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A Matricization

A tensor A can be unfolded into a matrix A in various ways. We focus here on 2-way unfoldings that specify
a proper partition of {1, . . . ,K} := [K] = {m1, . . . ,mp} ∪ {n1, . . . , nq}, an integer-valued row index function r,
and a column index function c, such that Ai1,...,iK 7→ Ar(im1 ,...,imp ), c(in1 ,...,inq )

. This is simply a rearrangement
of the entries in A hence preserves its Frobenius norm. We use the notation A(r,c) for the 2-way unfolding under
the index functions r and c.

The above tensor unfolding interacts conveniently with the mode-k multiplication, once we define a suitable
matrix Kronecker product. Fix two row index functions r and r̂. The Kronecker product of p matrices U ∈
Rd̂m1

×dm1 , . . . ,W ∈ Rd̂mp×dmp is a matrix that has size
∏p
k=1 d̂mk

×
∏p
k=1 dmk

and satisfies

(U � · · ·�W )ı̂,i = Uı̂m1 ,im1
· · ·Wı̂mp ,imp

, (16)

where ı̂ = r̂(̂ım1
, . . . , ı̂mp

) and i = r(im1
, . . . , imp

).

Similar definitions can be made using two column index functions c and ĉ. It is just algebra to verify that

(A×1 U1 · · · ×K UK)(̂r,ĉ) = (Um1 � · · ·� Ump) A(r,c) (Un1 � · · ·� Unq )>, (17)

where the first and second group of Kronecker product use (̂r, r) and (ĉ, c) respectively.

Example 1 (Mode-k unfolding A(k)). To illustrate the above definition, let us consider the partition [K] =
{k} ∪ {1, . . . , k − 1, k + 1, . . .K} and the index functions

c(i1, . . . , ik−1, ik+1, . . . , iK) = 1 +
∑
j 6=k

(ij − 1)
∏

m>j,m 6=k

dm,

and r(ik) = ik. This is called the mode-k unfolding, together with the notation A(k). Here � reduces to the usual

matrix Kronecker product, and (A×k U)(k) = UA(k). For matrices, we simply have A(1) = A, A(2) = A>, and

A×1 U ×2 V = UAV >.

Example 2 (Balanced mode-k unfolding A[k]). The mode-k unfolding above yields an extremely unbalanced
matrix with size dk ×

∏
j 6=k dj. A more balanced unfolding is proposed in [31], consisting of the partition [K] =

{1, . . . , k} ∪ {k + 1, . . .K} and the index functions

r(i1, . . . , ik) = 1 +

k∑
j=1

(ij − 1)
∏

k≥m≥j+1

dm

c(ik+1, . . . , iK) = 1 +

K∑
j=k+1

(ij − 1)
∏

m≥j+1

dm,

with r̂, ĉ similarly defined. The resulting matrix, denoted as A[k], has size
∏k
j=1 dj ×

∏K
j=k+1 dj. For k = bK/2c,

the unfolding is more like a square matrix, which can be beneficial in completion tasks [31].

B Approximating Tensor Spectral Norm

Let Bd2 be the Euclidean norm ball in a d dimensional space (d is a superscript in Bd2). We can approximate
Bd2 with a polytope, based on a celebrated result from convex geometry [24]: For any d, n ≥ 2 we can find in
polynomial time (at most) dn points {pi}, such that their convex hull Pd satisfies

Pd ⊆ Bd2 ⊆ 1
c

√
d

n log dP
d, (18)
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where c is some universal constant. For n = 1, we can simply take the unit ball of the 1-norm, denoted as Bd1,
and get a similar result

Bd1 ⊆ Bd2 ⊆
√
dBd1. (19)

By counting the volume, it can be proved that the factors in (18) and (19) are the best possible respectively [25].

