
Supplementary Material
Fast and Scalable Structural SVM with SlackRescaling

Appendix A Details of binary search

Lemma 1. Let F̄ (λ) = 1
4 maxy∈Y+

(
1
λh(y) + λg(y)

)2
, then

max
y∈Y

Φ(y) ≤ min
λ>0

F̄ (λ)

andF̄ (λ) is a convex function inλ.

Proof. First, letY+ = {y|y ∈ Y , h(y) > 0}, thenmaxy∈Y Φ(y) = maxy∈Y+ Φ(y), since any solutiony such that
h(y) < 0 is dominated byyi, which has zero loss. Second, we prove the bound w.r.t.y ∈ Y+. In the following proof we
use a quadratic bound (for a similar bound see [9]).

max
y∈Y+

Φ(y) = max
y∈Y+

h(y)g(y) = max
y∈Y+

1
4

(
2
√

h(y)g(y)
)2

=
1
4

(

max
y∈Y+

min
λ>0

{
1
λ

h(y) + λg(y)

})2

≤
1
4

(

min
λ>0

max
y∈Y+

{
1
λ

h(y) + λg(y)

})2

(13)

To see the convexity of̄F (λ), we differentiate twice to obtain:

∂2F̄ (λ)
∂λ2

=
1
4

max
y∈Y+

6
1
λ4

h(y)2 + 2g(y)2 > 0

Similar to [11], we obtain a convex upper bound on our objective. Evaluation of the upper boundF̄ (λ) requires using
only theλ-oracle. Importantly, this alternative bound̄F (λ) does not depend on the slack variableξi, so it can be used with
algorithms that optimize the unconstrained formulation (4), such as SGD, SDCA and FW. As in [11], we minimizeF̄ (λ)
usingbinary searchoverλ. The algorithm keeps track ofyλt , the label returned by theλ-oracle for intermediate valuesλt

encountered during the binary search, and returns the maximum labelmaxt Φ(yλt). This algorithm focuses on the upper
boundminλ>0 F̄ (λ), and interacts with the target functionΦ only through evaluationsΦ(yλt) (similar to [11]).

Heejin Choi, Ofer Meshi, Nathan Srebro

Appendix B An example of label mapping

Figure 5: A snapshot of labels during optimiation with Yeast dataset. Each214 − 1 labels is shown as a pot in the figure5.
X-axis is the4(y, yi) and Y-axis is1 + fW (y) − fW (yi).

Appendix C Monotonicity of h and g in λ

Proof. Let g1 = g(yλ1), h1 = h(yλ1), g2 = g(yλ2), andh2 = h(yλ2).

h1 + λ1g1 ≥ h2 + λ1g2, h2 + λ2g2 ≥ h1 + λ2g1

⇔ h1 − h2 + λ1(g1 − g2) ≥ 0,−h1 + h2 + λ2(g2 − g1) ≥ 0

⇔ (g2 − g1)(λ2 − λ1) ≥ 0

Forh, change the role ofg andh.

Appendix D Improvements for the binary search

Appendix D.1 Early stopping

If L = [λm, λM], and both endpoints have the same label, i.e.,yλm = yλM
, then we can terminate the binary search safely

because from lemma4, it follows that the solutionyλ will not change in this segment.

Appendix D.2 Suboptimality bound

Let K(λ) be the value of theλ-oracle. i.e.,

K(λ) = max
y∈Y

h(y) + λg(y). (14)

Lemma 5. Φ∗ is upper bounded by

Φ(y∗) ≤
K(λ)2

4λ
(15)

Fast and Scalable Structural SVM with SlackRescaling

Proof.

h(y) + λg(y) ≤ K(λ)

⇐⇒ g(y)(h(y) + λg(y)) ≤ g(y)K(λ)

⇐⇒ Φ(y) ≤ g(y)K(λ) − λg(y)2

= −λ

(

g(y) −
K(λ)
2λ

)2

+
K(λ)2

4λ
≤

K(λ)2

4λ

Appendix E Proof of the limitation of the λ-oracle search

Theorem 1. Let Ĥ = maxy h(y) andĜ = maxy g(y). For anyε > 0, there exists a problem with 3 labels such that for

anyλ ≥ 0, yλ = argminy∈Y Φ(y) < ε, whileΦ(y∗) =
1
4
ĤĜ.Let Ĥ = maxy h(y) andĜ = maxy g(y). For anyε > 0

andλ > 0, there exists a problem of 3 labels thatyλ = argminy∈Y Φ(y) < ε, andΦ(y∗) − Φ(yλ) =
1
4
ĤĜ.

