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Abstract

In many learning settings, the source data
available to train a regression model dif-
fers from the target data it encounters when
making predictions due to input distribution
shift. Appropriately dealing with this situ-
ation remains an important challenge. Ex-
isting methods attempt to “reweight” the
source data samples to better represent the
target domain, but this introduces strong in-
ductive biases that are highly extrapolative
and can often err greatly in practice. We pro-
pose a robust approach for regression under
covariate shift that embraces the uncertainty
resulting from sample selection bias by pro-
ducing regression models that are explicitly
robust to it. We demonstrate the benefits of
our approach on a number of regression tasks.

1 Introduction

Linear regression is prevalently employed across the
data sciences to understand relationships between vari-
ables and to make predictions [18, 7, 27]. It is com-
monly assumed, in various ways, that the labeled
source data available to train the linear regression
model (pairs of input vectors and output scalars) is
representative of the target data that it will use for
making predictions (given only input vectors). How-
ever, in many datasets, this assumption is not valid;
source data can often come from biased portions of
the input space and measured relationships often vi-
olate the linearity assumption for the output variable
made by the linear regression model. One form of
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this problem, where source data is biased and po-
tentially non-representative, is known as covariate
shift. It occurs when the (stochastic) mapping from
inputs to output is shared by the source and target
data (i.e., source/target data is distributed according
to fsrc(x)f(y|x) and ftrg(x)f(y|x)), but the distribu-
tion of inputs can vary (fsrc(x) 6= ftrg(x)).
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Figure 1: Hahn1 dataset [21] representing the result
of a National Institute of Standards and Technology
(NIST) study of the thermal expansion of copper.

Existing methods for addressing covariate shift em-
ploy importance weighting in an attempt to reweight
available source data so that it may serve as an un-
biased estimate for functions of the target data [30].
Unfortunately, when the amount of covariate shift is
substantial and the number of source samples is small,
importance weighting often leads to very high variance
estimates [13] and inaccurate regression models. We
illustrate the fundamental problems faced in regression
under covariate shift using the Hahn1 dataset shown in
Figure 1 as a running example in this paper. Locally,
the datapoints appear linear in many portions of this
dataset. A biased sample of datapoints from strictly
within those regions will often mislead existing impor-
tance weighting methods into incorrectly linearly ex-
trapolating beyond the data.
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Drawing on a recently developed method for robustly
learning classifiers from data that has sample selection
bias [26], we propose a novel robust approach for re-
gression in the covariate shift setting. Our approach
assumes that the stochastic mapping from inputs to
the output variable is as similar as possible to a “zero-
knowledge” reference distribution, except where statis-
tics measured from source data indicate otherwise. We
develop our robust bias-aware regression approach
and illustrate its behavior on this dataset before evalu-
ating it using additional higher-dimensional datasets.

2 Related Work

Domain adaptation tasks of learning from a source do-
main and predicting in a target domain have been an
area of significant investigation [15, 4, 8, 19, 39, 13],
but it is an inherently di�cult task [5]. We focus on
the special case of covariate shift [30, 38, 16, 17, 22, 32,
9, 37, 31, 36, 29], in which the conditional distribution
of the predicted variable is shared in both source and
target domains. In this section, we review the least
squares linear regression formulation, existing covari-
ate shift methods for regression, and robust minimax
methods leveraged by our approach.

2.1 Least squares linear regression

Ordinary least squares (OLS) regression assumes a lin-
ear relationship between input variables x and output
variable y, ŷa,b(x) = bT x+a, that is parameterized by
weights a (scalar) and b (vector). A standard method
for estimating these parameters is to minimize the sum
of squared residuals between estimator ŷa,b(xi) and
the actual output variable yi for each example i. This
is equivalent to an expected squared loss over the em-
pirical distribution f̃(x)f̃(y|x):

argmin
a,b

Ef̃(x)f̃(y|x)

h
(Y � ŷa,b(X))

2
i
. (1)

This optimization (1), is equivalent to maximizing the
conditional log likelihood of sample data,

argmax
a,b,�

Ef̃(x)f̃(y|x)

h
log f̂a,b,�(Y |X)

i
, (2)

with f̂(y|x) normally distributed with mean ŷa,b(x)
and variance �2 [7]. This corresponds to a zero-mean
Gaussian residual error model with variance �2.