Specializing to the tensor spectral norm, we simply replace each Euclidean ball constraint with its polytopal
approximation as suggested in (18) or (19), and evaluate the inner product at each of the vertices of the polytope.
Since the matrix trace norm is tractable, we need only execute the polytopal approximation for the last K − 2
balls, i.e., solving the approximation

max
u1∈B

d1
2 ,u2∈B

d2
2 ,u3∈Pd3 ,...,uK∈PdK

〈A,u1⊗ · · ·⊗uK〉 . (20)

So for each vertex p3⊗ · · ·⊗pK (with
∏K
k=3(dk)n of them), we evaluate the matrix spectral norm ‖A×3p3 · · ·×K

pK‖2 and pick the maximum. This yields the optimal solution for (20), which immediately translates to an

α = O(
∏K
k=3

√
nd−1k log dk) approximate solution for the tensor spectral norm (6). If we set n = 1 and use (19),

then α =
∏K
k=3

√
1/dk and only

∏K
k=3 dk matrix spectral norms need to be checked. The overall computational

cost is O(
∏K
k=1 dk). It is also easy to reduce each factor dk to the smaller constant rank(A(k)), or simply

rank(A). For n ≥ 2 we get a log dk factor improvement in the approximation guarantee, at the expense of a
more complicated and costly implementation.

C Proofs omitted in Section 4

Theorem 1. Let ` ≥ 0 be convex, smooth, and have bounded sublevel sets. Denote f(W) = `(W) + λ · κ(W).
Suppose in each iteration t, we find Zt that satisfies

κ(Zt) ≤ 1, 〈Zt,∇`(Wt)〉 ≥ α · max
κ(Z)≤1

〈Z,∇`(Wt)〉 . (21)

Then for all W and for all t ≥ 1, running GCG with ηt = 2
t+2 leads to f(Wt) − f(W)

α ≤ 2C
t+3 , where C is some

constant that does not depend on t or α.

Recall that the function ` is smooth if its gradient is Lipschitz continuous with respect to some norm ‖·‖, namely
that for all W and Z,

`(Z) ≤ `(W) + 〈Z −W,∇`(W)〉+
L

2
‖Z −W‖2, (22)

for some constant L := L‖·‖ ≥ 0. The least squares loss in fact satisfies (22) with equality and L = 2.

Proof. Let W be arbitrary and s = κ(W). Let W̃t+1 be the output of GCG at iteration t+ 1 and Wt+1 be the
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improved iterate after local search. The following chain of inequalities can be easily verified:

f(Wt+1) ≤ f(W̃t+1)

= `(W̃t+1) + λ · κ(W̃t+1)

= ` ((1− ηt)Wt + ηtβtZt) + λ · κ((1− ηt)Wt + ηtβtZt) (definition of W̃t+1)

≤ ` ((1− ηt)Wt + ηtβtZt) + λ(1− ηt)κ(Wt) + ληtβtκ(Zt) (sublinearity of κ)

≤ ` ((1− ηt)Wt + ηtβtZt) + λ(1− ηt)κ(Wt) + ληtβt (definition of Zt)

≤ `
(

(1− ηt)Wt + ηt
s

α
Zt
)

+ λ(1− ηt)κ(Wt) + ληt
s

α
(definition of βt)

≤ f(Wt) + ηt

〈 s
α
Zt −Wt,∇`(Wt)

〉
+
L
∥∥ s
αZt −Wt

∥∥2
2

η2t − ληtκ(Wt) + ληt
s

α
(inequality (22))

≤ min
Z:κ(Z)≤1

f(Wt) + ηt 〈sZ −Wt,∇`(Wt)〉+
L
∥∥ s
αZt −Wt

∥∥2
2

η2t − ληtκ(Wt) + ληt
s

α
(definition of Zt)

= min
Z:κ(Z)≤s

f(Wt) + ηt 〈Z −Wt,∇`(Wt)〉+
L
∥∥ s
αZt −Wt

∥∥2
2

η2t − ληtκ(Wt) + ληt
s

α
(homogeneity of κ)

≤ min
Z:κ(Z)≤s

f(Wt) + ηt(`(Z)− `(Wt)) +
L
∥∥ s
αZt −Wt

∥∥2
2

η2t − ληt · κ(Wt) + ληt
s

α
(convexity of `)

= (1− ηt)f(Wt) + ηt min
Z:κ(Z)≤s

(`(Z) + λ · s
α

) +
L
∥∥ s
αZt −Wt

∥∥2
2

η2t

≤ (1− ηt)f(Wt) + ηt
f(W)

α
+
L
∥∥ s
αZt −Wt

∥∥2
2

η2t (` ≥ 0 and α ∈ (0, 1]).

