Supplementary Material Fast and Scalable Structural SVM with Slack Rescaling

Appendix A Details of binary search

Lemma 1. Let $\bar{F}(\lambda)=\frac{1}{4} \max _{y \in \mathcal{Y}^{+}}\left(\frac{1}{\lambda} h(y)+\lambda g(y)\right)^{2}$, then

$$
\max _{y \in \mathcal{Y}} \Phi(y) \leq \min _{\lambda>0} \bar{F}(\lambda)
$$

and $\bar{F}(\lambda)$ is a convex function in λ.

Proof. First, let $\mathcal{Y}^{+}=\{y \mid y \in \mathcal{Y}, h(y)>0\}$, then $\max _{y \in \mathcal{Y}} \Phi(y)=\max _{y \in \mathcal{Y}^{+}} \Phi(y)$, since any solution y such that $h(y)<0$ is dominated by y_{i}, which has zero loss. Second, we prove the bound w.r.t. $y \in \mathcal{Y}^{+}$. In the following proof we use a quadratic bound (for a similar bound see [9]).

$$
\begin{align*}
\max _{y \in \mathcal{Y}^{+}} \Phi(y) & =\max _{y \in \mathcal{Y}^{+}} h(y) g(y)=\max _{y \in \mathcal{Y}^{+}} \frac{1}{4}(2 \sqrt{h(y) g(y)})^{2} \\
& =\frac{1}{4}\left(\max _{y \in \mathcal{Y}^{+}} \min _{\lambda>0}\left\{\frac{1}{\lambda} h(y)+\lambda g(y)\right\}\right)^{2} \\
& \leq \frac{1}{4}\left(\min _{\lambda>0} \max _{y \in \mathcal{Y}^{+}}\left\{\frac{1}{\lambda} h(y)+\lambda g(y)\right\}\right)^{2} \tag{13}
\end{align*}
$$

To see the convexity of $\bar{F}(\lambda)$, we differentiate twice to obtain:

$$
\frac{\partial^{2} \bar{F}(\lambda)}{\partial \lambda^{2}}=\frac{1}{4} \max _{y \in \mathcal{Y}^{+}} 6 \frac{1}{\lambda^{4}} h(y)^{2}+2 g(y)^{2}>0
$$

Similar to [11], we obtain a convex upper bound on our objective. Evaluation of the upper bound $\bar{F}(\lambda)$ requires using only the λ-oracle. Importantly, this alternative bound $\bar{F}(\lambda)$ does not depend on the slack variable ξ_{i}, so it can be used with algorithms that optimize the unconstrained formulation (4), such as SGD, SDCA and FW. As in [11], we minimize $\bar{F}(\lambda)$ using binary search over λ. The algorithm keeps track of $y_{\lambda_{t}}$, the label returned by the λ-oracle for intermediate values λ_{t} encountered during the binary search, and returns the maximum label $\max _{t} \Phi\left(y_{\lambda_{t}}\right)$. This algorithm focuses on the upper bound $\min _{\lambda>0} \bar{F}(\lambda)$, and interacts with the target function Φ only through evaluations $\Phi\left(y_{\lambda_{t}}\right)$ (similar to [11]).

Appendix B An example of label mapping

Figure 5: A snapshot of labels during optimiation with Yeast dataset. Each $2^{14}-1$ labels is shown as a pot in the figure 5 . X -axis is the $\triangle\left(y, y_{i}\right)$ and Y -axis is $1+f_{W}(y)-f_{W}\left(y_{i}\right)$.

Appendix C Monotonicity of h and g in λ

Proof. Let $g_{1}=g\left(y_{\lambda_{1}}\right), h_{1}=h\left(y_{\lambda_{1}}\right), g_{2}=g\left(y_{\lambda_{2}}\right)$, and $h_{2}=h\left(y_{\lambda_{2}}\right)$.

$$
\begin{aligned}
& h_{1}+\lambda_{1} g_{1} \geq h_{2}+\lambda_{1} g_{2}, \quad h_{2}+\lambda_{2} g_{2} \geq h_{1}+\lambda_{2} g_{1} \\
& \Leftrightarrow h_{1}-h_{2}+\lambda_{1}\left(g_{1}-g_{2}\right) \geq 0,-h_{1}+h_{2}+\lambda_{2}\left(g_{2}-g_{1}\right) \geq 0 \\
& \Leftrightarrow\left(g_{2}-g_{1}\right)\left(\lambda_{2}-\lambda_{1}\right) \geq 0
\end{aligned}
$$

For h, change the role of g and h.

Appendix D Improvements for the binary search

Appendix D. 1 Early stopping

If $L=\left[\lambda_{m}, \lambda_{M}\right]$, and both endpoints have the same label, i.e., $y_{\lambda_{m}}=y_{\lambda_{M}}$, then we can terminate the binary search safely because from lemma 4, it follows that the solution y_{λ} will not change in this segment.