2.2 Importance weighted linear regression

Under covariate shift, the input of source data for esti-
mating the linear regression model comes from a distri-
bution fsrc(x) that di↵ers from the target data input

distribution ftrg(x) on which it will be employed to
make predictions. OLS under covariate shift (1) does
not minimize the residual error (equivalently maximize
the likelihood) of data drawn from the target distribu-
tion, ftrg(x)f(y|x), and it is not a consistent estima-
tor. Importance weighted least squares (IWLS) [31] is
often employed to reweight the source data by the im-
portance ratio, ftrg(x)/fsrc(x), to estimate the target
distribution’s residual error, which is then minimized:

argmin
a,b

Ef̃src(x)f̃(y|x)


ftrg(X)

fsrc(X)
(Y � ŷa,b(X))

2

�
. (3)

This provides consistent estimates that minimize the
target residual error asymptotically:

lim
n!1

min
a,b

E
f
(n)
src (x)f̃(y|x)


ftrg(X)

fsrc(X)
(Y � ŷa,b(X))

2

�

= min
a,b

Eftrg(x)f(y|x) [(Y � ŷa,b(X))] . (4)

However, finite sample generalization bounds require
the importance ratio’s first moment to be finite [12],
Eftrg(x) [ftrg(X)/fsrc(X)] < 1. Unfortunately, many
biased source distributions violate this requirement
(e.g., when the target distribution has larger variance
than the source distribution). Estimates that result
from reweighting under those distributions typically
have high variance, as a small number of source data-
points with large importance weights, ftrg(x)/fsrc(x),
determine the regression model’s parameters.

2.3 Adaptive importance weighted regression

In practice, the adaptive importance weighted least
squares (AIWLS) method, which is a slightly stabilized
variant of IWLS, is often preferable [31]. Following Eq.
(2), the model maximizes the weighted likelihood:

argmax
a,b,�

Ef̃src(x)f̃(y|x)

✓
ftrg(X)

fsrc(X)

◆�

log f̂a,b,�(Y |X)

�
, (5)

where � 2 (0, 1) is the flattening parameter. It bal-
ances the estimator’s consistency and stability, with
ordinary least squares (� = 0), and importance
weighted least squares (� = 1) at its extremes.

2.4 Robust minimax learning

Minimax robust estimation [33, 20] prescribes the
predictor that minimizes the worst-case prediction
loss [2, 35]. When the logarithmic loss (log loss),

Ef((x)f(y|x)

h
� log f̂(y|x)

i
, is employed as the loss

function, the minimax robust estimation approach re-
duces to the principle of maximum entropy [23].

max
f̂(y|x)

H(Y |X) , Ef(x)f̂(y|x)[� log f(Y |X)] (6)

such that: Ef̃(x)f̂(y|x)[�(X, Y )] = Ef̃(x)f̃(y|x)[�(X, Y )].
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This principle is a foundational method for deriv-
ing many familiar exponential family distributions
(e.g., Gaussian, exponential, Laplacian, logistic re-
gression, conditional random fields [24]) by incorpo-
rating constraints of various known statistics, �(·)
[34]. The OLS model, ŷ = a + bT x, results from
robustly minimizing the log-loss in the independent
and identically distributed (IID) setting, subject to
matching quadratic interaction features: �(x, y) =
vector([y xT 1]T [y xT 1]).

A recently developed approach for learning under sam-
ple selection bias investigates learning probabilistic
classifiers when the entropy measure of Eq. (6) is
evaluated according to the target distribution, ftrg(x),
and the constraints of the maximum entropy optimiza-
tion are expectations over the source distribution [26].
We build on this approach by extending it to predict
continuous-valued variables using a relative entropy
(Kullback-Leibler divergence) formulation that avoids
distribution degeneracies in this paper.

3 Robust Bias-Aware Regression

3.1 Minimax estimation formulation

A natural loss function to consider is the conditional
logloss on the target distribution,

loglossftrg(x)(f(y|x), f̂(y|x)) , Eftrg(x)f(y|x)[� log f̂(Y |X)].