Therefore,

f(Wt+1)− f(W)

α
≤ (1− ηt)

(
f(Wt)−

f(W)

α

)
+
L
∥∥ s
αZt −Wt

∥∥2
2

η2t .

Recall that ηt = 2
t+2 . An easy induction argument establishes that

f(Wt+1)− f(W)

α
≤ 2C

t+ 3
,

where C := supt L
∥∥ s
αZt −Wt

∥∥2 ≤ 2L(κ2(W)/α2 + D2) < ∞, since Wt is in the sublevel set of {Z : f(Z) ≤
f(W1)}, whose radius is assumed to be bounded by D.

Theorem 2. Fix A ∈ Rd1×···×dK and t ≥
∏K
k=1 dk, then

‖A‖tr = min
{

Σ
t
i=1 ‖ui‖2 · · · ‖zi‖2

}
(23)

= min
{

1
K Σ

t
i=1 ‖ui‖

K
2 + · · ·+ ‖zi‖K2

}
, (24)

where the minimum is taken w.r.t. all factorizations A =
∑t
i=1 ui⊗ · · ·⊗ zi, ui ∈ Rd1 , . . . , zi ∈ RdK .

Proof. We first note that the atomic set A in (4) is compact, so is its convex hull conv(A). Moreover, A is
connected. Recall that the trace norm is defined in (5) via the gauge function κ. Since conv(A) is compact with
0 in its interior, we know the infimum in (5) is attained. Thus there exist ρ ≥ 0 and C ∈ conv(A) so that A = ρC
and ‖A‖tr = κ(A) = ρ. Applying Caratheodory’s theorem we know C =

∑t
i=1 σiûi⊗ · · ·⊗ ẑi for some σi ≥ 0,∑

i σi = 1, ûi⊗ · · ·⊗ ẑi ∈ A and t ≤
∏K
k=1 dk. Let ui = K

√
ρσiûi, · · · , zi = K

√
ρσiẑi we know ‖A‖tr is at least the

right-hand side of (24).

On the other hand, for any A =
∑t
i=1 ui⊗ · · ·⊗ zi, denoting σi = ‖ui‖2 · · · ‖zi‖2 (6= 0 w.l.o.g.), we have

A = (
∑
i σi) ·

∑t
i=1

σi∑t
j=1 σj

Ai, where Ai := ui

‖ui‖2
⊗ · · ·⊗ zi

‖zi‖2
∈ A. Thus, appealing to the definition (5) we

know ‖A‖tr ≤
∑
i σi, i.e. (23) holds with ≤.
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To complete the proof, we apply the arithmetic-geometric mean inequality:∑
i
‖ui‖2 · · · ‖zi‖2 ≤

1
K

∑
i
‖ui‖K2 + · · ·+ ‖zi‖K2 .

(Of course, other elementary symmetric functions can be similarly used in Theorem 2.)

D Comparison with alternative variational forms

We compare the variational forms in Theorem 2 to some existing ones in the tensor literature. Firstly, the
regularization function ∑

i
‖ui‖22 + · · ·+ ‖zi‖22 , (25)

is extensively used in finding CP decompositions, since otherwise the factors could blow up in a way that
still maintains their sum, the so-called degeneracy problem [9]. A second reason for employing (25) is that it
adds strict convexity w.r.t. each factor hence guarantees the convergence of block coordinate ascent. However,
both reasons to promote (25), albeit valid, are weak; there are certainly other, perhaps even better, candidate
regularizations. For instance, (24) enjoys both properties, with the additional equivalence to the trace norm,
which potentially could lead to a low rank solution. The second variational form, appeared in [13], is

‖C‖2F + ‖U‖2F + · · ·+ ‖Z‖2F, (26)

where A = C ×1 U · · · ×K Z is the Tucker decomposition. [13] used (26) to avoid the scaling ambiguity—a weak
motivation for the particular form (26) indeed. Let us show that neither (25) nor (26) is equivalent to the trace
norm. From this regard, the variational forms in Theorem 2 are advantageous and perhaps should be favored
more often in practice.