Proof. We will first prove following lemma which will be used in the proof.

Lemma 6. Let A = [A1 A2] ∈ R2, B = [B1 B2] ∈ R2, andC = [C1 C2] ∈ R2, andA1 < B1 < C1. If B is under the
line AC, i.e.,∃t,0 ≤ t ≤ 1,D = tA + (1 − t)C, D1 = B1, D2 > B2. Then,@λ ≥ 0, v = [1 λ] ∈ R2, such that

v ∙ B > v ∙ A andv ∙ B > v ∙ C (16)

Proof. Translate vectorsA,B, andC into coordinates of[0, A2], [a, b], [C1, 0] by adding a vector[−A1,−C2] to each
vectorsA,B, andC, since it does not changeB − A or B − C. Let X = C1 andY = A2.

If 0 ≤ λ ≤
X

Y
, thenv ∙ A = λY ≤ X = v ∙ C. v ∙ (B − C) > 0 ⇐⇒ (a − X) + λb > 0 corresponds to all the points

aboveline AC. Similarly, if λ ≥
X

Y
, (16) corresponds toa + λ(b − Y) > 0 is also all the points aboveAC.

From lemma6, if y1,y2 ∈ Y , then all the labels which lies under liney1 andy2 will not be found byλ-oracle. In the
adversarial case, this holds when label lies on the line also. Therefore, Theorem1 holds when there exists three labels, for
arbitrary smallε > 0, A = [ε, Ĝ], B = [Ĥ, ε], andC = [12Ĥ, 1

2 Ĝ], Y = {A,B,C}. In this casêΦ ≈ 0.

Appendix F Angular search

We first introduce needed notations.∂⊥(a) be the perpendicular slope ofa, i.e.,∂⊥(a) = − 1
∂(a) = −a1

a2
. ForA ⊆ R2, let

label set restricted toA as~YA = ~Y∩A, andyλ,A = O(λ,A) = argmaxy∈Y,~y∈A h(y)+λg(y) = argmax~y∈~YA
[~y]1+λ[~y]2.

Note that ifA = R2, yλ,R2 = yλ. ForP,Q ∈ R2, defineΛ(P,Q) to be the area below theline PQ, i.e.,Λ(P,Q) = {~y ∈
R2|[~y]2 − [P]2 ≤ ∂⊥(Q − P)([~y]2 − [P]2)}. Υλ = {~y ∈ R2|~Φ(~y) = [~y]1 ∙ [~y]2 ≥ ~Φ(~yλ,A)} be the area aboveCλ, and
Υλ = {~y ∈ R2|~Φ(~y) = [~y]1 ∙ [~y]2 ≤ ~Φ(~yλ,A)} be the area belowCλ.

Recall theconstrainedλ-oracledefined in (8):

yλ,α,β = Oc(λ, α, β) = max
y∈Y, αh(y)≥g(y), βh(y)<g(y)

Lλ(y)

whereα, β ∈ R+ andα ≥ β > 0. Let A(α, β) ⊆ R2 be the restricted search space, i.e.,A(α, β) = {a ∈ R2|β < ∂(a) ≤
α}. Constrainedλ-oracle reveals maximalLλ label within restricted area defined byα andβ. The area is bounded by two
lines whose slope isα andβ. Define a pair(α, β), α, β ∈ R+, α ≥ β > 0 as anangle. The angular search recursively

divides an angle into two different angles, which we call the procedure as asplit. Forα ≥ β ≥ 0, letλ =
1

√
αβ

, z = ~yλ,α,β

andz′ = [λ[z]2, 1
λ [z]1]. LetP be the point amongz andz′ which has the greater slope (any if two equal), andQ be the other

Heejin Choi, Ofer Meshi, Nathan Srebro

point, i.e., if∂(z) ≥ ∂(z′), P = z andQ = z′, otherwiseP = z′ andQ = z. Let R =
[√

λ[z]1 ∙ [z]2
√

1
λ [z]1 ∙ [z]2

]
.

Define split(α, β) as a procedure divides(α, β) into two angles(α+, γ+) = (∂(P), ∂(R)) and(γ+, β+) = (∂(R), ∂(Q)).

First, show that∂(P) and∂(Q) are in betweenα andβ, and∂(R) is between∂(P) and∂(Q).

