material. This theorem states that MI and CDy can-
not be consistently estimated over the family €. This
result does not depend on the estimation method used,
as it reflects the theoretical instability of these quanti-
ties. There are many estimators for MI: kernel density
estimation (KDE) [19], the k-nearest-neighbor (KNN)
[15], maximum likelihood estimation of density ratio
[27]. However, practitioners are often frustrated by
the unreliability of these estimation [3, 24]. This the-
orem provides a theoretical explanation.

In contrast to MI, the contribution from the un-
bounded copula density region A§,; to RCD is very
small. Even if ¢(z) cannot be consistently estimated,
its error can be bounded. The following theorem shows
the result for the KDE estimator for RCD.

Theorem 4 Let the KDE estimator of the d-

dimensional copula density based on observations
Z17 o aZn be

1 &, Z—Z

Crde(Z) = — K(= .

We assume the following conditions:

(5)

e The bandwidth h — 0 and nh® — oo

o The kernel K is mon-negative and has a com-
pact support in, By = {Z : ||Z|;, < 1}, the d-
dimensional unit ball centered at 0.

e The kernel K is bounded. My = maxgsep, K(s),
Jo, K(s)ds =1, p3 =[5 K?(s)ds < oo

Then the plugged-in estimator RCD = RCD(ékqe) has

a risk bound Y
— 2 1
sup E|[RCD—RCDI| < Mih+Y=2 10(—). (6)
Cee Vnhz nh

oo, for any o > 1.

In addition to the KDE based RCD estimator, we can
estimate RCD consistently by plugging in the KNN es-
timator [17] of the copula density: é(z) = k/n/A;(.n)
using copula based observations Zi,Zs, - - ,Z,. Here
r(k,n) is the distance from (d-dimensional) z to the
k-th closest of Zq,Zs, -+ ,Z,, and A, is the vol-
ume of the d-dimensional hyper-ball with radius r.
Then RCD = RCD(2) = Y yz.y54[1 — 1/2(Z:)]/n.
The computational complexity of this estimator re-
mains O(n?logn) for multivariate X and Y (when
dx > 1,dy > 1).

Theorem 5 Assuming c in € has bounded continuous

second order derivative in Ay, k — oo and (k/n) — 0

when n — 0o. Then the plugged-in estimator RCD =
RCD(é) has a risk bound

— k Ca

sup F[|RCD — RCD|| < &1(— —

sup I<aGi+ 2

for some finite constants ¢1 and ¢éa, and € = e(n) is
any sequence converging to 0 slower than k/n.

)74+ 2= +2, (7)

Here, the extra technical assumption on the second
order derivative allows a simpler proof (provided in
the supplement) by citing formulas in [18]. With-
out it, RCD can still be estimated consistently as in
Theorem 4. The error bound (7) is minimized by
e = (k/n)?/4+2) and k = n*/(@+6)  Hence, in the
bivariate (d = 2) case, we have k = O(y/n). Simula-
tions in the supplement suggests a practical estimator
with k = 0.25/n.

When RCD is estimated well under a sample size, fur-
ther increasing the sample size does not change its es-
timation value much. In contrast, MI and CDy values
can continuously change by a large margin as sample
size increases, altering the ranking of features, some-
times to the wrong order.

3 Experimental Results

To empirically verify the properties of RCD in our
theoretical analysis, we design several synthetic ex-
periments and then work with real-world datasets.
To measure the performance of feature selection us-
ing a dependence measure, we calculate the 10-fold
cross-validated mean-squared-error (MSE) of a non-
linear predictor using the selected features. A good
dependence measure should rank the features accord-
ing to MSE. We first use three synthetic examples to
show the robustness of RCD. It should rank features
correctly (in MSE) for different types of functions,
in the large data limit and for unequal sample sizes.
The other measures should provide wrong ranks in at
least one of the three examples due to either non-self-
equitability or non-robust-equitability. For synthetic
data, we also provide the theoretical mean-squared-
error (TMSE) of the best prediction E(Y|X) for each
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feature X. This provides assurance that, for the three
examples, the ranking in MSE is consistent with rank-
ing in TMSE. Therefore, the conclusions are not due
to training error. Then we also investigate whether
this behavior is similarly true in three real data ex-
amples. This confirms that the advantages of self-
equitable and robust-equitable dependence measures
are not just theoretical, but are real in some practical
situations.