Example 3. We first prove (25) is not equivalent to the trace norm. Let A = σu⊗ · · ·⊗ z be a rank-1 tensor
with σ > 0 and ‖u‖2 = · · · = ‖z‖2 = 1. It is easy to see that ‖A‖tr = σ. Consider the function:

f(A) := min
{∑

i
‖ui‖22 + · · ·+ ‖zi‖22

}
,

where the minimum is taken w.r.t. to all factorizations A =
∑
i ui⊗ · · ·⊗ zi. Clearly,

f(A) ≤ K · σ2/K .

Choose an appropriate σ > 1 we thus have f(A) < ‖A‖tr. Of course, for any positive constant c, we can choose
appropriate σ such that c · f(A) < ‖A‖tr. Thus (25) is not proportional to the trace norm.

For the function (26), we similarly define

g(A) := inf
{
‖C‖2F + ‖U‖2F + · · ·+ ‖Z‖2F

}
,

where the infimum is taken w.r.t. all Tucker decompositions A = C ×1 U · · · ×K Z. This removes the dependence
of (26) on a particular Tucker decomposition (which may not be unique). Consider the same rank-1 tensor A as
above, we have g(A) ≤ (K + 1)σ2/(K+1) while ‖A‖tr = σ. Again, choosing σ large we have c · g(A) < ‖A‖tr for
any positive constant c. Note that even for K = 2, g(A) is not proportional to the trace norm.

E Efficient gradient computation

An efficient implementation for the surrogate problem (14) using state-of-the-art solvers (e.g. L-BFGS) relies on
the efficient computation of the gradient of `. For simplicity, consider t = 1 hence W = u1⊗ · · ·⊗uK . The idea
generalizes straightforwardly to all t. Let G = ∇`(W). Using the chain rule,

∂`
∂uk

(W)=G ×1 u>1 . . .×k−1 u>k−1 ×k+1 u>k+1. . .×K u>K .

The chain of product on the right-hand side costs O(
∏
k dk), thus a naive implementation for all factors would

cost O(K
∏
k dk). Fortunately, using the identity in (17) we can reduce the cost by a factor of K. Define the

forward and backward accumulators
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Fk := G ×1 u>1 . . .×k−1 u>k−1, Bk := uk+1 ⊗ . . .⊗ uK ,

with F1 := G and BK := 1. Then we have
∂`
∂uk

(W) = Fk ×k+1 u>k+1 . . .×K u>K = (Fk)(k)Bk.

So we need only compute {Fk,Bk}, costing O(
∏
k dk). Since for all k the multiplication (Fk)(k)Bk costs

O(
∏
j≥k dj), the overall time and space costs are both O(

∏
k dk). Clearly the computational savings are possible

due to our explicit low-rank representation, which is not available in other matricization approaches.

F Comparison on completing tensors with low-rank Tucker decompositions

We repeated all comparisons conducted for low CP rank on low Tucker rank: Z0 = S ×1 U1 ×2 U2 ×3 U3, where
S ∈ Rr×r×r and Ui ∈ Rn×r. Our setting here is exactly the same as Section 6.1. Again, all entries of S and Ui
were drawn i.i.d. from a unit normal. We set the default p=20, σ=0.1, r=5 (hence CP rank ≤ 25), and n=50.
Figure 7 shows that even in this case TTN still outperforms HaLRTC and RpLRTC (abbreviated as RP).
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Figure 7: Test RSE on synthetic data generated by Tucker decomposition with rank r × r × r.
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Figure 8: RPCA on amino acid data. p = 40 in c-d.