Appendix D. 2 Suboptimality bound

Let $K(\lambda)$ be the value of the λ-oracle. i.e.,

$$
\begin{equation*}
K(\lambda)=\max _{y \in \mathcal{Y}} h(y)+\lambda g(y) \tag{14}
\end{equation*}
$$

Lemma 5. Φ^{*} is upper bounded by

$$
\begin{equation*}
\Phi\left(y^{*}\right) \leq \frac{K(\lambda)^{2}}{4 \lambda} \tag{15}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& h(y)+\lambda g(y) \leq K(\lambda) \\
& \quad \Longleftrightarrow g(y)(h(y)+\lambda g(y)) \leq g(y) K(\lambda) \\
& \quad \Longleftrightarrow \Phi(y) \leq g(y) K(\lambda)-\lambda g(y)^{2} \\
& =-\lambda\left(g(y)-\frac{K(\lambda)}{2 \lambda}\right)^{2}+\frac{K(\lambda)^{2}}{4 \lambda} \leq \frac{K(\lambda)^{2}}{4 \lambda}
\end{aligned}
$$

Appendix E Proof of the limitation of the λ-oracle search

Theorem 1. Let $\hat{H}=\max _{y} h(y)$ and $\hat{G}=\max _{y} g(y)$. For any $\epsilon>0$, there exists a problem with 3 labels such that for any $\lambda \geq 0, y_{\lambda}=\operatorname{argmin}_{y \in \mathcal{Y}} \Phi(y)<\epsilon$, while $\Phi\left(y^{*}\right)=\frac{1}{4} \hat{H} \hat{G}$.Let $\hat{H}=\max _{y} h(y)$ and $\hat{G}=\max _{y} g(y)$. For any $\epsilon>0$ and $\lambda>0$, there exists a problem of 3 labels that $y_{\lambda}=\operatorname{argmin}_{y \in \mathcal{Y}} \Phi(y)<\epsilon$, and $\Phi\left(y^{*}\right)-\Phi\left(y_{\lambda}\right)=\frac{1}{4} \hat{H} \hat{G}$.

Proof. We will first prove following lemma which will be used in the proof.
Lemma 6. Let $A=\left[A_{1} A_{2}\right] \in \mathbb{R}^{2}, B=\left[B_{1} B_{2}\right] \in \mathbb{R}^{2}$, and $C=\left[C_{1} C_{2}\right] \in \mathbb{R}^{2}$, and $A_{1}<B_{1}<C_{1}$. If B is under the line $\overline{A C}$, i.e., $\exists t, 0 \leq t \leq 1, D=t A+(1-t) C, D_{1}=B_{1}, D_{2}>B_{2}$. Then, $\exists \lambda \geq 0, v=[1 \lambda] \in \mathbb{R}^{2}$, such that

$$
\begin{equation*}
v \cdot B>v \cdot A \text { and } v \cdot B>v \cdot C \tag{16}
\end{equation*}
$$

Proof. Translate vectors A, B, and C into coordinates of $\left[0, A_{2}\right],[a, b],\left[C_{1}, 0\right]$ by adding a vector $\left[-A_{1},-C_{2}\right]$ to each vectors A, B, and C, since it does not change $B-A$ or $B-C$. Let $X=C_{1}$ and $Y=A_{2}$.
If $0 \leq \lambda \leq \frac{X}{Y}$, then $v \cdot A=\lambda Y \leq X=v \cdot C \cdot v \cdot(B-C)>0 \Longleftrightarrow(a-X)+\lambda b>0$ corresponds to all the points above line $\overline{A C}$. Similarly, if $\lambda \geq \frac{X}{Y}$, (16) corresponds to $a+\lambda(b-Y)>0$ is also all the points above $\overline{A C}$.

From lemma 6 , if $y_{1}, y_{2} \in \mathcal{Y}$, then all the labels which lies under line y_{1} and y_{2} will not be found by λ-oracle. In the adversarial case, this holds when label lies on the line also. Therefore, Theorem 1 holds when there exists three labels, for arbitrary small $\epsilon>0, A=[\epsilon, \hat{G}], B=[\hat{H}, \epsilon]$, and $C=\left[\frac{1}{2} \hat{H}, \frac{1}{2} \hat{G}\right], \mathcal{Y}=\{A, B, C\}$. In this case $\hat{\Phi} \approx 0$.

