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Abstract

We consider the problem of learning from dis-
tributed data in the agnostic setting, i.e., in
the presence of arbitrary forms of noise. Our
main contribution is a general distributed
boosting-based procedure for learning an ar-
bitrary concept space, that is simultane-
ously noise tolerant, communication efficient,
and computationally efficient. This improves
significantly over prior works that were ei-
ther communication efficient only in noise-
free scenarios or computationally prohibitive.
Empirical results on large synthetic and real-
world datasets demonstrate the effectiveness
and scalability of the proposed approach.

1 INTRODUCTION

Distributed machine learning has received increasing
attention in this “big data” era (Jordan and Mitchell,
2015). The most common use case of distributed learn-
ing is when the data cannot fit into a single machine,
or when one wants to speed up the training process by
utilizing parallel computation of multiple machines (Li
et al., 2014; Zhang et al., 2013, 2012). In these cases,
one can usually freely distribute the data across en-
tities, and an evenly distributed partition would be a
natural choice.

In this paper, we consider a different setting where
the data is inherently distributed across different lo-
cations or entities. Examples of this scenario include
scientific data gathered by different teams, or customer
information of a multinational corporation obtained in
different countries. The goal is to design an efficient
learning algorithm with a low generalization error over
the union of the data. Note that the distribution of the
data from each source may be very different. There-
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fore, to deal with the worst-case situation, we assume
the data can be adversarially partitioned. This sce-
nario has been studied for different tasks, such as su-
pervised learning (Balcan et al., 2012; Daumé et al.,
2012; Bellet et al., 2015), unsupervised learning (Bal-
can et al., 2013, 2014), and optimization (Boyd et al.,
2011; Jaggi et al., 2014).

Traditional machine learning algorithms often only
care about sample complexity and computational com-
plexity. However, since the bottleneck in the dis-
tributed setting is often the communication between
machines (Balcan et al., 2012), the theoretical analysis
in this paper will focus on communication complexity.
A baseline approach in this setting would be to uni-
formly sample examples from each entity and perform
centralized learning at the center. By the standard
VC-theory, a sampling set of size O( dε2 log 1

ε ) is suffi-
cient. The communication complexity of this approach
is thus O( dε2 log 1

ε ) examples.

More advanced algorithms with better communication
complexities have been proposed in recent works (Bal-
can et al., 2012; Daumé et al., 2012). For example, Bal-
can et al. (2012) propose a generic distributed boosting
algorithm that achieves communication with only log-
arithmic dependence on 1/ε for any concept class. Un-
fortunately, their method only works in the standard
realizable PAC-learning setting, where the data can be
perfectly classified by a function in the hypothesis set
and is noiseless. This is because many boosting algo-
rithms are vulnerable to noise (Dietterich, 2000; Long
and Servedio, 2008).

The realizable case is often unrealistic in real-world
problems. Therefore, we consider the more general
agnostic learning setting (Kearns et al., 1994), where
there is no assumption on the target function. Since it
is impossible to achieve an arbitrary error rate ε, the
goal in this setting is to find a hypothesis with error
rate close to opt(H), the minimum error rate achiev-
able within the hypothesis set H. The error bound is
often in the form of O(opt(H))+ε. Balcan et al. (2012)
propose an algorithm based on the robust generalized
halving algorithm with communication complexity of
Õ(k log(|H|) log(1/ε)) examples. However, the algo-
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rithm works only for a finite hypothesis set H and is
computationally inefficient.

We propose a new distributed boosting algorithm that
works in the agnostic learning setting. While our al-
gorithm can handle this much more difficult and more
realistic scenario, it enjoys the same communication
complexity as in (Balcan et al., 2012) that is loga-
rithmic in 1/ε and exponentially better than the nat-
ural baselines. The algorithm is computationally effi-
cient and works for any concept class with a finite VC-
dimension. The key insight, inspired by Balcan et al.
(2012), is that a constant (independent of ε) number of
examples suffice to learn a weak hypothesis, and thus if
the boosting algorithm only needs O(log 1

ε ) iterations,
we obtain the desired result.