Lemma 7. For each split(α, β),

β ≤∂(Q) ≤ ∂(R) ≤ ∂(P) ≤ α

Proof. β ≤ ∂(z) ≤ α follows from the definition of constrainedλ-oracle in (8).

∂(z′) =
1

λ2∂(z)
=

αβ

∂(z)
=⇒ β ≤ ∂(z′) ≤ α =⇒ β ≤ ∂(Q) ≤ ∂(P) ≤ α.

∂(Q) ≤ ∂(R) ≤ ∂(P) ⇐⇒ min

{

∂(z),
1

λ2∂(z)

}

≤
1
λ

≤ max

{

∂(z),
1

λ2∂(z)

}

from ∀a, b ∈ R+, b ≤ a =⇒ b ≤
√

ab ≤ a.

After each split, the union of the divided angle (α+, γ) and (γ, β+) can be smaller than angle(α, β). However, following
lemma shows it is safe to use (α+, γ) and (γ, β+) when our objective is to findy∗.

Lemma 8.

∀a ∈ ~YA(α,β), Φ(a) > Φ(yλ,α,β) =⇒ β+ < ∂(a) < α+

Proof. From lemma2, ~YA(α,β) ⊆ Λ(P,Q). Let U = {a ∈ R2|∂(a) ≥ α+ = ∂(P)}, B = {a ∈ R2|∂(a) ≤ β+ = ∂(Q)},

and two contours of functionC = {a ∈ R2|~Φ(a) = Φ(yλ,α,β)}, S = {a ∈ R2|Lλ(a) = Lλ(~yλ,α,β)}. S is the upper
bound ofΛ(P,Q), andC is the upper bound ofC = {a ∈ R2|~Φ(a) ≤ Φ(yλ,α,β)}. P andQ are the intersections of
C andS. For area ofU andB, S is underC, therefore,Λ(P,Q) ∩ U ⊆ C, andΛ(P,Q) ∩ B ⊆ C. It implies that
∀a ∈ (Λ(P,Q) ∩ U) ∪ (Λ(P,Q) ∩ B) =⇒ ~Φ(a) ≤ Φ(yλ,α,β). And the lemma follows fromA(α, β) = U ∪ B ∪ {a ∈
R2|β+ < ∂(a) < α+}.

We associate a quantity we call acapacityof an angle, which is used to prove the suboptimality of the algorithm. For an
angle(α, β), the capacity of an anglev(α, β) is

v(α, β) :=
√

α

β

Note that from the definition of an angle,v(α, β) ≥ 1. First show that the capacity of angle decreases exponentially for
each split.

Lemma 9. For any angle(α, β) and its split(α+, γ+) and(γ+, β+),

v(α, β) ≥ v(α+, β+) = v(α+, γ+)2 = v(γ+, β+)2

Proof. Assume∂(P) ≥ ∂(Q) (the other case is follows the same proof with changing the role ofP andQ), thenα+ =

∂(P) andβ+ = ∂(Q). ∂(Q) =
1

λ2∂(P)
=

αβ

∂(P)
, v (α+, β+) = v(∂(P), ∂(Q)) = λ∂(P) =

∂(P)
√

αβ
. Sinceα is the

upper bound andβ is the lower bound of∂(P),

√
β

α
≤ v(∂(P), ∂(Q)) ≤

√
α

β
. Last two equalities in the lemma are from

v(∂(P), ∂(R)) = v(∂(R), ∂(Q)) =
√

∂(P)√
αβ

by plugging in the coordinate ofR.

Lemma 10. LetB(a) =
1
4

(

a +
1
a

)2

. The suboptimality bound of an angle(α, β) with λ =
1

√
αβ

is

max~y∈~YA(α,β)

~Φ(~y)

Φ(yλ,α,β)
≤ B(v(α, β)).

Fast and Scalable Structural SVM with SlackRescaling

Proof. From lemma2, ~YA(α,β) ⊆ Λ(P,Q) = Λ(z, z′). Let ∂(z) = γ. From 7, β ≤ γ ≤ α. Let m =

argmaxa∈Λ(z,z′)
~Φ(a). m is on line zz′ otherwise we can movem increasing direction of each axis till it meets the

boundaryzz′ andΦ only increases, thusm = tz + (1 − t)z′. ~Φ(m) = maxt
~Φ(tz + (1 − t)z′).

