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A Proofs
Proof of Theorem[], With strong duality holds,
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Proof of Theorem[3 Let
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where Z(x,0) is the normalization term which guarantees fg(y|x) is a valid conditional probability, and 6 is
chosen so that fy(y|x) satisfies statistic constraint. Formally, fo(y|x) € ANE. Then fo(y|x) uniquely minimizes
the Kullback-Leibler divergence over all conditional probabilities g(y|x) € ANE.

To simplify the proof let,
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The inequality holds because the Kullback-Leibler divergence is always non-negative with zero if and only if
g(y|x) = fo(y|x) almost everywhere, thus proving uniqueness.
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The non-negative constraint of @D is superfluous since the log function in the objective function requires non-
negative real numbers. Hence, the Lagrangian of the optimization problem is:
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Proof of Theorem[3 Taking the partial derivative of £(#) with respect to 6 (by Leibniz’s rule for differentiation

under the integral sign):
1 0Z(x,0
/ ftrg ( )

Z(x,0) 09
P fsrc (X) _c
/ ftrg Y|X fa( ftrg(x) (x,y))
E e fotulo [P Y] = (24)

Proof of Corollary[1l Since
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Proof of Theorem[JJ. When the new constraint is applied, the constrained optimization problem @[) becomes:
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Following the same procedure of solving the optimization problem in Theorem [2] the solution takes the form
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fo(ylx) = fo(y|x) S, with Z(x) = fyey fo(y|x)e*9T¢’(xvy), which is not the same form as (I0). Similar to
the proof of Theorem [2| the Lagrangian after plugging in fg(y\x) becomes:
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Take the gradient with respect to 6, the gradient is
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which becomes
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when constraint slack and dual regularization is applied to allow for the noise from finite sample approximation.
We first prove the Lagrangian maximization problem above is equivalent to the reweighted conditional log
likelihood maximization problem.

The reweighted conditional log likelihood maximization is:
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If the same regularization is applied, the gradient with respect to 6 is
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which is the same with the gradient of the Lagrangian maximization problem. Therefore, robust bias-aware
regression is equivalent with reweighted conditional log likelihood maximization problem.

Furthermore, we will prove that when the feature function takes the quadratic form as in Corollary [I} reweighted
conditional log likelihood maximization problem is equivalent with the importance weighted least square regres-
sion.

Since fo(y|x) is a Gaussian distribution N(ug, o) and feature function takes quadratic form, the resulting

distribution fpy(y|x) is also a Gaussian, where
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fM(y\x) can take form N(a + bTx,0?), the reweighted conditional log likelihood maximization problem is
represented as:
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If we consider o2 as a constant, minimizing the above function is equivalent with minimizing the reweighted
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B Data Description

We apply our approach to four datasets with a natural bias between the source and the target distributions and
five datasets with a synthetically created bias as described in Table [1| (Parkinsons dataset has both natural and
synthetically created bias settings). All of the datasets are selected from the UCI repository [3].

o Airfoil is a National Aeronautics and Space Administration (NASA) dataset, obtained from a series of
aerodynamic and acoustic tests of two and three-dimensional airfoil blade sections conducted in an anechoic
wind tunnel.

e Concrete reports the compressive strength of concrete.

e Housing contains the housing values in suburbs of Boston.

e Music was collected to predict the origin of the music, represented by latitude in our experiment setting.
e Crime combines the communities and crime rate information of the cities in different states.

e Parkinsons is composed of a range of biomedical voice measurements from 42 people for remote symptom
progression monitoring.

e WineQuality includes two datasets, related to red and white vinho verde wine samples.

e IndoorLocation is a multi-building multi-floor indoor localization database to test indoor positioning
system that rely on WLAN/WiFi fingerprint.