Appendix F Angular search

We first introduce needed notations. $\partial^{\perp}(a)$ be the perpendicular slope of a, i.e., $\partial^{\perp}(a)=-\frac{1}{\partial(a)}=-\frac{a_{1}}{a_{2}}$. For $\mathcal{A} \subseteq \mathbb{R}^{2}$, let label set restricted to A as $\overrightarrow{\mathcal{Y}}_{A}=\overrightarrow{\mathcal{Y}} \cap A$, and $y_{\lambda, A}=\mathcal{O}(\lambda, A)=\operatorname{argmax}_{y \in \mathcal{Y}, \vec{y} \in A} h(y)+\lambda g(y)=\operatorname{argmax}_{\vec{y} \in \overrightarrow{\mathcal{Y}}_{A}}[\vec{y}]_{1}+\lambda[\vec{y}]_{2}$. Note that if $A=\mathbb{R}^{2}, y_{\lambda, \mathbb{R}^{2}}=y_{\lambda}$. For $P, Q \in \mathbb{R}^{2}$, define $\Lambda(P, Q)$ to be the area below the line $\overline{P Q}$, i.e., $\Lambda(P, Q)=\{\vec{y} \in$ $\left.\mathbb{R}^{2} \mid[\vec{y}]_{2}-[P]_{2} \leq \partial^{\perp}(Q-P)\left([\vec{y}]_{2}-[P]_{2}\right)\right\} . \Upsilon_{\lambda}=\left\{\vec{y} \in \mathbb{R}^{2} \mid \vec{\Phi}(\vec{y})=[\vec{y}]_{1} \cdot[\vec{y}]_{2} \geq \vec{\Phi}\left(\vec{y} \lambda_{\lambda, A}\right)\right\}$ be the area above C_{λ}, and $\underline{\Upsilon}_{\lambda}=\left\{\vec{y} \in \mathbb{R}^{2} \mid \vec{\Phi}(\vec{y})=[\vec{y}]_{1} \cdot[\vec{y}]_{2} \leq \vec{\Phi}\left(\vec{y} \vec{\lambda}_{\lambda}\right)\right\}$ be the area below C_{λ}.

Recall the constrained λ-oracle defined in (8):

$$
y_{\lambda, \alpha, \beta}=\mathcal{O}_{c}(\lambda, \alpha, \beta)=\max _{y \in \mathcal{Y}, \alpha h(y) \geq g(y), \beta h(y)<g(y)} \mathcal{L}_{\lambda}(y)
$$

where $\alpha, \beta \in \mathbb{R}_{+}$and $\alpha \geq \beta>0$. Let $A(\alpha, \beta) \subseteq \mathbb{R}^{2}$ be the restricted search space, i.e., $A(\alpha, \beta)=\left\{a \in \mathbb{R}^{2} \mid \beta<\partial(a) \leq\right.$ $\alpha\}$. Constrained λ-oracle reveals maximal \mathcal{L}_{λ} label within restricted area defined by α and β. The area is bounded by two lines whose slope is α and β. Define a pair $(\alpha, \beta), \alpha, \beta \in \mathbb{R}_{+}, \alpha \geq \beta>0$ as an angle. The angular search recursively divides an angle into two different angles, which we call the procedure as a split. For $\alpha \geq \beta \geq 0$, let $\lambda=\frac{1}{\sqrt{\alpha \beta}}, z=\vec{y}_{\lambda, \alpha, \beta}$ and $z^{\prime}=\left[\lambda[z]_{2}, \frac{1}{\lambda}[z]_{1}\right]$. Let P be the point among z and z^{\prime} which has the greater slope (any if two equal), and Q be the other
point, i.e., if $\partial(z) \geq \partial\left(z^{\prime}\right), P=z$ and $Q=z^{\prime}$, otherwise $P=z^{\prime}$ and $Q=z$. Let $R=\left[\sqrt{\lambda[z]_{1} \cdot[z]_{2}} \sqrt{\frac{1}{\lambda}[z]_{1} \cdot[z]_{2}}\right]$. Define $\operatorname{split}(\alpha, \beta)$ as a procedure divides (α, β) into two angles $\left(\alpha^{+}, \gamma^{+}\right)=(\partial(P), \partial(R))$ and $\left(\gamma^{+}, \beta^{+}\right)=(\partial(R), \partial(Q))$.
First, show that $\partial(P)$ and $\partial(Q)$ are in between α and β, and $\partial(R)$ is between $\partial(P)$ and $\partial(Q)$.
Lemma 7. For each $\operatorname{split}(\alpha, \beta)$,

$$
\beta \leq \partial(Q) \leq \partial(R) \leq \partial(P) \leq \alpha
$$

Proof. $\beta \leq \partial(z) \leq \alpha$ follows from the definition of constrained λ-oracle in (8).
$\partial\left(z^{\prime}\right)=\frac{1}{\lambda^{2} \partial(z)}=\frac{\alpha \beta}{\partial(z)} \Longrightarrow \beta \leq \partial\left(z^{\prime}\right) \leq \alpha \Longrightarrow \beta \leq \partial(Q) \leq \partial(P) \leq \alpha$.
$\partial(Q) \leq \partial(R) \leq \partial(P) \Longleftrightarrow \min \left\{\partial(z), \frac{1}{\lambda^{2} \partial(z)}\right\} \leq \frac{1}{\lambda} \leq \max \left\{\partial(z), \frac{1}{\lambda^{2} \partial(z)}\right\}$ from $\forall a, b \in \mathbb{R}_{+}, b \leq a \Longrightarrow b \leq$ $\sqrt{a b} \leq a$.