Finally, we compare the performance of feature selec-
tion by the filter method mRMR [21], using various
dependence measures as measures of relevance and
redundancy. Notice that the feature selection per-
formance on a particular data set is affected by the
type of existing relationships and the type of predic-
tors used. For example, the Pearson’s correlation with
a linear regression predictor should do best if linear
relationship is dominant in a data set. For a fair
comparison, we measure the performance by the 10-
fold cross-validated MSE of spline regression, a gen-
eral nonlinear predictor [4], using selected features.
We used six benchmark datasets, for nonlinear pre-
dictions, from the UCI Data Repository [16]. Self-
equitability and robust-equitability lead to equitable
and robust feature selection. Hence RCD should pro-
vide stable performance across different types of data,
not necessarily best in each situation. However, over
many data sets with different types of nonlinear re-
lationships, robust-equitable RCD would provide best
average performance as confirmed on these six bench-
mark datasets.

There are some parameters to be set for computing
various dependence measures. For kernel based mea-
sures, we follow the settings used by [6]. For HSNIC,
we set the regularization parameter €, = 10~°n 731 to
satisfy the convergence guarantee given by Theorem 5
from [6]. We set k = 0.25y/n for the k-NN estimator
of MI, RCD and CDs.

3.1 Synthetic Datasets

To compare the performance of each dependence mea-
sure in feature selection, we consider four features
X1, X5, X3, X4 and target variable Y as shown in Fig-
ure 3. Y has a nonmonotonic but deterministic re-
lationship with X; and a linear relationship with X5
plus some additive noise. In addition, Y has linear
relationships with both X3 and X, corrupted by in-
creasing level of continuous background noise. For
each feature X;, we calculate its dependence measure
with Y for different sample sizes n = 300 and 10, 000.
Results are presented in Table 2. In particular, we
are interested in comparing the performance of each
dependence measure from the following perspectives:
(1) how the equitability property affects the predictive
performance; and (2) how the sample size affects the

results.

1.00
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Figure 3: (X31,Y) has a nonmonotonic relationship
with deterministic signal. (X2,Y") has linear relation-
ship with uniform additive noise with width d = 0.2.
(X3,Y) has background noise with linear signal por-
tion 0.75. (X4, Y) is similar to (X3,Y") but with signal
portion 0.5.

Ideal Result. We report the theoretical mean-
squared-error (TMSE) and the 10-fold cross-validated
MSE values in the last two rows of Table 2. They both
increase with X; (i = 1,--- ,4), which means our fea-
tures are arranged in deceasing importance. Note that
our RCD results are consistent with the MSE results,
providing higher scores for those with lower MSE val-
ues and that the ranking is not affected by varying
sample size. In addition, note that the proportion of
deterministic signal, p, to noise (as defined in Defini-
tion 2) for the synthetic data X7 is 1, X3 is 0.75 and
X4 is 0.5 which are close to the values learned by RCD.

Self-equitability. We expect the self-equitable mea-
sures to treat linear and nonlinear models equally (i.e.,
they should prefer X; over X5 because X; is purely
deterministic while X5 has some noise). As we can
see from Table 2, Pearson correlation coefficient py;,,
and kernel-based measures prefer Xs more than X;.
On the other hand, self-equitable measures MI, CDs
and RCD were able to rank the features correctly. Al-
though HSNIC and CHSNIC have the same value as
CDs in the large data limit, empirically they behave
similarly to other non-self-equitable kernel-based mea-
sures due to slow convergence of their estimators [11],
see supplement.