This conditional logloss measures the amount of
expected “surprise” (in bits) to see samples from
ftrg(x)f(y|x) when samples are assumed to come from

ftrg(x)f̂(y|x) instead [14]. As described in §2.4, when
the source and target distribution match (or their dif-
ferences are ignored), the minimax robust estimation
approach with this loss function subject to quadratic
interaction feature constraints yields the ordinary least
squares solution to regression. Thus, using this loss
function as a starting point can be viewed as a natural
generalization of standard linear regression methods.

We define the di↵erence in conditional logloss be-
tween an estimator f̂(y|x) and a baseline conditional
distribution f0(y|x) on the target data distribution
ftrg(x)f(y|x) as the relative loss:

rel-lossftrg(x)(f(y|x), f̂(y|x), f0(y|x)) (7)

, loglossftrg(x)(f(y|x),f̂(y|x))�loglossftrg(x)(f(y|x),f0(y|x))

= Eftrg(x)f(y|x)

"
� log

f̂(Y |X)

f0(Y |X)

#
.

It measures the amount of expected relative “sur-
prise” of data from ftrg(x)f(y|x) assumed to come

from ftrg(x)f̂(y|x) instead of ftrg(x)f0(y|x).

We consider the setting in which the conditional dis-
tribution f(y|x) is known to satisfy certain statistical
properties (denoted by set ⌅):

⌅ ,
�
f(y|x) | Efsrc(x)f(y|x)[�(X, Y )] = c

 
, (8)

where c = 1
n

Pn
i=1 �(xi, yi) is a vector of statistics

measured from training data. We seek the regres-
sion model estimator f̂(y|x) that is most robust to
the “most surprising” distribution that can arise from
covariate shift (formally expressed by Definition 1).

Definition 1. The robust bias-aware regression
estimator, f̂(y|x), is the saddle point solution of the
following minimax optimization:

min
f̂(y|x)

max
f(y|x)2⌅

rel-lossftrg(x)(f(y|x), f̂(y|x), f0(y|x)).

This minimax optimization can be interpreted as a
two-player game in which the estimator first chooses
f̂(y|x) to minimize relative loss, and then the adver-
sarial evaluation player chooses f(y|x) to maximize
relative loss. Note that both conditional probabilities
are also constrained to the conditional probability sim-
plex, denoted �: 8x 2 X , y 2 Y, f(y|x) � 0; 8x 2
X ,

R
y
f(y|x) dy = 1.

Theorem 1. The solution of the minimax rela-
tive logloss optimization (Def. 1) minimizes the
target distribution conditional Kullback-Leibler

divergence, Dftrg(x),f̂(y|x)

⇣
f̂(Y |X)||fo(Y |X)

⌘
,

Eftrg(X)f̂(Y |X)

h
log f̂(Y |X)

f0(Y |X)

i
, subject to matching

statistics, c, on the source distribution:

min
f̂(y|x)2�

Dftrg(x),f̂(y|x)

⇣
f̂(Y |X)||fo(Y |X)

⌘
(9)

such that: Efsrc(x)f̂(y|x)[�(X, Y )] = c.

We note that the objective function of this optimiza-
tion is convex and the constraints are each a�ne.
Thus, standard tools from convex optimization can be
employed to obtain the solution to the constrained op-
timization. We establish the parametric solution to
the optimization problem in Theorem 2.

Theorem 2. The robust bias-aware regression for
target distribution ftrg(x) estimated using constraints
from the source distribution fsrc(x) takes the form:

f̂✓(y|x) / fo(y|x)e
� fsrc(x)

ftrg(x)
✓T �(x,y)

, (10)

with parameters obtained via target distribution maxi-
mum conditional log likelihood estimation:

✓ = arg max✓ Eftrg(x)f(y|x)

h
log f̂✓(Y |X)

i
. (11)
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(a) LS (b) IWLS (c) RBA