The key challenge in this approach is that design-
ing an agnostic boosting algorithm is highly non-
trivial, even in the centralized setting. The first ag-
nostic boosting algorithm was proposed in (Ben-David
et al., 2001). Although the number of iterations is
O(log 1

ε ) and is asymptotically optimal, their bound
on the final error rate is much weaker: instead of
O(opt(H)) + ε, the bound is O(opt(H)c(β)) + ε, where
c(β) = 2(1/2 − β)2/ ln(1/β − 1). Subsequent works
(Kanade and Kalai, 2009; Gavinsky, 2003; Feldman,
2010) significantly improve the bound on the error
rate. However, their algorithms all require O(1/ε2)
iterations, which can in turn result in O(1/ε2) com-
munication in the distributed setting.

We summarize our solution to the above challenge and
other major contributions as follows.

• We show an agnostic boosting algorithm with a
good error bound that only requires O(log 1

ε ) iter-
ations, by performing novel analysis of a boosting
algorithm (Kale, 2007) previously analyzed only
in the realizable case. Our approach outperforms
previous results, which either use O(1/ε2) itera-
tions (Kanade and Kalai, 2009; Feldman, 2010;
Gavinsky, 2003) or achieves a much weaker error
bound (Ben-David et al., 2001). Note that this
could be of independent interest beyond the dis-
tributed setting.

• We efficiently adapt the agnostic boosting algo-
rithm to the distributed setting. This results in
the first algorithm that is both computationally
efficient and communication efficient to learn a
general concept class in the distributed agnostic
learning setting.

• Our boosting-based approach is flexible in that it
can be used with various weak learners. Further-
more, the weak learner only needs to work in the
traditional centralized setting rather than in the

more challenging distributed setting. This makes
it much easier to design new algorithms for differ-
ent concept classes in the distributed setting.

• We empirically comparing our algorithm to the
existing distributed boosting algorithm (Balcan
et al., 2012). It does much better on the syn-
thetic dataset and achieves promising results on
real-world datasets as well.

2 PROBLEM DEFINITION

We first introduce agnostic learning as a special case
of the general statistical learning problem. Then, we
discuss the extension of the problem to the distributed
setting, where the data is adversarially partitioned.

2.1 Statistical learning problem

In statistical learning, we have access to a sampling or-
acle according to some probability distribution D over
X × {−1, 1}. The goal of a learning algorithm is to
output a hypothesis h with a low error rate with re-
spect to D, defined as errD(h) = E(x,y)∼D(h(x) 6= y).
Often, we compare the error rate to the minimum
achievable value within a hypothesis set H, denoted by
errD(H) = infh′∈H errD(h′). More precisely, a com-
mon error bound is in the following form.

errD(h) ≤ c · errD(H) + ε, (1)

for some constant c ≥ 1 and an arbitrary error param-
eter ε > 0.

Many efficient learning algorithms have been proposed
for the realizable case, where the target function is in
H and thus errD(H) = 0. In this paper, we con-
sider the more general case where we do not have
any assumption on the value of errD(H). This is of-
ten called the agnostic learning setting (Kearns et al.,
1994). Ideally, we want c in the bound to be as close
to one as possible. However, for some hypothesis set
H, achieving such a bound with c = 1 is known to be
NP-hard (Feldman et al., 2009).

2.2 Extension to the distributed setting

In this work, we consider the agnostic learning prob-
lem in the distributed learning framework proposed by
Balcan et al. (2012). In this framework, we have k enti-
ties. Each entity i ∈ [k] has access to a sampling oracle
according to a distribution Di over X×{−1, 1}. There
is also a center which can communicate with the k en-
tities and acts as a coordinator. The goal is to learn
a good hypothesis with respect to the overall distribu-
tion D = 1

k

∑k
i=1Di without too much communication
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among entities. It is convenient to calculate the com-
munication by words. For example, a d-dimensional
vector counts as O(d) words.

Main goal The problem we want to solve in this
paper is to design an algorithm that achieves error
bound (1) for a general concept class H. The com-
munication complexity should depend only logarith-
mically on 1/ε.