After each split, the union of the divided angle $\left(\alpha^{+}, \gamma\right)$ and $\left(\gamma, \beta^{+}\right)$can be smaller than angle (α, β). However, following lemma shows it is safe to use $\left(\alpha^{+}, \gamma\right)$ and $\left(\gamma, \beta^{+}\right)$when our objective is to find y^{*}.

Lemma 8.

$$
\forall a \in \overrightarrow{\mathcal{Y}}_{A(\alpha, \beta)}, \Phi(a)>\Phi\left(y_{\lambda, \alpha, \beta}\right) \Longrightarrow \beta^{+}<\partial(a)<\alpha^{+}
$$

Proof. From lemma 2, $\overrightarrow{\mathcal{Y}}_{A(\alpha, \beta)} \subseteq \Lambda(P, Q)$. Let $U=\left\{a \in \mathbb{R}^{2} \mid \partial(a) \geq \alpha_{+}=\partial(P)\right\}, B=\left\{a \in \mathbb{R}^{2} \mid \partial(a) \leq \beta_{+}=\partial(Q)\right\}$, and two contours of function $C=\left\{a \in \mathbb{R}^{2} \mid \vec{\Phi}(a)=\Phi\left(y_{\lambda, \alpha, \beta}\right)\right\}, S=\left\{a \in \mathbb{R}^{2} \mid \mathcal{L}_{\lambda}(a)=\mathcal{L}_{\lambda}\left(\vec{y}_{\lambda, \alpha, \beta}\right)\right\}$. S is the upper bound of $\Lambda(P, Q)$, and C is the upper bound of $\underline{C}=\left\{a \in \mathbb{R}^{2} \mid \vec{\Phi}(a) \leq \Phi\left(y_{\lambda, \alpha, \beta}\right)\right\} . P$ and Q are the intersections of C and S. For area of U and B, S is under C, therefore, $\Lambda(P, Q) \cap U \subseteq \underline{C}$, and $\Lambda(P, Q) \cap B \subseteq \underline{C}$. It implies that $\forall a \in(\Lambda(P, Q) \cap U) \cup(\Lambda(P, Q) \cap B) \Longrightarrow \vec{\Phi}(a) \leq \Phi\left(y_{\lambda, \alpha, \beta}\right)$. And the lemma follows from $A(\alpha, \beta)=U \cup B \cup\{a \in$ $\left.\mathbb{R}^{2} \mid \beta^{+}<\partial(a)<\alpha^{+}\right\}$.

We associate a quantity we call a capacity of an angle, which is used to prove the suboptimality of the algorithm. For an angle (α, β), the capacity of an angle $v(\alpha, \beta)$ is

$$
v(\alpha, \beta):=\sqrt{\frac{\alpha}{\beta}}
$$

Note that from the definition of an angle, $v(\alpha, \beta) \geq 1$. First show that the capacity of angle decreases exponentially for each split.

Lemma 9. For any angle (α, β) and its split $\left(\alpha^{+}, \gamma^{+}\right)$and $\left(\gamma^{+}, \beta^{+}\right)$,

$$
v(\alpha, \beta) \geq v\left(\alpha^{+}, \beta^{+}\right)=v\left(\alpha^{+}, \gamma^{+}\right)^{2}=v\left(\gamma^{+}, \beta^{+}\right)^{2}
$$

Proof. Assume $\partial(P) \geq \partial(Q)$ (the other case is follows the same proof with changing the role of P and Q), then $\alpha^{+}=$ $\partial(P)$ and $\beta^{+}=\partial(Q) . \partial(Q)=\frac{1}{\lambda^{2} \partial(P)}=\frac{\alpha \beta}{\partial(P)}, v\left(\alpha^{+}, \beta^{+}\right)=v(\partial(P), \partial(Q))=\lambda \partial(P)=\frac{\partial(P)}{\sqrt{\alpha \beta}}$. Since α is the upper bound and β is the lower bound of $\partial(P), \sqrt{\frac{\beta}{\alpha}} \leq v(\partial(P), \partial(Q)) \leq \sqrt{\frac{\alpha}{\beta}}$. Last two equalities in the lemma are from $v(\partial(P), \partial(R))=v(\partial(R), \partial(Q))=\sqrt{\frac{\partial(P)}{\sqrt{\alpha \beta}}}$ by plugging in the coordinate of R.
Lemma 10. Let $\mathcal{B}(a)=\frac{1}{4}\left(a+\frac{1}{a}\right)^{2}$. The suboptimality bound of an angle (α, β) with $\lambda=\frac{1}{\sqrt{\alpha \beta}}$ is