Temperature, degree kelvin
0 200 400 600 800

C
oe

ffi
ci

en
t o

f t
he

rm
al

 e
xp

an
si

on

0

5

10

15

20

Source data
Target data
LS Mean
95% CI

Temperature, degree kelvin
0 200 400 600 800

C
oe

ffi
ci

en
t o

f t
he

rm
al

 e
xp

an
si

on

0

5

10

15

20

Source data
Target data
IWLS Mean
95% CI

Temperature, degree kelvin
0 200 400 600 800

C
oe

ffi
ci

en
t o

f t
he

rm
al

 e
xp

an
si

on

0

5

10

15

20

25

30

Source data
Target data
RBA Mean
95% CI

Figure 2: The conditional mean (solid blue line) and 95% confidence interval (CI, dashed dot magenta line) of
least squares linear regression (LS), importance weighted least squares (IWLS) and robust bias-aware regression
(RBA) via KL-divergence learned via 90 biased source samples (red cross) and evaluated on 118 target datapoints
(black point) of the Hahn1 dataset.

The distribution’s certainty is moderated by the den-
sity ratio, fsrc(x)/ftrg(x). Note that it is the inverse of
the importance weight, ftrg(x)/fsrc(x) from Eq. (3).
As the density ratio fsrc(x)/ftrg(x) goes to zero, the

estimator f̂(y|x) converges to the baseline conditional
probability f0(y|x). As the ratio goes towards infinity,
the estimator converges to a deterministic point esti-
mate. The behavior of the robust approach is shown in
Figure 2. Where source data is sparse, its uncertainty
increases substantially to provide a more uncertain—
and in this case, better—fit to the non-linearity of the
underlying dataset. In contrast, least squares (LS)
and importance-weighted least squares (IWLS) esti-
mate their extrapolative uncertainty based only on the
(reweighted) source data, yielding over-confident pre-
dictions for the target distribution.

3.2 Parameter Estimation

Optimizing Eq. (11) appears to be di�cult because
samples from ftrg(x)f(y|x) are unavailable to estimate
the target distribution log likelihood. However, the
form of f✓(y|x) prescribed by the robust bias-aware
approach (Theorem 2), enables the gradient of the tar-
get likelihood function to be computed e�ciently using
the source distribution (Theorem 3).

Theorem 3. The gradient of the conditional log like-
lihood estimation takes the following form:

r✓Eftrg(x)f(y|x)

h
log f̂✓(Y |X)

i

= Efsrc(x)f̂✓(y|x) [�(X, Y )]� c. (12)

Unfortunately, computing the needed expectations
can be di�cult when arbitrary feature functions
�(·, ·), are employed. By restricting consideration
to quadratic feature functions and conjugate baseline

conditional distributions f0(y|x), a distribution f̂(y|x)
with tractable normalization and expectation compu-
tations is obtained (Corollary 1). As noted in §2.4,
this set of quadratic features is also the basis for stan-
dard least squares linear regression under a robust log-
arithmic loss formulation. Thus, the representational
power in terms of features is equivalent to OLS and
IWLS variants (§2.2).

Corollary 1. If the base distribution is conditional
Gaussian, fo(y|x) = N(µo, �

2
o), and the feature func-

tion has a quadratic form, �(x, y) = [y xT 1]T [y xT 1]
(where ✓ is the vectorized matrix M):

✓T vector(�(x, y)) = M ·

2
4

y
x
1

3
5
2
4

y
x
1

3
5

T

| {z }
matrix dot product

=

2
4

y
x
1

3
5

T

M

2
4

y
x
1

3
5 ,

then the robust bias-aware regression is also a condi-
tional Gaussian distribution:

f̂M(y|x) ⇠ N(µ(x,M), �2(x,M)), (13)

where: M =


M(y,y) M(y,x1)

M(x1,y) M(1,1)

�

µ(x,M) =

✓
2
fsrc(x)

ftrg(x)
M(y,y) +

1

�2
o

◆�1

✓
�2

fsrc(x)

ftrg(x)
M(y,x1)


x
1

�
+

1

�2
o

µo

◆
(14)

�2(x,M) =

✓
2
fsrc(x)

ftrg(x)
M(y,y) +

1

�2
o

◆�1

. (15)