3 DISTRIBUTED AGNOSTIC
BOOSTING

In this work, we show a distributed boosting algorithm
for any concept class with a finite VC-dimension d. In
the realizable PAC setting, the boosting algorithm is
assumed to have access to a γ-weak learner that, un-
der any distribution, finds a hypothesis with error rate
at most 1/2− γ. This assumption is unrealistic in the
agnostic setting since even the best hypothesis in the
hypothesis set can perform poorly. Instead, following
the setting of (Ben-David et al., 2001), the boosting
algorithm is assumed to have access to a β-weak ag-
nostic learner defined as follows.

Definition 1. A β-weak agnostic learner, given any
probability distribution D, will return a hypothesis h
with error rate

errD(h) ≤ errD(H) + β.

Detailed discussion of the existence of such weak learn-
ers can be found in (Ben-David et al., 2001). Since
error of 1/2 can be trivially achieved, in order for the
weak learner to convey meaningful information, we as-
sume errD(H) < 1/2 − β. Some prior works use dif-
ferent definitions. For example, Kalai et al. (2008) use
the definition of (α, γ)-weak learner. That definition
is stronger than ours, since an (α, γ)-weak learner in
that paper implies a β-weak learner in our paper with
β = α − γ. Therefore, our results still hold by using
their definition. Below we show an efficient agnostic
boosting algorithm in the centralized setting.

3.1 Agnostic boosting: centralized version

The main reason why many boosting algorithms (in-
cluding AdaBoost (Freund and Schapire, 1997) and
weight-based boosting (Mohri et al., 2012; Shalev-
Shwartz and Ben-David, 2014)) fail in the agnostic set-
ting is that they tend to update the example weights
aggressively and may end up putting too much weight
on noisy examples.

To overcome this, we consider a smoothed boosting al-
gorithm shown in Algorithm 1, based on the a boosting

Algorithm 1 Smooth Boosting (Kale, 2007)

Initialization: Fix a γ ≤ 1
2 . Let D(1) to be the

uniform distribution over the dataset S.

for t = 1, 2, . . . , T do

1. Call the weak learner with distribution D(t)

and obtain a hypothesis h(t)

2. Update the example weights

D̂(t+1)(i) = D(t)(i) · (1− γ)`
(t)
i /Z(t)

where `
(t)
i = 1[h(t)(xi) = yi] and Z(t) =∑

iD
(t)(i) · (1 − γ)`

(t)
i is the normalization

factor.

3. Project D̂(t+1) into the feasible set P of ε-
smooth distributions

D(t+1) = arg min
D∈P

RE(D ‖ D̂(t+1))

end for
Output: The hypothesis sign

(
1
T

∑T
t=1 h

(t)
)

technique proposed in (Kale, 2007). This algorithm
uses at most O(log 1/ε) iterations and enjoys a nice
“smoothness” property, which is shown to be helpful in
the agnostic setting (Gavinsky, 2003). While this algo-
rithm was originally analyzed in the realizable case, in
this work we prove that this algorithm actually works
in the much harder agnostic setting. Below we first
state their results in the realizable setting.

The boosting algorithm adjusts the example weights
using the standard multiplicative weight update rule.
The main difference is that it performs an additional
Bregman projection step of the current example weight
distribution into a convex set P after each boost-
ing iteration. The Bregman projection is a general
projection technique that finds a point in the feasi-
ble set with the smallest “distance” to the original
point in terms of Bregman divergence. Here we use a
particular Bregman divergence called relative entropy
RE(p ‖ q) =

∑
i pi ln(pi/qi) for two distributions p

and q. To ensure that the boosting algorithm always
generates a “smooth” distribution, we set the feasible
set P to be the set of all ε-smooth distributions, which
is defined as follows.

Definition 2. A distribution D on S is called ε-
smooth if maxiD(i) ≤ 1

ε|S| ,

It is easy to verify that P is a convex set. The theoret-
ical guarantee of Algorithm 1 is shown in Theorem 1.
The proof is similar to the one in (Kale, 2007), except
that they use real-valued weak learners, whereas here
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we only consider binary hypotheses for simplicity. For
completeness, we include the proof using our notation.

Theorem 1. Given a sample S and access to a γ-weak

learner, Algorithm 1 makes at most T = O( log(1/ε)
γ2 )

calls to the weak learner with ε-smooth distributions
and achieves error rate ε on S.