$$
\frac{\max _{\vec{y} \in \overrightarrow{\mathcal{Y}}_{A(\alpha, \beta)}} \vec{\Phi}(\vec{y})}{\Phi\left(y_{\lambda, \alpha, \beta}\right)} \leq \mathcal{B}(v(\alpha, \beta))
$$

Proof. From lemma 2, $\overrightarrow{\mathcal{Y}}_{A(\alpha, \beta)} \subseteq \Lambda(P, Q)=\Lambda\left(z, z^{\prime}\right)$. Let $\partial(z)=\gamma$. From 7, $\beta \leq \gamma \leq \alpha$. Let $m=$ $\operatorname{argmax}_{a \in \Lambda\left(z, z^{\prime}\right)} \vec{\Phi}(a) . m$ is on line $\overline{z z^{\prime}}$ otherwise we can move m increasing direction of each axis till it meets the boundary $\overline{z z^{\prime}}$ and Φ only increases, thus $m=t z+(1-t) z^{\prime} . \vec{\Phi}(m)=\max _{t} \vec{\Phi}\left(t z+(1-t) z^{\prime}\right) . \frac{\partial \vec{\Phi}\left(t z+(1-t) z^{\prime}\right)}{\partial t}=$ $0 \Longrightarrow t=\frac{1}{2} . m=\frac{1}{2}\left[z_{1}+\lambda z_{2} \quad z_{2}+\frac{z_{1}}{\lambda}\right]$.

$$
\begin{aligned}
\frac{\max _{\vec{y} \in \overrightarrow{\mathcal{Y}}_{A(\alpha, \beta)}} \vec{\Phi}(\vec{y})}{\Phi\left(y_{\lambda, \alpha, \beta}\right)} & =\frac{1}{4}\left(\sqrt{\frac{z_{1}}{\lambda z_{2}}}+\sqrt{\frac{\lambda z_{2}}{z_{1}}}\right)^{2} \\
= & \frac{1}{4}\left(\sqrt{\frac{\sqrt{\alpha \beta}}{\gamma}}+\sqrt{\frac{\gamma}{\sqrt{\alpha \beta}}}\right)^{2}
\end{aligned}
$$

Since $v(a)=v\left(\frac{1}{a}\right)$ and $v(a)$ increases monotonically for $a \geq 1$,

$$
\mathcal{B}(a) \leq \mathcal{B}(b) \Longleftrightarrow \max \left\{a, \frac{1}{a}\right\} \leq \max \left\{b, \frac{1}{b}\right\}
$$

If $\frac{\sqrt{\alpha \beta}}{\gamma} \geq \frac{\gamma}{\sqrt{\alpha \beta}}$, then $\frac{\sqrt{\alpha \beta}}{\gamma} \leq \sqrt{\frac{\alpha}{\beta}}$ since $\gamma \geq \beta$. If $\frac{\gamma}{\sqrt{\alpha \beta}} \geq \frac{\sqrt{\alpha \beta}}{\gamma}$, then $\frac{\gamma}{\sqrt{\alpha \beta}} \leq \sqrt{\frac{\alpha}{\beta}}$ since $\gamma \leq \alpha$. Therefore, $\frac{\max _{\vec{y} \in \overrightarrow{\mathcal{Y}}_{A(\alpha, \beta)}} \vec{\Phi}(\vec{y})}{\Phi\left(y_{\lambda, \alpha, \beta}\right)}=\mathcal{B}\left(\frac{\sqrt{\alpha \beta}}{\gamma}\right) \leq \mathcal{B}(v(\alpha, \beta))$.

Now we can prove the theorems.
Theorem 2. Angular search described in algorithm 2 finds optimum $y^{*}=\operatorname{argmax}_{y \in \mathcal{Y}} \Phi(y)$ at most $t=2 M+1$ iteration where M is the number of the labels.