Correspondingly, by Theorem 2, model parameters are
selected by maximizing the target log likelihood:

M = argmax
M

Eftrg(x)f(y|x)

h
log f̂M(Y |X)

i
, (16)

with gradient: Efsrc(x)f̂M(y|x) [�(X, Y )]� c. (17)
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Base Distribution The base distribution plays an
important role in our robust regression approach. A
simple and straightforward way to set up the base dis-
tribution is to assume that it is a Gaussian distribution
N(µo, �o

2) with mean and variance estimated from the
range [ymin, ymax] of y’s of the source dataset Dsrc:

µo =
ymin + ymax

2
, �2

o =

✓
ymax � µo

2

◆2

. (18)

Hence all of the y’s of the source dataset are located
within the 95% confidence of the base distribution.

Optimization and Regularization Due to the con-
vexity [10] of the robust formulation (Theorem 1),
convergence to a global optimum is guaranteed using
standard gradient-based methods. We solve the opti-
mization problem with the quadratic feature function
defined in Corollary 1 by its dual form (Eq. (16)).
Computing the gradient (Eq. (17)) requires taking
the expectation over the source distribution, which is
challenging. Instead, we use the empirical expectation
over the source dataset, which approximates the real
expectation in the constraints:

Ef̃src(x)f̂M(y|x) [�(X, Y )] ⇡ Efsrcf̂M(y|xi)
[�(xi, Y )] .

Additionally, only estimates of source distribu-
tion statistics, c̃ , Ef̃src(x)f̃(y|x) [�(X, Y )] =
1
N

P
i=1 �(xi, yi), from sample data are used to con-

strain the estimated conditional probability distribu-
tion, f̂(y|x), rather than exact source distribution
statistics, c = Efsrc(x)f(y|x) [�(X,Y )]. This introduces
finite sample error that should be accounted for in the
parameter estimation. One way to accomplish this is
by relaxing the source distribution constraints to incor-
porate some slack, ✏: ||Ef̃src(x)f̂(y|x)[�(X, Y )]� c̃||  ✏.
Primal relaxed constraints correspond with regulariza-
tion of the conditional log likelihood maximization in
the dual [1]. Following Theorem 3, the gradient under
`2-regularization is:

Ef̃src(x)f̂(y|x)[�(X,Y )]� c̃� �M (19)

=
1

N

NX

i=1

Ef̂M(y|xi)
[�(xi, Y )]� c̃� �M,

where � is the regularization weight.

Algorithm 1 shows the batch gradient descent method
for robust bias-aware regression.

3.3 Relation with other methods

Equivalence with Importance Weighting
Robust-bias aware regression (RBA) is a general
framework that reduces to maximizing the relative
target conditional entropy under certain constraints.

Algorithm 1 Batch gradient descent method for ro-
bust bias-aware regression

Input: source dataset {(xi, yi)}N
i=1, source/target dis-

tributions fsrc(x); ftrg(x), feature function �(x, y),
statistics c̃, learning rate �, convergence threshold
⌧ and regularization weight �.

Output: Model parameters M
initialize M
repeat

for each source data example i do

µ(xi,M) 
⇣
2 fsrc(xi)

ftrg(xi)
M(y,y) + 1

�2
o

⌘�1

✓
�2 fsrc(xi)

ftrg(xi)
M(y,x1)


xi

1

�
+ 1

�2
o
µo

◆

�2(xi,M) 
⇣
2 fsrc(xi)

ftrg(xi)
M(y,y) + 1

�2
o

⌘�1

end for
rL  1

N

PN
i=1 Ef̂M(y|xi)

[�(xi, Y )]� c̃� �M
M M� �rL

until ||rL||  ⌧
return M

Due to a lack of target data, constraints are usually
chosen to match feature expectations under the
source distribution. However, it could be helpful to
manipulate the constraints and incorporate feature
matching under a di↵erent distribution based on
some side information, corresponding to di↵erent
assumptions. We assume the statistics provided by
expert knowledge or computed under a generalized
distribution are c0. When we incorporate the strong
assumption that the feature expectation under the
target distribution is equivalent to the expectation of
reweighted features on source data, RBA is equivalent
to IWLS (Theorem 4).