Proof. The analysis is based on the well-studied on-
line learning from experts problem. In each round t,
the learner has to make a decision based on the ad-
vice of n experts. More precisely, the learner chooses
a distribution D(t) from a convex feasible set P and
follows the advice of the i-th expert with probability
D(t)(i). Then, the losses of each expert’s suggested ac-
tions are revealed as a vector `(t). The expected loss of
the learner incurred by using D(t) is thus `(t)D(t). The
goal is to achieve a total expected loss

∑T
t=1 `

(t)D(t)

not too much more than minD∈P
∑T
t=1 `

(t)D, the cost
of always using the best fixed distribution in P. Step 2
and 3 of Algorithm 1, which is also known as the mul-
tiplicative weights update algorithm, has the following
regret bound (Herbster and Warmuth, 2001).

Lemma 1. For any 0 < γ ≤ 1/2 and any positive
integer T , the multiplicative weights update algorithm
generates distributions D(1), . . . , D(T ) ∈ P where each
D(t) is computed only based on `(1), . . . , `(t−1), such
that for any D ∈ P,

T∑

t=1

`(t)D(t) ≤ (1 + γ)
T∑

t=1

`(t)D +
RE(D ‖ D(1))

γ
.

To use the above result in boosting, we can think of
the n examples in sample S as the set of experts. The
learner’s task is thus to choose a distribution D(t) ∈ P
over the sample at each round. The loss `

(t)
i is de-

fined to be 1[h(t)(xi) = yi], where h(t) is the hypoth-
esis returned by the weak learner. To ensure that the
boosting algorithm always generates a “smooth” dis-
tribution, we set the feasible set P to be the set of all
ε-smooth distributions. Below we show how this can
be applied in boosting, as suggested by Kale (2007).

By the assumption of the γ-weak learner, we have

`(t)D(t) =
∑

i

D(t)(i)1[h(t)(xi) = yi] ≥ 1/2 + γ.

After T = d 2 ln(1/ε)
γ2 e + 1 rounds, we set the final hy-

pothesis f = sign( 1
T

∑T
t=1 h

(t)). Let E ⊆ S be the
set of examples where f predicts incorrectly. Suppose
|E| ≥ εn. Let D = uE , the uniform distribution on E
and 0 elsewhere. It is easy to see that uE ∈ P, since
|E| ≥ εn. For each example (xi, yi) ∈ E, we have

T∑

t=1

`
(t)
i =

T∑

t=1

1[h(t)(xi) = yi] ≤ T/2,

since f misclassifies (xi, yi). Therefore,
∑T
t=1 `

(t)uE ≤
T/2. Furthermore, since |E| ≥ εn, we have

RE(D ‖ D(1)) = RE(uE ‖ D(1)) ≤ ln(1/ε).

Plugging these facts into in Lemma 1, we get

(1/2 + γ)T ≤ (1 + γ)T/2 +
ln(1/ε)

γ
,

which implies T ≤ 2 ln(1/ε)
γ2 , a contradiction.

Note that in Theorem 1, it is not explicitly assumed
to be in the realizable case. In other words, If we
have a γ-weak learner in the agnostic setting, we can
achieve the same guarantee. However, in the agnos-
tic setting, we only have the much weaker and more
realistic assumption of β-weak agnostic learner. The
next theorem shows the error bound we get under this
usual assumption in the agnostic setting.

Theorem 2. Given a sample S and access to a β-weak

agnostic learner, Algorithm 1 uses at most O( log(1/ε)
(1/2−β)2 )

iterations and achieves an error rate 2errS(H)
1/2−β +ε on S,

where errS(H) is the optimal error rate on S achiev-
able using the hypothesis class H.

Proof. The idea is to show that as long as the boost-
ing algorithm always generates some ε′-smooth distri-
butions, the β-weak agnostic learner is actually a γ-
weak learner for some γ > 0, i.e., it achieves error rate
1/2 − γ for any ε′-smooth distributions. In each it-
eration t, the β-weak agnostic learner, given S with
distribution D(t), returns a hypothesis h(t) such that

errD(t)(h(t)) ≤ errD(t)(H) + β ≤ 1

ε′
errS(H) + β.