Proof. Denote $y_{t}, \alpha_{t}, \beta_{t}, z_{t}, z_{t}^{\prime}, K_{t}^{1}$, and K_{t}^{2} for $y, \alpha, \beta, z, z^{\prime}, K^{1}$, and K^{2} at iteration t respectively. $\mathcal{A}\left(\alpha_{t}, \beta_{t}\right)$ is the search space at each iteration t. At the first iteration $t=1$, the search space contains all the labels with positive Φ, i.e., $\{y \mid \Phi(y) \geq 0\} \subseteq \mathcal{A}(\infty, 0)$. At iteration $t>1$, firstly, when $y_{t}=\emptyset$, the search area $\mathcal{A}\left(\alpha_{t}, \beta_{t}\right)$ is removed from the search since $y_{t}=\emptyset$ implies there is no label inside $\mathcal{A}\left(\alpha_{t}, \beta_{t}\right)$. Secondly, when $y_{t} \neq \emptyset, \mathcal{A}\left(\alpha_{t}, \beta_{t}\right)$ is dequeued, and K_{t}^{1} and K_{t}^{2} is enqueued. From lemma 8 , at every step, we are ensured that do not loose y^{*}. By using strict inequalities in the constrained oracle with valuable s, we can ensure y_{t} which oracle returns is an unseen label. Note that split only happens if a label is found, i.e., $y_{t} \neq \emptyset$. Therefore, there can be only M splits, and each split can be viewed as a branch in the binary tree, and the number of queries are the number of nodes. Maximum number of the nodes with M branches are $2 M+1$.

Theorem 4. In angular search, described in Algorithm 2, at iteration t,

$$
\Phi\left(\hat{y}^{t}\right) \geq \Phi\left(y^{*}\right)\left(v_{1}^{-\frac{4}{t+1}}\right)
$$

where $\hat{y}^{t}=\operatorname{argmax}_{t} y^{t}$ is the optimum up to $t, v_{1}=\max \left\{\frac{\lambda_{0}}{\partial\left(\overrightarrow{y_{1}}\right)}, \frac{\partial\left(\overrightarrow{y_{1}}\right)}{\lambda_{0}}\right\}, \lambda_{0}$ is the initial λ used, and y_{1} is the first label returned by the constrained λ-oracle.

Proof. After $t \geq 2^{r}-1$ iteration as in algorithm 2 where r is an integer, for all the angle (α, β) in the queue $Q, v(\alpha, \beta) \leq$ $\left(v_{1}\right)^{2^{1-r}}$. This follows from the fact that since the algorithm uses the depth first search, after $2^{r}-1$ iterations all the nodes at the search is at least r. At each iteration, for a angle, the capacity is square rooted from the lemma 9 , and the depth is increased by one. And the theorem follows from the fact that after $t \geq 2^{r}-1$ iterations, all splits are at depth $r^{\prime} \geq r$, and at least one of the split contains the optimum with suboptimality bound with lemma 10 . Thus,

$$
\frac{\Phi\left(y^{*}\right)}{\Phi(\hat{y})} \leq \mathcal{B}\left(\left(v_{1}\right)^{2^{1-r}}\right)<\left(v_{1}\right)^{2^{2-r}} \leq\left(v_{1}\right)^{\frac{4}{t+1}}
$$

Theorem 5. Assuming $\Phi\left(y^{*}\right)>\phi$, angular search described in algorithm 2 with $\lambda_{0}=\frac{\hat{G}}{\hat{H}}, \alpha_{0}=\frac{\hat{G}^{2}}{\phi}, \beta_{0}=\frac{\phi}{\hat{H}^{2}}$, finds ϵ-optimal solution, $\Phi(y) \geq(1-\epsilon) \Phi\left(y^{*}\right)$, in T queries and $O(T)$ operations where $T=4 \log \left(\frac{\hat{G} \hat{H}}{\phi}\right) \cdot \frac{1}{\epsilon}$, and δ-optimal solution, $\Phi(y) \geq \Phi\left(y^{*}\right)-\delta$, in T^{\prime} queries and $O\left(T^{\prime}\right)$ operations where $T^{\prime}=4 \log \left(\frac{\hat{G} \hat{H}}{\phi}\right) \cdot \frac{\Phi\left(y^{*}\right)}{\delta}$.