Theorem 4. When a target-distribution-based
constraint, Eftrg(x)f̂(y|x)[�(X, Y )] = c̃0 ,
Ef̃src(x)f̃(y|x)

h
ftrg(X)
fsrc(X)�(X,Y )

i
is applied, and the

feature function takes the quadratic form of Corollary
1, RBA regression is equivalent to IWLS regression.

This indicates that IWLS is a special case under the
general robust bias-aware regression framework.

Di↵erence from Bayesian linear regression

Figure 2(c) may appear similar to a Bayesian treat-
ment of the regression problem (e.g., a Gaussian pro-
cess). We establish a key di↵erence between our
approach and the comparable Bayesian technique,
Bayesian linear regression model (BLR), here. By let-
ting ✓T = [bT a] and ŷ✓(x) = [xT 1]✓, the linear regres-
sion model becomes:

f(y|x) = ŷ✓(x) + ✏ where ✏ ⇠ N(0, �2). (20)
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If we treat �2 as a known constant, BLR [7] assumes
a prior distribution for ✓. The multivariate Gaussian
conjugate prior, ✓ ⇠ N(µ,⌃), is commonly applied.

Given source data (xi, yi)
N
i=1, the posterior distribu-

tion of ✓ is inferred by Bayes’ rule:

f(✓|X,y) = N(A�1(⌃�1µ + ��2XT y),A�1),

where X is a N ⇥ (d + 1) design matrix with each
row [xT

i 1],y = [y1, y2, ..., yn]T and A = ��2XT X +
⌃�1. The predictive distribution f(y|xt,X,y) for
target datapoint xt is given by averaging the out-
put of all possible linear models with respect to the
posterior, yielding a conditional Gaussian distribution
N(µ(xt),⌃(xt)):

µ(xt) = [xT
t 1]A�1(⌃�1µ + ��2XT y) (21)

⌃(xt) = [xT
t 1]A�1[xT

t 1]T + �2 (22)

Thus, as the amount of source data increases, BLR
converges to the OLS regression model [7], minimizing
source distribution squared loss rather than target dis-
tribution squared loss. In contrast, RBA provides non-
linear prediction means that robustly minimize target
logloss with uncertainty in its distribution that is mod-
erated by the density ratio.

Di↵erence from RBA via di↵erential entropy
(RBADE) A straightforward extension of RBA for
continuous-valued variables is to build RBA via con-
ditional di↵erential entropy H(Y |X). Following the
similar procedure built for RBA via KL-divergence in
section §3, the resulting conditional Gaussian distri-
bution of RBADE has the following form:

µ(x,M) = �(M(y,y))
�1(M(y,x1)


x
1

�
) (23)

�2(x,M) =

✓
2
fsrc(x)

ftrg(x)
M(y,y)

◆�1

. (24)

We note that when the density ration fsrc(x)/ftrg(x)
goes to zero, the predictor will give very large logloss
due to predictions produced that have very large un-
certainty (variance). In contrast, our proposed RBA
via KL-divergence (RBAKLD) converges to the base
distribution fo(y|x). A base distribution provides an
upper bound of logloss of RBAKLD.

4 Experiments

4.1 Datasets

We employ publicly available regression datasets from
the UCI repository [3] to evaluate our approach. The
number of examples and features, and a basic descrip-
tion of the output of each dataset are listed in Table 1.
We refer to Appendix B for more detailed information
on each dataset.

Table 1: Datasets for empirical evaluation

Dataset #Examples #Features Output
Airfoil 1503 5 sound pressure

Concrete 1030 8 strength
Housing 506 14 value of home
Music 1059 66 latitude
Crime 1994 127 crime rate

Parkinsons 5725 16 UPDRS score
WineQuality 6497 11 quality score

IndoorLocation 21048 529 latitude

Table 2: Experimental settings
Dataset #Source #Target Bias Setting
Airfoil 150-751 752 synthetic

Concrete 100-515 515 synthetic
Housing 75-253 253 synthetic
Music 160-529 530 synthetic

Parkinsons 1430-2862 2863 synthetic
Crime 40-278 1716-1954 di↵erent state

WineQuality 4898 1599 di↵erent color
Parkinsons 1877 1839 di↵erent age

IndoorLocation 9371 10566 di↵erent floor

4.2 Constructing dataset with bias

We consider experimental settings with both synthet-
ically created bias and naturally occurring bias. The
amounts of source and target data, and the type of
bias for each experiment are listed in Table 2.