The second inequality utilizes the ε′-smoothness prop-
erty of D(t). The reason is that if h is the optimal
hypothesis on S, we have

errD(t)(H) ≤ errD(t)(h) ≤ #mistakes on S

ε′|S|

=
1

ε′
errS(h) =

1

ε′
errS(H).

Let 1
ε′ errS(H) + β = 1

2 − γ, or equivalently γ =

( 1
2 − β) − 1

ε′ errS(H). Then, if ε′ ≥ 2errS(H)
1/2−β , we

have γ ≥ 1
2 (1/2 − β) > 0. Therefore, we can use

Theorem 1, and achieves error rate ε′ on S by using

O( log(1/ε′)
(1/2−β)2 ) iterations. Alternatively, it achieves error

rate 2errS(H)
1/2−β + ε by using O( log(1/ε)

(1/2−β)2 ) iterations.

Next, we show how to adapt this algorithm to the dis-
tributed setting.
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3.2 Agnostic boosting: distributed version

The technique of adapting a boosting algorithm to the
distributed setting is inspired by Balcan et al. (2012).
They claim that any weight-based boosting algorithm
can be turned into a distributed boosting algorithm
with communication complexity that depends linearly
on the number of iterations in the original boosting
algorithm. However, their result is not directly ap-
plicable to our boosting algorithm due to the addi-
tional projection step. We will describe our distributed
boosting algorithm by showing how to simulate the
three steps in each iteration of Algorithm 1 in the dis-
tributed setting with O(d) words of communication.
Then, since there are at most O(log(1/ε)) iterations,
the desired result follows.

In step 1, in order to obtain a 2β-weak hypothe-
sis (we use 2β instead of β for convenience, which
only affects the constant terms), the center calls the
β-weak agnostic learner on a dataset sampled from

D(t) = 1
k

∑k
i=1D

(t)
i . The sampling procedure is as fol-

lows. Each entity first sends its sum of weights to the
center. Then, the center samples O( d

β2 log 1
β ) exam-

ples in total across the k entities proportional to their
sum of weights. By the standard VC-theory, the error
rate of any hypothesis on the the sample is within β
to the true error rate with respect to the underlying
distribution, with high probability. It is thus sufficient
to find a hypothesis with error within β to the best
hypothesis, which can be done thanks to the assumed
β-weak learner.

Step 2 is relatively straightforward. The center broad-
casts h(t) and each entity updates its own internal
weights independently. Each entity then sends the
summation of internal weights to the center for the
calculation of the normalization factor. The commu-
nication in this step is O(kd) for sending h(t) and some
numbers. What is left is to show that the projection in
step 3 can be done in a communication efficient way.
As shown in (Herbster and Warmuth, 2001), the pro-
jection using relative entropy as the distance into P,
the set of all ε-smooth distributions, can be done by
the following simple algorithm.

For a fixed index m, we first clip the largest m co-
ordinates of p to 1

εn , and then rescale the rest of the
coordinates to sum up to 1− m

εn . We find the least in-
dex m such that the resulting distribution is in P, i.e.
all the coordinates are at most 1

εn . A naive algorithm
by first sorting the coordinates takes O(n log n) time,
but it is communicationally inefficient.

Fortunately, Herbster and Warmuth (2001) also pro-
pose a more advanced algorithm by recursively find-
ing the median. The idea is to use the median as the

Algorithm 2 Distributed Bregman projection

Input:

Each entity i:

a disjoint subset Wi of W = {w1, . . . , wn}
Center:

n0 = n; C = 0; Cw = 0

while n0 6= 0 do

distributedly find the median θ of (W1, . . . ,Wk)

Each entity i:

Li = {w : w < θ,w ∈ Wi}; Lwi =
∑
w∈Li w

Mi = {w : w = θ, w ∈ Wi}; Mw
i =

∑
w∈Mi

w

Hi = {w : w > θ,w ∈ Wi}; Hw
i =

∑
w∈Hi w

Center:

L =
∑
i |Li|; Lw =

∑
i L

w
i

M =
∑
i |Mi|; Mw =

∑
iM

w
i

H =
∑
i |Hi|; Hw =

∑
iH

w
i

m0 =
1−(C+H) 1

εn

1−(Cw+Hw) and broadcasts it

if θm0 >
1
εn then

C = C +H +M ; Cw = Cw +Hw +Mw

if L = 0 then θ = max(w : w < θ, w ∈ W)

set n0 = L

notify each entity i to set Wi = Li
else

set n0 = H

notify each entity i to set Wi = Hi
end while

Center: m0 =
1−C 1

εn

1−Cw and broadcasts it

Each entity i: set each coordinate as

w′i =

{
1
εn if wi > θ
wim0 if wi ≤ θ

threshold, which corresponds to a potential index m,
i.e., m is the number of coordinates larger than the
median. We then use a binary search to find the least
index m. The distributed version of the algorithm,
shown in Algorithm 2, has the following communica-
tion complexity bound.

Theorem 3. Algorithm 2 projects an n-dimensional
distribution into the set of all ε-smooth distributions P
with O(k log2(n)) words of communication complexity.

Proof. Since Algorithm 2 is a direct adaptation of the
centralized projection algorithm (Herbster and War-
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Algorithm 3 Distributedly finding the median

Input:

Each entity i:

a disjoint subset Wi of W = {w1, . . . , wn}
Each entity i:

Send the median mi of Wi to the center

while |Wi| > 1 for some i ∈ [k] do

Center:

Send m = maximi to entity A

Send m = minimi to entity B

Entity A :

Send n = |i : wi ∈ WA, wi ≥ m| to the center

Entity B :

Send n = |i : wi ∈ WB , wi < m| to the center

Center: Send r = min{n, n} to entity A and B

Entity A: Remove the largest r elements in WA

Entity B: Remove the smallest r elements inWB

Entity A and B:

Send the new median to the center

end while

muth, 2001), we omit the proof of its correctness.
Because we use a binary search over possible thresh-
olds, the algorithm runs at most O(log(n)) iterations.
Therefore, it suffices to show that the communication
complexity of finding the median is at most O(k log n),
which can be achieved by Algorithm 3.

Each entity first sends its own median to the center.
The center identifies the maximum and minimum lo-
cal medians, denoted as m and m, respectively. The
global median must be between m and m, and remov-
ing the same number of elements larger than or equal
to m and less than m will not change the median.
Therefore, the center can notify the two corresponding
entities and let them remove the same number of ele-
ments. At least one entity will reduce its size by half,
so the algorithm stops after O(k log n) iterations. Note
that except for the first round, we only need to com-
municate the updated medians of two entities, so the
overall communication complexity is O(k log n) words.

In practice, it is often easier and more efficient to use
a quickselect-based distributed algorithm to find the
median. The idea is to randomly select and broadcast
a weight at each iteration. This, in expectation, can
remove half of the possible median candidates. This
approach achieves the same communication complex-
ity in expectation.

The complete distributed agnostic boosting algorithm
is shown in Algorithm 4. We summarize our theoreti-
cal results in the next Theorem.

Theorem 4. Given access to a β-weak agnostic

learner, Algorithm 4 achieves error rate 2errD(H)
1/2−β +

ε by using at most O( log(1/ε)
(1/2−β)2 ) rounds, each in-

volving O((d/β2) log(1/β)) examples and an addi-

tional O(kd log2(d log(1/ε)(1/2−β)ε )) words of communication

per round.

Proof. The boosting algorithm starts by drawing from

D a sample S of size n = Õ( log(1/ε)d
(1/2−β)2ε2 ) across the k

entities without communicating them. If S is a cen-
tralized dataset, then by Theorem 2 we know that Al-

gorithm 1 achieves error rate 2errS(H)
1/2−β + ε

2 on S us-

ing O( log(1/ε)
(1/2−β)2 ) iterations. We have shown that Algo-

rithm 4 is a correct simulation of Algorithm 1 in the
distributed setting, and thus we achieve the same er-
ror bound on S. The number of communication rounds
is the same as the number of iterations of the boost-
ing algorithm. And in each round, the communication
includes O(d/β2 log(1/β)) examples for finding the β-
weak hypothesis, O(kd) words for broadcasting the hy-
pothesis and some numbers, and O(k log2(n)) words
for the distributed Bregman projection.