Selection Correctness in Large Sample Size.
Ideally, a measure should not vary too much as the
sample size changes. However, we observe that MI,
CD,, and HSNIC’s ranking of features X5, X3 and X,
is affected when the sample size is increased. With
fixed sample size n = 300, MI correctly ranks X
as having higher dependence with Y compared to
X4. However, when the sample size is increased to
n = 10,000, it reverses the ranking of these features.
This is due to its non-robust-equitability and resulting
estimation difficulty, as proved in Theorem 3. Addi-
tionally, similar phenomenon appears for CHSNIC and
HSNIC on features X5 and X3. We observe that when
n = 300, they rank X5 as having higher dependence
with Y compared to X3. However, when n = 10, 000,
they fail to provide the correct ranking as they did
when n = 300. CDs also incorrectly ranks X5 and X4
higher than X,. These inconsistencies may mislead
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X1 X2

X3 X4

n 300 10k 300

10k 300 10k 300 10k

Plin 0.021 0.00043 0.98
HSIC 0.036 0.033 0.095
CMMD 0.034 0.034 0.095

0.98 0.75 0.75 0.51 0.51
0.093 | 0.061 | 0.057 | 0.025 | 0.025
0.095 | 0.060 | 0.056 | 0.026 | 0.025

HSNIC 3.40 3.57 3.63 3.98 3.55 4.08 1.84 1.81
CHSNIC 3.30 3.60 3.59 3.95 3.53 4.07 1.84 1.81
MI 5.06 7.62 2.28 2.37 3.65 5.46 1.82 2.97
CD. 21.37 102.09 3.75 3.74 24.10 | 146.73 | 7.86 | 44.15
RCD 0.93 0.99 0.77 0.80 0.75 0.76 0.52 0.52
TMSE 0 0 0.0033 | 0.0033 | 0.010 | 0.010 | 0.042 | 0.042

MSE 0.00098 | 0.0023 | 0.0033 | 0.0031 | 0.037 | 0.037 | 0.064 | 0.063

Table 2: Dependence measure values for synthetic data.
Each row corresponds to one type of measure. The MSE

feature selection algorithms since they provide higher
scores for the features with less signal strength when
the sample size is large.

Selection Correctness in Unequal Sample Sizes.
In real applications, some features may have some
missing measurements, resulting in unequal number
of samples among the various features. In this setting,
we still want to compare feature relevance. An ideal
dependence measure should not be influenced by un-
equal sample sizes. Let us take a closer look at MI and
CD3 and on how they rank features X3 and X,. Note
that X3 has a stronger signal-to-noise proportion than
Xy4; thus, ideally, one would like the measure to rank
X3 higher than X, as empirically confirmed by the
MSE results. The ranking provided by MI and CDs is
correct when both features have the same sample size,
n = 10,000. However, if the stronger feature X3 has
missing measurements so that n = 300 for X3, then X3
is ranked lower than X, by CDy, which would mislead
feature selection algorithms. MI will make the same
mistake if the sample size for X, further increases.

3.2 Real Datasets

We first verify that the equitability properties in sub-
section 3.1 are also observed on real data. Then we
perform a comparison of the various dependence mea-
sures in feature selection on six real-world datasets.

Self-equitability. Consider the stock dataset from
StatLib [1]. This dataset provides daily stock prices
for ten aerospace companies. Our task is to determine
the relative relevance of the stock price of the first two
companies (X7, X3) in predicting that of the fifth com-
pany (Y). The scatter plots of Y against X7, X5 are
presented in Figure 4. Ideally, self-equitable measures
should prefer X; over X, because the MSE associ-
ated with X7 is lower even though it has a more com-
plex function form. As we can see from Table 5, self-
equitable measures MI, CDs, and RCD all correctly
select X;. While the non-self-equitable measures fail
to select the right feature.

Sample sizes n = 300 and n = 10,000 are considered.
is presented in the last row.

Lol
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Figure 4: (X;,Y),i = 1,2 in stock dataset
Measures X1 X2
Diim 20.68 | 0.83
HSIC 0.053 | 0.068
CMMD 0.062 | 0.073
HSNIC 1.95 2.16
CHSNIC 1.90 1.99
MI 2.06 1.92
CDq 3.88 3.13
RCD 0.68 0.67
MSE 0.18 0.23

Figure 5: Measures for X7, X, in stock dataset

Selection Correctness in Large Sample Size.
Consider the KEGG metabolic reaction network
dataset [16]. Our task is to select the most relevant
features in predicting target variable ‘Characteristic
path length’ (V). The ‘Average shortest path’ (X7),
‘Eccentricity’ (X2) and ‘Closeness centrality’ (X3) are
used as candidate features. Ideally, a measure should
not vary too much as the sample size changes. How-
ever, in Table 3, CDy’s ranking of features X5 and X3
is affected by the increase in sample size. If we fix sam-
ple size n = 1000, CDs gives the correct ranking, i.e.,
X5 is more relevant than X3 in predicting Y. How-
ever, when the sample size increases to n = 20,000,
CDy will prefer X3. CDs will select the feature X3
when the sample size is large even though it is less
relevant to Y.