Synthetically biased data: We first evaluate our
approach on datasets with artificially created bias be-
tween the source and target distributions. This allows
us to show the generalizability of the proposed method
on a larger number of controlled experiments. Given a
dataset D = {xi, yi}n

i=1, we create biased source Dsrc

and target Dtrg datasets using the following sampling
procedure:

1. Split D randomly and evenly into two disjoint
datasets D1 and D2.

2. Compute the sample mean x̄ and sample covari-
ance Q of D1.

3. Construct a Gaussian distribution N(x̄, Q) and
sample a data xseed to construct another Gaussian
distribution N(xseed, ↵Q) with bias weight ↵ 2
[0, 1]. We employ ↵ = 0.3 in our experiments.

4. Sample from D1 in proportion to N(xseed, ↵Q) to
get the biased source dataset Dsrc.

5. Let D2 be the target dataset Dtrg.

Our sampling procedure is motivated by the purpose
of learning from a biased source dataset and comparing
prediction performance on an unbiased target dataset.
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Naturally Biased Data: To highlight the benefits
of our method in practice, we also conduct experiments
under naturally occurring bias. The crime dataset is
separated into pairs of source and target data where
the source only contains data for a single state and the
target contains data for all other states combined. We
average the results of training with each state as the
source and the other states as the target. The Parkin-
sons dataset is separated by di↵erent age ranges. The
source data includes all samples of subjects whose age
is below 59 while the target dataset holds samples with
subjects ranging in age from 60 to 69. For the wine
quality dataset, we train our model on white wine sam-
ples as the source dataset, and then use red wine sam-
ples as the target dataset. Finally, we evaluate our
approach on a large, high-dimensional dataset: the
IndoorLocation dataset. We use data collected from
low floors as source data and data collected from high
floors as target data.

4.3 Density Estimation

Multivariate Gaussian Kernel density estimation [7] is
a popular density estimation method that converges
to the true probability density of samples asymptot-
ically. Unfortunately it su↵ers from the curse of di-
mensionality and is not reliable in high-dimensional
problems. Importance weighted methods have been
proposed where logistic regression is used to directly
form the estimations [31]. By applying Bayes theorem,
the importance ratio can be written as:

ftrg(x)

fsrc(x)
=

nsrc

ntrg
exp(!̂T


x
1

�
),

where ! is selected to maximize the (regularized) like-
lihood of source and target datapoints, which need
not be labeled. We refer the reader to previous work
[28, 11, 6, 31] for a full description of the derivation
for this approach.

4.4 Comparison Approaches

We compare our approach, robust-bias aware re-
gression via KL-divergence (RBAKLD), with six
other regression methods, which each produce (con-
ditional) Gaussian estimates. We evaluate the em-
pirical logloss of each model on target data Dtrg:
� 1

ntrg

Pntrg

i=1 log f(yi|µ(xi), �
2(xi)). The methods are:

The baseline (BS) Gaussian distribution Y ⇠
N(µo, �

2
o) is independent of input x with mean and

variance estimated from source data (18).

Robust bias-aware regression using di↵erential entropy
(RBADE) yields the conditional Gaussian distribu-
tion Y |X ⇠ N(µ(x,M), �2(x,M)) with mean and

variance defined by Equation (23) and (24) respec-
tively, and M estimated via, e.g., gradient descent.

Bayesian linear regression (BLR) provides the con-
ditional Gaussian distribution Y |X ⇠ N(µ(x),⌃(x))
with mean and variance specified by Equation (21) and
(22) respectively. In practice, it is challenging to get
the prior information for a Bayesian approach. Here
we assume the prior distribution of ✓ follows a Gaus-
sian distribution N(0, I) where I is the identity matrix.
The variance �2 of noise ✏ (Equation (20)) is the same
as the optimal estimator of variance of LS.