∂~Φ(tz + (1 − t)z′)
∂t

=

0 =⇒ t =
1
2

. m = 1
2 [z1 + λz2 z2 + z1

λ].

max~y∈~YA(α,β)

~Φ(~y)

Φ(yλ,α,β)
=

1
4

(√
z1

λz2
+

√
λz2

z1

)2

=
1
4





√√
αβ

γ
+
√

γ
√

αβ





2

Sincev(a) = v
(

1
a

)
andv(a) increases monotonically fora ≥ 1,

B(a) ≤ B(b) ⇐⇒ max

{

a,
1
a

}

≤ max

{

b,
1
b

}

If

√
αβ

γ
≥

γ
√

αβ
, then

√
αβ

γ
≤
√

α

β
sinceγ ≥ β. If

γ
√

αβ
≥

√
αβ

γ
, then

γ
√

αβ
≤
√

α

β
sinceγ ≤ α. Therefore,

max~y∈~YA(α,β)

~Φ(~y)

Φ(yλ,α,β)
= B

(√
αβ

γ

)

≤ B(v(α, β)).

Now we can prove the theorems.

Theorem2. Angular search described in algorithm2 finds optimumy∗ = argmaxy∈Y Φ(y) at mostt = 2M +1 iteration
whereM is the number of the labels.

Proof. Denoteyt, αt, βt, zt, z
′
t,K

1
t , and K2

t for y, α, β, z, z′,K1, and K2 at iterationt respectively. A(αt, βt) is the
search space at each iterationt. At the first iterationt = 1, the search space contains all the labels with positiveΦ, i.e.,
{y|Φ(y) ≥ 0} ⊆ A(∞, 0). At iterationt > 1, firstly, whenyt = ∅, the search areaA(αt, βt) is removed from the search
sinceyt = ∅ implies there is no label insideA(αt, βt). Secondly, whenyt 6= ∅, A(αt, βt) is dequeued, andK1

t andK2
t is

enqueued. From lemma8, at every step, we are ensured that do not loosey∗. By using strict inequalities in the constrained
oracle with valuables, we can ensureyt which oracle returns is an unseen label. Note that split only happens if a label is
found, i.e.,yt 6= ∅. Therefore, there can be onlyM splits, and each split can be viewed as a branch in the binary tree, and
the number of queries are the number of nodes. Maximum number of the nodes withM branches are2M + 1.

Theorem4. In angular search, described in Algorithm2, at iterationt,

Φ(ŷt) ≥ Φ(y∗)(v
− 4

t+1
1)

whereŷt = argmaxt yt is the optimum up tot, v1 = max

{
λ0

∂(~y1)
,
∂(~y1)
λ0

}

, λ0 is the initial λ used, andy1 is the first

label returned by the constrainedλ-oracle.

Proof. After t ≥ 2r − 1 iteration as in algorithm2 wherer is an integer, for all the angle(α, β) in the queueQ, v(α, β) ≤
(v1)2

1−r

. This follows from the fact that since the algorithm uses the depth first search, after2r − 1 iterations all the nodes
at the search is at leastr. At each iteration, for a angle, the capacity is square rooted from the lemma9, and the depth is
increased by one. And the theorem follows from the fact that aftert ≥ 2r − 1 iterations, all splits are at depthr′ ≥ r, and
at least one of the split contains the optimum with suboptimality bound with lemma10. Thus,

Φ(y∗)
Φ(ŷ)

≤ B
(
(v1)

21−r
)

< (v1)
22−r

≤ (v1)
4

t+1

Heejin Choi, Ofer Meshi, Nathan Srebro

Theorem 5. AssumingΦ(y∗) > φ, angular search described in algorithm2 with λ0 =
Ĝ

Ĥ
, α0 =

Ĝ2

φ
, β0 =

φ

Ĥ2
, finds

ε-optimal solution,Φ(y) ≥ (1− ε)Φ(y∗), in T queries andO(T) operations whereT = 4 log

(
ĜĤ

φ

)

∙
1
ε

, andδ-optimal

solution,Φ(y) ≥ Φ(y∗) − δ, in T ′ queries andO(T ′) operations whereT ′ = 4 log

(
ĜĤ

φ

)

∙
Φ(y∗)

δ
.