Higher-order RPCA (HoRPCA), introduced in [16], solves ‖W − Z‖1 + λΩ(W), where Ω(W) is, say the sum of
matrix trace norms of all mode unfoldings. The `1 loss used here aims to instill robustness to (large) outliers.
To apply GCG to our proposed TTN as Ω, we smoothed the `1 loss using a quadratic prox-function as in [39].

Amino acid fluorescence data. This dataset of 3-mode tensor records the fluorescence intensity of 5 solutions
(mode 1), with 201 intervals of emission wavelength (mode 2) and 61 intervals of excitation wavelength (mode
3) [40]. Since the solutions contain three amino acids, the tensor has approximately low rank of 3. To mimic
scatter outliers in chmometrics like [16], we randomly selected 10% entries on which i.i.d. corruptions uniformly
distributed in [−100, 100] were added. Like above, we observe only a fraction, p%, of the entries.

Figure 8(a) shows the RSE on the remaining (90−p)% entries, measured on the tensors recovered by using TTN
and HoRPCA. Over a wide range of p, TTN achieves significantly lower RSE. For a more intuitive illustration,
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we plot in Figure 8(b) the original loading (CP factor) for mode 2, as well as the loadings recovered by TTN and
HoRPCA in Figures 8(c) and 8(d), respectively. Clearly TTN discovers a more faithful reconstruction of the CP
factors in the presence of noise. Loadings for mode 3 are provided in Figure 9.
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Figure 9: Loadings for mode 3 (excitation) with RPCA on amino acid data. p = 40 in b-c.

We also experimented on another fluorescence dataset: Dorrit. It is a 23×116×18 tensor whose modes have
the same meanings as in the amino acid data. However, it already contains scattering noise hence we no longer
corrupted it. In Figure 10(c) and 10(d), we plot the loading for mode 2 recovered by TTN and HoRPCA, with
comparison to that obtained from the noisy raw tensor (Figure 10(b)). All methods used the full tensor with
no subsampling. Referring to the pure component loadings copied to Figure 10(a) from [41, Figure 2], one can
observe that TTN attains a higher level of faithfulness than HoRPCA.

environment the excitation ranging from 200 to 230 nm and the
emission below 250 was excluded from the data set before further
analysis. This gives a data set with dimensions (27� 116� 18). A
four-component PARAFAC model seems to be the most suitable
[13,25]. The excitation and emission loadings that should be
obtained are depicted in Figure 2.
All samples contain severe Rayleigh scatter, which are element-

wise outliers. Moreover, from previous investigations four samples
(sample number 2, 3, 5, and 10) were marked as outlying samples
[13]. However, Engelen and Hubert [1] investigated the data by
robust PARAFAC and found that sample 10 is rather a border case
that an outlier.
Hence, the Dorrit data set comprises both types of outliers,

which makes these data highly suitable for comparing the
proposed combined robust PARAFAC model with the model

obtained from the classical PARAFAC method and the sample
robust PARAFAC approach and the automated scatter identifi-
cation procedure in combination with classical PARAFAC. The
results of fitting the four PARAFAC algorithms are shown in terms
of estimated excitation and emission spectra in Figure 3.
The proposed combined PARAFAC algorithm was the only one

providing excitation and emission loadings which are in agreement
with the pure component spectra shown in Figure 2. The other
three methods lacked accuracy, because the outlying samples and
outlying elements deteriorated these models.
Furthermore, outliers of type 1 were marked in a similar way as

by the robust sample PARAFAC procedure. The diagnostic plot,
introduced for these purposes in Engelen and Hubert [1], could
also be applied to the combined method. Only the computation
of the residual distance, which is placed on the vertical axis of the