LS, IWLS and BAIWLS share the common formu-
lation of the conditional Gaussian distribution Y |X ⇠
N(bT x + a, �2). The linear parameters (b, a) of LS
are estimated by equation (2) that is to maximize the
log-likelihood of source data which also gives the op-
timal estimator of �2 [7]. Being di↵erent from LS,
the linear parameters (b, a) and the variance �2 of
adaptive importance weighted least squares (AIWLS)
are estimated by maximizing adaptive reweighted log-
likelihood from Eq. (5), which is equivalent to min-
imizing adaptive reweighted residual error (Equation
(5)) when estimating (b, a). The argument is very
similar to the case of LS. The linear parameters (b, a)
and the variance �2 of IWLS are given by Equation (5)
with � = 1. For BAIWLS, we consider the minimum
empirical logloss over target dataset Dtrg achieved
by choosing the optimal flattening parameter � from
⌥ = {0.1, 0.2, ..., 0.8, 0.9}.

4.5 Results

As shown in Figure 3, RBAKLD has the smallest av-
erage empirical log loss, and it provides better per-
formance than the other methods on almost all ex-
periment settings. The result varies as the amount of
synthetic bias source data increases, which highlights
the motivation of RBAKLD. When there is only a small
amount of source data that is significantly biased from
the target data, the performance of LS, IWLS and
BAIWLS are much worse than RBAKLD of which the
performance guided by baseline is still sound. When
more of the source data is given, and the covariate
shift still exists, RBAKLD makes significant improve-
ment from the baseline and still performs better than
nearly all other methods even if they have better per-
formance than the baseline in some cases. When the
amount of source data gets close to the target so that
the degree of covariate shift is small, the performance
of RBAKLD converges to the performance of the other
linear regression methods.

As for BAIWLS, we apply a whole range of flattening
parameter � (0.1, 0.2, ..., 0.8, 0.9) in each experiment
and choose the one which gives the minimum empiri-
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Figure 3: Five plots of the average empirical logloss of seven methods for target datasets with 95% confidence
interval with amounts of source data. A bar figure showing empirical log loss on four natural bias datasets.

cal logloss each time. Even though this unrealistically
generous choice of the flattening parameter is given to
BAIWLS, it turns out that the flattening parameter
does not improve much with respect to LS and IWLS.

BLR has better performance than LS, BAIWLS and
IWLS. The reason may be that the prior assumption in
BLR compensates for the biased results from learning
the source. But, as discussed in §3.3, BLR converges
to LS as the amount of source data increases. Shown in
the bar figure of Figure 3, the performance of BLR in
the experimental settings with natural bias and large
number of source data is as worse as LS.

RBADE has competitive performance in some of the
experimental settings. But, it has the worst perfor-
mance in the experimental setting of Parkinsons with
synthetic bias, and it has even worse performance than
BS in the experimental settings of Crime and Parkin-
sons with natural bias. As discussed in §3.3, the reason
may be that RBADE will lead to very large log loss in
wide support if the target data is very biased from the
source one that the density ratio in (24) goes to zero.

5 Conclusion and Future Work

We proposed a novel minimax approach for regres-
sion problems under covariate shift. The minimax ap-
proach minimizes relative loss in the worst case, and
reduces to minimizing conditional Kullback-Leibler di-
vergence. Due to continuous-valued prediction vari-

ables in the regression case, we restrict our constraint
to quadratic feature functions and use conditional
Gaussian baseline distributions, leading to a condi-
tional Gaussian regression model. We compared the
proposed robust method with a range of existing re-
gression models on both synthetically created and nat-
ural bias experimental settings of a range of real regres-
sion datasets including large size and high dimensional
datasets to show its benefit under covariate shift.

A number of important extensions remain as future
work. One important generalization is to expand the
applicability of our approach to settings where the re-
gression model’s output is multivariate. Motivated by
benefits observed in the classification setting [25], ac-
tive learning for regression using this model as the ba-
sis for both prediction and label solicitation strategies
is also an interesting avenue of future research. We
plan to conduct experiments in each of these areas in
the future.
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