Proof. $\Phi\left(y^{*}\right)>\phi \Leftrightarrow \frac{\phi}{\hat{H}^{2}}<\frac{g\left(y^{*}\right)}{h\left(y^{*}\right)}=\partial\left(\overrightarrow{y^{*}}\right)<\frac{\hat{G}^{2}}{\phi} . v_{1}=\max \left\{\frac{\lambda_{0}}{\partial\left(y_{1}\right)}, \frac{\partial\left(y_{1}\right)}{\lambda_{0}}\right\}$ from Theorem 4. Algorithm finds y^{*} if $\beta \leq \partial\left(\overrightarrow{y^{*}}\right) \leq \alpha$, thus set $\alpha=\frac{\hat{G}^{2}}{\phi}$ and $\beta=\frac{\phi}{\hat{H}^{2}}$. Also from the definition of constrained λ-oracle, $\beta=\frac{\phi}{\hat{H}^{2}} \leq$ $\partial\left(y_{1}\right) \leq \alpha=\frac{\hat{G}^{2}}{\phi}$. Therefore, $v_{1} \leq \max \left\{\frac{\lambda_{0}}{\partial\left(y_{1}\right)}, \frac{\partial\left(y_{1}\right)}{\lambda_{0}}\right\}$. And the upper bound of two terms equal when $\lambda_{0}=\frac{\hat{G}}{\hat{H}}$, then $v_{1} \leq \frac{\hat{G} \hat{H}}{\phi} . \delta$ bound follows plugging in the upper bound of v_{1}, and $\epsilon=\frac{\delta}{\Phi\left(y^{*}\right)}$.

Appendix G Illustration of the angular search

Following figure 6 illustrates Angular search. Block dots are the labels from figure 5. Blue X denotes the new label returned by the oracle. Red X is the maximum point. Two straights lines are the upper bound and the lower bound used by the constrained oracle. Constrained oracle returns a blue dot between the upper and lower bounds. We can draw a line that passes blue X that no label can be above the line. Then, split the angle into half. This process continues until the y^{*} is found.

Figure 6: Illustration of the Angular search.

Appendix H Limitation of the constraint λ-oracle search

Theorem 3. Any search algorithm accessing labels only through λ-oracle with any number of the linear constraints cannot find y^{*} in less than M iterations in the worst case where M is the number of labels.

Proof. We show this in the perspective of a game between a searcher and an oracle. At each iteration, the searcher query the oracle with λ and the search space denoted as \mathcal{A}, and the oracle reveals a label according to the query. And the claim is that with any choice of $M-1$ queries, for each query the oracle can either give an consistent label or indicate that there is no label in \mathcal{A} such that after $M-1$ queries the oracle provides an unseen label y^{*} which has bigger Φ than all previous revealed labels.

Denote each query at iteration t with $\lambda_{t}>0$ and a query closed and convex set $\mathcal{A}_{t} \subseteq \mathbb{R}^{2}$, and denote the revealed label at iteration t as y_{t}. We will use $y_{t}=\emptyset$ to denote that there is no label inside query space \mathcal{A}_{t}. Let $\mathcal{Y}_{t}=\left\{y_{t^{\prime}} \mid t^{\prime}<t\right\}$.

Algorithm 3 describes the pseudo code for generating such y_{t}. The core of the algorithm is maintaining a rectangular area \mathcal{R}_{t} for each iteration t with following properties. Last two properties are for y_{t}.

```
Algorithm 3 Construct a consistent label set \(\mathcal{Y}\).
Input: \(\left\{\lambda_{t}, \mathcal{A}_{t}\right\}_{t=1}^{M-1}, \lambda_{t}>0, \mathcal{A}_{t} \subseteq \mathbb{R}^{2}, \mathcal{A}_{t}\) is closed and convex region.
Output: \(\left\{y_{t} \in \mathbb{R}^{2}\right\}_{t=1}^{t=M-1}, y^{*} \in \mathbb{R}^{2}\)
Initialize: \(\mathcal{R}_{0}=\{(a, b) \mid 0<a, 0<b\}, \mathcal{Y}_{0}=\emptyset\).
    for \(t=1,2, \ldots, M-1\) do
        if \(\mathcal{Y}_{t-1} \cap \mathcal{A}_{t}=\emptyset\) then
            \(\tilde{y}=\operatorname{argmax}_{y \in \mathcal{Y}_{t}} h(y)+\lambda_{t} g(y)\).
            \(\tilde{\mathcal{R}}=\mathcal{R}_{t-1} \cap\left\{y \mid h(y)+\lambda_{t} g(y)<h(\tilde{y})+\lambda_{t} g(\tilde{y})\right.\) or \(\left.y \notin \mathcal{A}_{t}\right\}\).
        else
            \(\tilde{y}=\emptyset, \tilde{\mathcal{R}}=\mathcal{R}_{t-1}-\mathcal{A}_{t}\).
        if \(\tilde{\mathcal{R}} \neq \emptyset\) then
            \(y_{t}=\emptyset . \mathcal{R}_{t}=\operatorname{FindRect}(\tilde{\mathcal{R}})\)
        else
            \(y_{t}=\operatorname{FindPoint}\left(\mathcal{R}_{t-1}, \lambda_{t}\right)\).
            \(\mathcal{R}_{t}=\operatorname{FindRect}\left(\operatorname{Shrink}\left(\mathcal{R}_{t-1}, y_{t}, \lambda_{t}\right)\right)\).
        if \(y_{t} \neq \emptyset\) then
            \(\mathcal{Y}=\mathcal{Y} \cup\left\{y_{t}\right\}\).
    Pick any \(y^{*} \in \mathcal{R}_{M-1}\)
```