Proof. Φ(y∗) > φ ⇔
φ

Ĥ2
<

g(y∗)
h(y∗)

= ∂(~y∗) <
Ĝ2

φ
. v1 = max

{
λ0

∂(y1)
,
∂(y1)
λ0

}

from Theorem4. Algorithm finds

y∗ if β ≤ ∂(~y∗) ≤ α, thus setα =
Ĝ2

φ
andβ =

φ

Ĥ2
. Also from the definition of constrainedλ-oracle,β =

φ

Ĥ2
≤

∂(y1) ≤ α =
Ĝ2

φ
. Therefore,v1 ≤ max

{
λ0

∂(y1)
,
∂(y1)
λ0

}

. And the upper bound of two terms equal whenλ0 =
Ĝ

Ĥ
, then

v1 ≤
ĜĤ

φ
. δ bound follows plugging in the upper bound ofv1, andε =

δ

Φ(y∗)
.

Appendix G Illustration of the angular search

Following figure6 illustrates Angular search. Block dots are the labels from figure5. Blue X denotes the new label
returned by the oracle. Red X is the maximum point. Two straights lines are the upper bound and the lower bound used
by the constrained oracle. Constrained oracle returns a blue dot between the upper and lower bounds. We can draw a line
that passes blue X that no label can be above the line. Then, split the angle into half. This process continues until they∗ is
found.

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a) Iteration 1

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(b) Iteration 2

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(c) Iteration 3

Figure 6: Illustration of the Angular search.

Appendix H Limitation of the constraint λ-oracle search

Theorem3. Any search algorithm accessing labels only throughλ-oracle with any number of the linear constraints cannot
findy∗ in less thanM iterations in the worst case whereM is the number of labels.

Proof. We show this in the perspective of a game between a searcher and an oracle. At each iteration, the searcher query
the oracle withλ and the search space denoted asA, and the oracle reveals a label according to the query. And the claim
is that with any choice ofM − 1 queries, for each query the oracle can either give an consistent label or indicate that there
is no label inA such that afterM − 1 queries the oracle provides an unseen labely∗ which has biggerΦ than all previous
revealed labels.

Denote each query at iterationt with λt > 0 and a query closed and convex setAt ⊆ R2, and denote the revealed label at
iterationt asyt. We will useyt = ∅ to denote that there is no label inside query spaceAt. LetYt = {yt′ |t′ < t}.

Algorithm 3 describes the pseudo code for generating suchyt. The core of the algorithm is maintaining a rectangular area
Rt for each iterationt with following properties. Last two properties are foryt.

Fast and Scalable Structural SVM with SlackRescaling

Algorithm 3 Construct a consistent label setY .

Input: {λt,At}
M−1
t=1 , λt > 0,At ⊆ R2,Atis closed and convex region.

Output: {yt ∈ R2}t=M−1
t=1 , y∗ ∈ R2

Initialize: R0 = {(a, b)|0 < a, 0 < b},Y0 = ∅.
1: for t = 1, 2, . . . ,M − 1 do
2: if Yt−1 ∩ At = ∅ then
3: ỹ = argmaxy∈Yt

h(y) + λtg(y).
4: R̃ = Rt−1 ∩ {y|h(y) + λtg(y) < h(ỹ) + λtg(ỹ) or y /∈ At}.
5: else
6: ỹ = ∅, R̃ = Rt−1 −At.

7: if R̃ 6= ∅ then
8: yt = ∅. Rt = FindRect(R̃)
9: else

10: yt = FindPoint(Rt−1, λt).
11: Rt = FindRect(Shrink(Rt−1, yt, λt)).

12: if yt 6= ∅ then
13: Y = Y ∪ {yt}.

14: Pick anyy∗ ∈ RM−1

1. ∀t′ < t, ∀y ∈ Rt, Φ(y) > Φ(yt′).

2. ∀t′ < t, ∀y ∈ Rt ∩ At′ , h(yt′) + λt′g(yt′) > h(y) + λt′g(y).

3. Rt ⊆ Rt−1.

4. Rt is a non-empty open set.

5. yt ∈ Rt ∩ At

6. yt = argmaxy∈Yt∩At
h(y) + λtg(y).

Note that if these properties holds till iterationM , we can simply sety∗ as any label inRM which proves the claim.

