
Enumerating Equivalence Classes of Bayesian Networks using EC Graphs

Appendix

Proof of Theorem 2

First recall the following theorem from Verma and
Pearl (1992); Meek (1995).

Theorem 3 Given a PDAG where all the v-structures
are oriented, then the CPDAG can be obtained by re-
peatedly applying the following orientation rules:

R1 Orient b−c into b → c whenever there is an arrow
a → b such that a and c are nonadjacent.

R2 Orient a − b into a → b whenever there is chain
a → c → b.

R3 Orient a − b into a → b whenever there are two
chains a− c → b and a− d → b such that c and d
are nonadjacent.

R4 Orient a − b into a → b whenever there are two
chains a− c → d and c → d → b such that c and
b are nonadjacent and a and d are nonadjacent.

Proof of Theorem 2 (If:) First, note that there are
no compelled edges directed away from X (which
would make X a non-leaf). Next, note that we can
compel each edge S −X towards X one-by-one, each
time checking if Theorem 3 compels another edge in
S�−X towards S� instead. If this never happens, then
all edges S − X can be oriented towards X (which
makes X a possible leaf).

We start by orienting one edge S−X towards S. Con-
sider each of the rules in Theorem 3:

R1 cannot be used to orient the edge from X → S.
First, if there were some other compelled edge
Y → X where Y �∈ S and Y is not adjacent to
S, then the edge S −X should already have been
compelled (i.e., P was not a CPDAG). Otherwise,
we only orient edges from S → X and all S ∈ S
are adjacent.

R2 cannot be used to orient the edge from X → S,
since there is no chain from X to S (which would
imply X was a non-leaf).

R3 cannot be used to orient the edge from X → S,
since all potential neighbors c and d via an unori-
ented edge must be adjancent.

R4 cannot be used to orient the edge from X → S,
since all potential neighbors c and b via an unori-
ented edge must be adjancent.

Since no rule compels us to orient an edge away from
X, we can orient the edges one-by-one to make X a
leaf.

(Only if:) We show that if S is not a clique, then X is
not a leaf. If S is not a clique, then there is a pair S
and S� in S that are non-adjacent. If we orient S −X
as S ← X, then X is not a leaf. If we orient S −X as
S → X, then by Theorem 3, Rule R1, we must orient
S� −X as S� ← X. Hence, X is not a leaf. �

Proofs of Propositions

Proof of Proposition 1 Follows from the definition
of equivalence classes. �

Proof of Proposition 2 This path can be con-
structed by following any path to G in the BN graph,
and then identifying the corresponding CPDAGs in
the EC graph. �

Proof of Proposition 3 Follows from Theorem 10
in Chickering (1995). �

Proof of Proposition 4 Follows from the fact that
the canonical ordering is the ordering with the largest
reverse lexicographic order. �

EXPERIMENTS: EC TREE VS. BN GRAPH

In this section, we provide additional experimental re-
sults on EC trees and BN graphs, to gain a deeper
insight into their performances differences. We first
enumerate the 10-best, 100-best, and 1000-best equiv-
alence classes using a EC tree. Using the BN graph,
we then enumerate an equivalent number of DAGs, per
dataset; Table 4 (from the main text) reports these
numbers. Table 6 summarizes the time (in seconds)
and memory (in GB) used by the EC tree and the
BN graph, during A* search. As seen in the paper,
the EC tree is more efficient (both in speed and mem-
ory consumption) than the BN graph, up to orders of
magnitude differences (at least in time).

Table 7 shows, for the BN graph, the number of gen-
erated nodes, expanded nodes, re-expanded nodes (by
partial-expansion), and the number of invocations of
the oracle. In contrast to the EC tree (from Table 2 in
the main text), the BN graph usually expands and gen-
erates at least one order of magnitude more nodes, and
in some datasets, e.g., letter, msnbc and nltcs, more
than three orders of magnitudes. In addition, Table 8
shows the time spent on computing the heuristic func-
tion Th and the time spent on traversing the search
space TA∗. For the data sets where the k-best equiv-
alence classes contains a large number of DAGs, i.e.,
adult, letter, msnbc and nltcs, the majority of the time