1. $\forall t^{\prime}<t, \forall y \in \mathcal{R}_{t}, \Phi(y)>\Phi\left(y_{t^{\prime}}\right)$.
2. $\forall t^{\prime}<t, \forall y \in \mathcal{R}_{t} \cap \mathcal{A}_{t^{\prime}}, h\left(y_{t^{\prime}}\right)+\lambda_{t^{\prime}} g\left(y_{t^{\prime}}\right)>h(y)+\lambda_{t^{\prime}} g(y)$.
3. $\mathcal{R}_{t} \subseteq \mathcal{R}_{t-1}$.
4. \mathcal{R}_{t} is a non-empty open set.
5. $y_{t} \in \mathcal{R}_{t} \cap \mathcal{A}_{t}$
6. $y_{t}=\operatorname{argmax}_{y \in \mathcal{Y}_{t} \cap \mathcal{A}_{t}} h(y)+\lambda_{t} g(y)$.

Note that if these properties holds till iteration M, we can simply set y^{*} as any label in \mathcal{R}_{M} which proves the claim.
First, we show that property 4 is true. \mathcal{R}_{0} is a non-empty open set. Consider iteration t, and assume \mathcal{R}_{t-1} is a non-empty open set. Then \tilde{R} is an open set since \mathcal{R}_{t-1} is an open set. There are two unknown functions, Shrink and FindRect. For open set $A \subseteq \mathbb{R}^{2}, y \in \mathbb{R}^{2}$, let $\operatorname{Shink}(A, y, \lambda)=A-\left\{y^{\prime} \mid \Phi\left(y^{\prime}\right) \leq \Phi(y)\right.$ or $\left.h\left(y^{\prime}\right)+\lambda g\left(y^{\prime}\right) \geq h(y)+\lambda g(y)\right\}$. Note that $\operatorname{Shrink}(A, y, \lambda) \subseteq A$, and $\operatorname{Shrink}(A, y, \lambda)$ is an open set. Assume now that there exists a y such that $\operatorname{Shrink}\left(\mathcal{R}_{t-1}, y, \lambda_{t}\right) \neq \emptyset$ and $\operatorname{FindPoint}\left(\mathcal{R}_{t-1}, \lambda_{t}\right)$ returns such y. Function FindPoint will be given later. $\operatorname{FindRect}(A)$ returns an open non-empty rectangle inside A. Note that $\operatorname{Rect}(A) \subseteq A$, and since input to Rect is always non empty open set, such rectangle exists. Since \mathcal{R}_{0} is non-empty open set, $\forall t, \mathcal{R}_{t}$ is a non-empty open set.

Property 3 and 5 are easy to check. Property 1 and 2 follows from the fact that $\forall t \in\left\{t \mid y_{t} \neq \emptyset\right\}, \forall t^{\prime}>t, \mathcal{R}_{t^{\prime}} \subseteq$ $\operatorname{Shrink}\left(\mathcal{R}_{t-1}, y_{t}, \lambda_{t-1}\right)$.

Property 6 follows from the facts that if $\mathcal{Y}_{t-1} \cap \mathcal{A}_{t} \neq \emptyset, \tilde{\mathcal{R}}=0 \Longrightarrow \mathcal{R}_{t-1} \subseteq\left\{y \mid h(y)+\lambda_{t} g(y)>h(\tilde{y})+\lambda_{t} g(\tilde{y})\right.$ and $\left.y \in \mathcal{A}_{t}\right\}$, otherwise $\mathcal{Y}_{t-1} \cap \mathcal{A}_{t}=\emptyset$, and $\mathcal{R}_{t-1} \subseteq \mathcal{A}_{t}$.

FindPoint (A, λ) returns any $y \in A-\left\{y \in \mathbb{R}^{2} \mid \lambda y_{2}=y_{1}\right\}$. Given input A is always an non-empty open set, such y exists. $\operatorname{Shrink}\left(\mathcal{R}_{t-1}, y, \lambda_{t}\right) \neq \emptyset$ is ensured from the fact that two boundaries, $c=\left\{y^{\prime} \mid \Phi\left(y^{\prime}\right)=\Phi(y)\right\}$ and $d=\left\{h\left(y^{\prime}\right)+\lambda g\left(y^{\prime}\right)=\right.$ $h(y)+\lambda g(y)\}$ meets at y. Since c is a convex curve, c is under d on one side. Therefore the intersection of set above c and below d is non-empty and also open.

Appendix I Additional Plots from the Experiments

Figure 7: Additional experiment plot (RCV)