First, we show that property 4 is true.R0 is a non-empty open set. Consider iterationt, and assumeRt−1 is a non-empty
open set. TheñR is an open set sinceRt−1 is an open set. There are two unknown functions,Shrink andFindRect.
For open setA ⊆ R2, y ∈ R2, let Shink(A, y, λ) = A − {y′|Φ(y′) ≤ Φ(y) or h(y′) + λg(y′) ≥ h(y) + λg(y)}.
Note that Shrink(A, y, λ) ⊆ A, and Shrink(A, y, λ) is an open set. Assume now that there exists ay such
that Shrink(Rt−1, y, λt) 6= ∅ and FindPoint(Rt−1, λt) returns suchy. FunctionFindPoint will be given later.
FindRect(A) returns an open non-empty rectangle insideA. Note thatRect(A) ⊆ A, and since input toRect is al-
ways non empty open set, such rectangle exists. SinceR0 is non-empty open set,∀t,Rt is a non-empty open set.

Property 3 and 5 are easy to check. Property 1 and 2 follows from the fact that∀t ∈ {t|yt 6= ∅}, ∀t′ > t,Rt′ ⊆
Shrink(Rt−1, yt, λt−1).

Property 6 follows from the facts that ifYt−1 ∩ At 6= ∅, R̃ = 0 =⇒ Rt−1 ⊆ {y|h(y) + λtg(y) > h(ỹ) + λtg(ỹ) and
y ∈ At}, otherwiseYt−1 ∩ At = ∅, andRt−1 ⊆ At.

FindPoint(A, λ) returns anyy ∈ A−{y ∈ R2|λy2 = y1}. Given inputA is always an non-empty open set, suchy exists.
Shrink(Rt−1, y, λt) 6= ∅ is ensured from the fact that two boundaries,c = {y′|Φ(y′) = Φ(y)} andd = {h(y′)+λg(y′) =
h(y) + λg(y)} meets aty. Sincec is a convex curve,c is underd on one side. Therefore the intersection of set abovec and
belowd is non-empty and alsoopen.

Heejin Choi, Ofer Meshi, Nathan Srebro

Appendix I Additional Plots from the Experiments

queries #105
0.5 1 1.5 2 2.5 3 3.5 4 4.5

ob
je

ct
iv

e

8

9

10

11

12

13

14

15
Yeast

(7.38) Angular(SGD)
(7.4) Angular(CP)
(7.28) Bisecting(SGD)
(7.34) Bisecting(CP)
(9.44) Sarawagi(CP)

(a) Objective vs queries

iterations
5 10 15 20 25 30

ob
je

ct
iv

e

8

9

10

11

12

13

14

15
Yeast

(7.38) Angular(SGD)
(7.4) Angular(CP)
(7.28) Bisecting(SGD)
(7.34) Bisecting(CP)
(9.44) Sarawagi(CP)

(b) Objective vs iterations

iterations
5 10 15 20 25 30

ac
cu

ra
cy

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Yeast

(0.54) Angular(SGD)
(0.528) Angular(CP)
(0.516) Bisecting(SGD)
(0.537) Bisecting(CP)
(0.483) Sarawagi(CP)

(c) Accuracy vs iterations

queries #106
0.5 1 1.5 2

ob
je

ct
iv

e

100

101

RCV1

(0.278) Angular(SGD)
(0.921) Angular(CP)
(1.1) Bisecting(SGD)
(0.362) Bisecting(CP)
(2.85) Sarawagi(CP)

(d) Objective vs queries

iterations
10 20 30 40 50 60 70 80

ob
je

ct
iv

e

100

101

RCV1

(0.278) Angular(SGD)
(0.921) Angular(CP)
(1.1) Bisecting(SGD)
(0.362) Bisecting(CP)
(2.85) Sarawagi(CP)

(e) Objective vs iterations

iterations
10 20 30 40 50 60 70 80

ac
cu

ra
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RCV1

(0.742) Angular(SGD)
(0.753) Angular(CP)
(0.754) Bisecting(SGD)
(0.755) Bisecting(CP)
(0.706) Sarawagi(CP)

(f) Accuracy vs iterations

Figure 7: Additional experiment plot (RCV)

	Introduction
	Problem Formulation
	Optimization for Slack Rescaling
	Algorithms
	Binary search
	Geometrical Interpretation of -oracle search
	Bisecting search
	Limitation of the -oracle
	Angular search with the constrained…oracle

	Experiments
	Comparison of the search algorithms
	Hierarchical Multi-label Classification

	Summary
	Details of binary search
	An example of label mapping
	Monotonicity of h and g in
	Improvements for the binary search
	Early stopping
	Suboptimality bound

	Proof of the limitation of the -oracle search
	Angular search
	Illustration of the angular search
	Limitation of the constraint -oracle search
	Additional Plots from the Experiments