Selection Correctness in Unequal Sample Sizes.
We would like to be able to compare feature relevance
even when some features have missing measurements.
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X1 X X3
n 1k 20k 1k 20k 1k 20k
MI 3.39 3.95 3.23 3.66 | 294 | 3.54
CD. | 12.05 | 31.65 | 10.67 | 22.44 | 9.77 | 28.30
RCD | 0.85 0.86 0.82 0.84 | 0.77 | 0.80
MSE | 0.030 | 0.028 | 0.032 | 0.032 | 0.14 | 0.14

Table 3: Dependence measure for three features in
metabolic reaction network dataset
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Figure 6: MSE of mRMR-based Feature Selection on
six real-world datasets

An ideal dependence measure should not be influenced
by unequal sample sizes. Observe the ranking of X3
and X3 from Table 3, when they have equal sample
sizes (either 1000 or 20,000), MI, CD3; and RCD all
give the correct ranking of X; as being more relevant
than X3. However, if there are missing measurements
of X7, then we may need to compare X; with 1000
samples and X3 with 20,000 samples. The feature X3
with less signal strength but larger sample size is given
higher ranking by MI and CD», degrading the perfor-
mance of feature selection algorithms. In contrast, our
new dependence measure RCD is robust to relation-
ship forms, consistently selects the correct features for
large sample size and unequal sample sizes.

Feature Selection Experiments.

Here we compare the performance of various depen-
dence measures used in the computationally efficient
filter method, mRMR [21], for feature selection.

We used the various dependence measures as mea-
sures of relevance and redundancy in the mRMR-based
search strategy, and compare the feature selection re-

sults on six real-world datasets. Due to the quadratic
computational cost of kernel-based measures, up to
1000 samples are used for each dataset. We compare
the results of RCD versus other dependence measures
by showing plots of 10-fold cross-validated MSE us-
ing spline regressor with the features selected by these
measures versus the number of selected features in Fig-
ure 6. We used the Kruskal-Wallis test to compare
the MSE between different measures. Table 4 list the
top dependence measures in order of their MSE. For
each data set, we only include the dependence mea-
sures resulting in MSE equivalent to the best MSE
(p-value > 0.05 for Kruskal-Wallis test). We can see
that RCD performs the best in 5 out of 6 data sets.
Most other measures are worse off in more than half of
the data sets. Only CHSNIC is close in performance.
RCD is best in housing and protein, CHSNIC is best
in whitewine, and they are close in performance for the
other 4 data sets.

Dataset Top Dependence Measures
abalone RCD CHSNIC HSIC

building RCD CHSNIC Pearson CMMD CD»
chemical | RCD CHSNIC

housing RCD CMMD

protein RCD CMMD

whitewine| CHSNIC

Table 4: Measures ranked by predictive M.SE

4 Conclusions

The performance of filter-based feature selection algo-
rithms depends on the choice of dependence measures.
In this paper, we introduced a new concept of robust-
equitability. We proved that robust copula depen-
dence (RCD) is a robust-equitable and self-equitable
dependence measure, and provided a practical estima-
tor. The non-self-equitable HSIC and CMMD pre-
fer features with monotonic relationships over less
noisy features with more complex relationships. MI
and CDs overcome that deficiency but have estima-
tion problems, leading to non-robust feature selec-
tion in large sample sizes and when comparing fea-
tures of unequal sample sizes. The theoretical value
of HSNIC/CHSNIC in the large data limit is equal to
CD,. However, in practice HSNIC and CHSNIC con-
verge very slowly and exhibit similar deficiencies as the
non-self-equitable HSIC and CMMD. In contrast, our
dependence measure RCD can overcome these limita-
tions and rank features according to deterministic sig-
nal strengths, making RCD suitable for feature selec-
tion as confirmed in our empirical study on synthetic
and real-world datasets.
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