Table IV. Simulation results for data containing scatter and bad leverage points

Method Classic Scatter Sample Combined

Bad leverage points 10% 20% 10% 20% 10% 20% 10% 20%

MSE 0.128 0.149 0.103 0.129 0.103 0.106 0.0627 0.0659

Angle (B,B̂) 0.218 0.228 0.166 0.192 0.243 0.233 0.0643 0.0607

Angle (C,Ĉ) 0.199 0.221 0.176 0.204 0.105 0.105 0.0406 0.0401

PVE 0.682 0.678 0.743 0.721 0.744 0.770 0.845 0.858

Table V. Simulation results for data containing scatter and residual outliers

Method Classic Scatter Sample Combined

Residual outliers 10% 20% 10% 20% 10% 20% 10% 20%

MSE 0.119 0.138 0.0701 0.0884 0.112 0.131 0.0629 0.0602

Angle (B,B̂) 0.240 0.264 0.0920 0.148 0.236 0.254 0.0564 0.0503

Angle (C,Ĉ) 0.153 0.209 0.0971 0.156 0.136 0.194 0.0396 0.0399

PVE 0.708 0.672 0.828 0.791 0.724 0.690 0.845 0.858
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Figure 2. The pure component emission (left) and excitation (right) spectra of the Dorrit data.
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Figure 10: Loadings for mode 2 (emission) with RPCA on Dorrit data. p = 100 in c-d.

environment the excitation ranging from 200 to 230 nm and the
emission below 250 was excluded from the data set before further
analysis. This gives a data set with dimensions (27� 116� 18). A
four-component PARAFAC model seems to be the most suitable
[13,25]. The excitation and emission loadings that should be
obtained are depicted in Figure 2.
All samples contain severe Rayleigh scatter, which are element-

wise outliers. Moreover, from previous investigations four samples
(sample number 2, 3, 5, and 10) were marked as outlying samples
[13]. However, Engelen and Hubert [1] investigated the data by
robust PARAFAC and found that sample 10 is rather a border case
that an outlier.
Hence, the Dorrit data set comprises both types of outliers,

which makes these data highly suitable for comparing the
proposed combined robust PARAFAC model with the model

obtained from the classical PARAFAC method and the sample
robust PARAFAC approach and the automated scatter identifi-
cation procedure in combination with classical PARAFAC. The
results of fitting the four PARAFAC algorithms are shown in terms
of estimated excitation and emission spectra in Figure 3.
The proposed combined PARAFAC algorithm was the only one

providing excitation and emission loadings which are in agreement
with the pure component spectra shown in Figure 2. The other
three methods lacked accuracy, because the outlying samples and
outlying elements deteriorated these models.
Furthermore, outliers of type 1 were marked in a similar way as

by the robust sample PARAFAC procedure. The diagnostic plot,
introduced for these purposes in Engelen and Hubert [1], could
also be applied to the combined method. Only the computation
of the residual distance, which is placed on the vertical axis of the

Table IV. Simulation results for data containing scatter and bad leverage points

Method Classic Scatter Sample Combined

Bad leverage points 10% 20% 10% 20% 10% 20% 10% 20%

MSE 0.128 0.149 0.103 0.129 0.103 0.106 0.0627 0.0659

Angle (B,B̂) 0.218 0.228 0.166 0.192 0.243 0.233 0.0643 0.0607

Angle (C,Ĉ) 0.199 0.221 0.176 0.204 0.105 0.105 0.0406 0.0401

PVE 0.682 0.678 0.743 0.721 0.744 0.770 0.845 0.858

Table V. Simulation results for data containing scatter and residual outliers

Method Classic Scatter Sample Combined

Residual outliers 10% 20% 10% 20% 10% 20% 10% 20%

MSE 0.119 0.138 0.0701 0.0884 0.112 0.131 0.0629 0.0602

Angle (B,B̂) 0.240 0.264 0.0920 0.148 0.236 0.254 0.0564 0.0503

Angle (C,Ĉ) 0.153 0.209 0.0971 0.156 0.136 0.194 0.0396 0.0399

PVE 0.708 0.672 0.828 0.791 0.724 0.690 0.845 0.858
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Figure 2. The pure component emission (left) and excitation (right) spectra of the Dorrit data.
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Figure 11: Loadings for mode 3 (excitation) with RPCA on Dorrit data. p = 100 in c-d.