So far we only have the error bound of 2errS(H)
1/2−β + ε

2

on S. To obtain the generalization error bound, note

that with n = Õ( log(1/ε)d
(1/2−β)2ε2 ) and by the standard VC-

dimension argument, we have that with high probabil-

ity errS(H) ≤ errD(H) + (1/2−β)ε
8 , and the general-

ization error of our final hypothesis deviates from the
empirical error by at most ε/4, which completes the
proof with the desired generalization error bound.

4 EXPERIMENTS

We compare the empirical performance of the pro-
posed distributed boosting algorithm with two other
algorithms on synthetic and real-world datasets. The
first one is distributed AdaBoost (Balcan et al., 2012),
which is similar to our algorithm but without the pro-
jection step. The second one is the distributed lo-
gistic regression algorithm available in the MPI im-
plementation of the Liblinear package (Zhuang et al.,
2015). We choose it as a comparison to a non-boosting
approach. Note that Liblinear is a highly-optimized
package while our implementation is not, so the run
time comparison is not absolutely fair. However, we
show that our approach, grounded in a rigorous frame-
work, is comparable to this leading method in practice.
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Algorithm 4 Distributed agnostic boosting algorithm

Initialization:

Center: Access to a β-agnostic weak learner. Set γ = 1
2 ( 1

2 − β)

Each entity i:

Sample Si drawn from Di such that S = ∪iSi with size n = Õ( log(1/ε)d
(1/2−β)2ε2 ))

Set weights v
(1)
i,x = 1/|Si| for each (x, y) ∈ Si

for t = 1, 2, . . . , T do

Each entity i: Send w
(t)
i =

∑
x∈Si v

(t)
i,x to the center

Center: Let W (t) =
∑
i w

(t)
i . Determine the number of examples n

(t)
i to request from each

entity i by sampling O( d
β2 log 1

β ) times from the multinomial distribution w
(t)
i /W (t),

and then send each number n
(t)
i to entity i.

Each entity i: sample n
(t)
i times from Si proportional to v

(t)
i,x and send them to the center

Center: run the β-agnostic weak learner on the union of the received O( d
β2 log 1

β ) examples,

and then broadcast the returned hypothesis h(t)

Each entity i: update the weight of each example (x, y)

v̂
(t+1)
i,x =

{
v
(t)
i,x(1− γ) if h(t)(x) = y

v
(t)
i,x otherwise

Distributedly normalize and then project the weights by Algorithm 2

end for

Output: The hypothesis sign
(

1
T

∑T
t=1 h

(t)
)

Table 1: Average (over 10 trials) error rate (%) and
standard deviation on the synthetic dataset

Noise
Dist.

AdaBoost
Dist.

SmoothBoost
Liblinear

-LR

0.1% 11.64 ± 3.82 4.28 ± 0.66 0.00
1% 25.97 ± 1.56 13.38 ± 4.66 0.00

10% 28.04 ± 0.94 27.07 ± 1.60 37.67

4.1 Experiment setup

All three algorithms are implemented in C using MPI,
and all the experiments are run on Amazon EC2 with
16 m3.large machines. The data is uniformly parti-
tioned across 16 machines. All the results are aver-
aged over 10 independent trials. Logistic regression is
a deterministic algorithm, so we do not show the stan-
dard deviation of the error rate. We however still run
it for 10 times to get the average running time. Since
each algorithm has different number of parameters, for
fairness, we do not tune the parameters. For the two
boosting algorithms, we use T = 100 decision stumps
as our weak learners and set β = 0.2 and ε = 0.1 in all
experiments. For logistic regression, we use the default
parameter C = 1.

4.2 Synthetic dataset

We use the synthetic dataset from (Long and Serve-
dio, 2008). This dataset has an interesting theoretical
property that although it is linearly separable, by ran-
domly flipping a tiny fraction of labels, all convex po-
tential boosting algorithms, including AdaBoost, fail
to learn well. A random example is generated as fol-
lows. The label y is randomly chosen from {−1,+1}
with equal odds. The feature x = 〈x1, . . . , x21〉, where
xi ∈ {−1,+1}, is sampled from a mixture distribution:
1) With probability 1/4, set all xi to be equal to y.
2) With probability 1/4, set x1 = x2 = · · · = x11 = y
and x12 = x13 = · · · = x21 = −y. 3) With probability
1/2, randomly set 5 coordinates from the first 11 and
6 coordinates from the last 10 to be equal to y. Set
the remaining coordinates to −y.