Eunice Yuh-Jie Chen, Arthur Choi, Adnan Darwiche

benchmark 10-best EC 100-best EC 1, 000-best EC
EC tree BN graph EC tree BN graph EC tree BN graph

name n N t m t m t m t m t m t m

adult 14 30162 0.26 1 0.47 1 0.54 1 1.49 1 1.19 1 11.87 1
wine 14 178 0.05 1 0.09 1 0.15 1 0.33 1 0.86 1 3.89 1
nltcs 16 16181 3.36 1 11.34 1 5.56 1 46.91 1 9.58 1 1126.05 4
letter 17 20000 18.11 1 20.68 1 48.31 1 84.07 1 81.72 1 4666.29 4
msnbc 17 291326 145.71 1 896.45 2 153.05 1 ×t 155.07 1 ×t

voting 17 435 1.89 1 2.86 1 2.11 1 3.70 1 6.67 1 17.89 1
zoo 17 101 2.89 1 5.09 1 3.59 1 5.85 1 6.03 1 10.34 1

statlog 19 752 29.28 1 51.89 1 41.99 1 73.77 1 43.89 1 76.99 1
hepatitis 20 126 36.33 1 86.05 2 63.37 1 176.83 2 101.05 2 284.46 4
imports 22 205 174.84 4 455.65 8 223.78 4 603.68 8 224.11 4 604.14 8

parkinsons 23 195 897.81 8 779.90 16 897.97 8 1034.50 16 898.68 8 1450.46 16

Table 6: Time t (in seconds) and memory m (in GBs) used by EC tree and BN graph. n is the number of
variables in the dataset, and N is the size of the dataset. A ×t corresponds to an out-of-time (2hr).

benchmark 10-best EC 100-best EC 1, 000-best EC
name n gen. exp. re-exp. invoke gen. exp. re-exp. invoke gen. exp. re-exp. invoke

adult 14 1672 1352 3852 173 30619 27015 179312 634 245687 215753 2602353 1050
wine 14 8203 3714 0 107 44209 23572 23124 274 461799 254154 500024 595
nltcs 16 56719 53572 452232 633 326813 314528 6021330 1372 2727808 2605978 82512570 2180
letter 17 16296 16227 153430 678 230931 230931 4948105 2726 5443620 5424968 213643716 4963
msnbc 17 1288695 1288339 10564990 2695 ×t ×t

voting 17 5314 4364 346 147 72658 50004 99182 413 114498 106378 421512 3965
zoo 17 1049 704 0 330 12003 3875 3498 539 53562 47162 41698 1695

statlog 19 1915 1558 0 212 19653 12847 12403 628 153048 101570 194334 1029
hepatitis 20 18726 15470 0 4645 167033 105997 105105 13223 1378039 720381 1422924 31854
imports 22 1023 295 0 150 8041 2724 0 404 41007 21475 0 426

parkinsons 23 8233 2732 0 290 32136 10189 0 652 151200 58802 0 1273

Table 7: BN graph: number of nodes (1) generated, (2) expanded, (3) re-expanded, and (4) oracle invocations.

benchmark 10-best EC 100-best EC 1, 000-best EC
name n Th TA∗ Th TA∗ Th TA∗
adult 14 0.46 0.02 0.88 0.61 1.11 10.76
wine 14 0.05 0.04 0.06 0.26 0.12 3.77
nltcs 16 9.22 2.11 15.00 31.90 18.23 1107.81
letter 17 19.52 1.16 48.28 35.79 70.22 4596.07
msnbc 17 126.34 770.11 ×t ×t

voting 17 2.80 0.06 2.86 0.84 7.32 10.57
zoo 17 5.06 0.02 5.77 0.09 9.69 0.65

statlog 19 51.78 0.11 73.47 0.30 75.31 1.68
hepatitis 20 85.56 0.48 174.07 2.76 263.28 21.18
imports 22 454.71 0.93 602.49 1.19 602.71 1.43

parkinsons 23 778.45 1.45 1032.56 1.94 1447.56 2.89

Table 8: Time Th to compute the heuristic function and time TA∗ spent in A* search, in the BN graph (in
seconds).

is spent on exploring the search space, rather the com-
puting the heuristic function. This is in contrast to
the EC tree, illustrated in Table 3, and the smaller
datasets in Table 8, where the heuristic function is the
performance bottleneck. However, on the EC tree, for

these larger datasets, only a very small amount of time
is used to traverse the search space (in Table 3), which
shows that the EC tree is a more compact and efficient
search space for enumerating equivalence classes.