We generate 1,600,000 examples in total for training on
16 machines and test on a separate set of size 100,000.
The results are shown in Table 1. One can see that
our approach (Dist.SmoothBoost), is more resistant
to noise than Dist.AdaBoost and significantly outper-
forms it for having upto 1% noise. In high noise setting
(10%), Liblinear performs poorly, while our approach
achieves the best error rate.
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Table 2: Average (over 10 trials) error rate (%) and standard deviation on real-world datasets

Dataset #examples # features Dist.AdaBoost Dist.SmoothBoost Liblinear-LR

Adult 48,842 123 15.71 ± 0.16 15.07 ± 2.32 15.36
Ijcnn1 141,691 22 5.90 ± 0.10 4.33 ± 0.18 7.57
Cod-RNA 488,565 8 6.12 ± 0.09 6.51 ± 0.11 11.79
Covtype 581,012 54 24.98 ± 0.22 24.68 ± 0.30 24.52
Yahoo 3,251,378 10 37.08 ± 0.15 36.86 ± 0.27 39.15

Table 3: Average run time (s) on real-world datasets

Dataset
Dist.

AdaBoost
Dist.

SmoothBoost
Liblinear

-LR

Adult 5.02 15.54 0.06
Ijcnn1 0.76 9.19 0.10
Cod-RNA 1.08 10.11 0.12
Covtype 3.71 6.48 0.31
Yahoo 3.37 3.79 1.37

4.3 Real-world datasets

We run the experiments on 5 real-world datasets with
sizes ranging from 50 thousands to over 3 millions:
Adult, Ijcnn1, Cod-RNA, and Covtype from the
LibSVM data repository 1; Yahoo from the Yahoo!
WebScope dataset (Chu et al., 2009). The Yahoo
dataset contains user click logs and is extremely imbal-
anced. We trim down this dataset so that the number
of positive and negative examples are the same. The
detailed information of the datasets are summarized
in Table 2. Each dataset is randomly split into 4/5 for
the training set and 1/5 for the testing set.

The average error rates and the total running times
are summarized in Table 2 and Table 3, respectively.
The bold entries indicates the best error rate. Our
approach outperforms the other two on 3 datasets and
performs competitively on the other 2 datasets.

In terms of running time, Liblinear is the fastest on
all datasets. However, the communication of our al-
gorithm only depends on the dimension d, so even for
the largest dataset (Yahoo), it can still finish within 4
seconds. Therefore, our algorithm is suitable for many
real-world situations where the number of examples is
much larger than the dimension of the data.

Furthermore, it is possible to replace the centralized
weak learner (decision stump here) with distributed
weak learners, such as distributed logistic regression,
to further reduce the running time.

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets.

5 CONCLUSION

Our main contribution has two parts. The first part
is a novel analysis of a centralized boosting algorithm
in the agnostic setting, which gives the first agnos-
tic boosting algorithm to achieve an error bound of
O(opt(H))+ε by using only O(log 1/ε) iterations. The
second part is the adaptation of the algorithm to the
distributed setting. The resulting distributed boosting
algorithm enjoys strong performance guarantees, be-
ing simultaneously noise tolerant, communication effi-
cient, and computationally efficient; furthermore, it is
quite flexible in that it can used with a variety of weak
learners. This improves significantly over the prior
work of (Balcan et al., 2012; Daumé et al., 2012) that
were either communication efficient only in noise-free
scenarios or computationally prohibitive. While en-
joying nice theoretical guarantees, our algorithm also
shows promising empirical results on large synthetic
and real-world datasets.

Finally, we raise some related open questions. In
this work we assumed a star topology, i.e., the cen-
ter can communicate with all players directly. An
interesting open question is to extend our results to
general communication topologies. Another concrete
open question is reducing the constant in our error
bound while maintaining good communication com-
plexity. Finally, our approach uses centralized weak
learners for learning general concept classes, so the
computation is mostly done in the center. Are there ef-
ficient distributed weak learners for some specific con-
cept classes? That could provide a more computation
balanced distributed learning procedure that enjoys
strong communication complexity as well.
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