Supplementary Material
Fast and Scalable Structural SVM with SlackRescaling

Appendix A Details of binary search
Lemmal. LetF(\) = max,ey+ (+h(y) + Ag(y))?, then

®(y) < min F(A
P OW = )

and F'(\) is a convex function in.

Proof. First, letY* = {yly € Y,h(y) > 0}, thenmax,cy ®(y) = max,cy+ ®(y), since any solutiory such that
h(y) < 0is dominated byy;, which has zero loss. Second, we prove the bound w.it.Y". In the following proof we
use a quadratic bound (for a similar bound & [

max d(y) = max h(y)g(y) = max i (2 h(y)g(y))2
1 (1 2
T4 (fel%)i N0 {,\h(y) + A9(@/)})
2
< i (rgg max {ih(y) + Ag@)}) (13)

To see the convexity af (), we differentiate twice to obtain:

’F(\) 1 1
T(Q) = 7 lax 6ﬁh(y)2 +2¢(y)* >0

Similar to [11], we obtain a convex upper bound on our objective. Evaluation of the upper kB(xdrequires using
only the\-oracle. Importantly, this alternative bout \) does not depend on the slack variapleso it can be used with
algorithms that optimize the unconstrained formulatiéy éuch as SGD, SDCA and FW. As ifh]], we minimize F'(\)
usingbinary searchover \. The algorithm keeps track gf,,, the label returned by thie-oracle for intermediate values
encountered during the binary search, and returns the maximumntabekb(y,, ). This algorithm focuses on the upper
boundmin, - F()\), and interacts with the target functi@nonly through evaluation&(y,, ) (similar to [11]).
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Appendix B An example of label mapping
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Figure 5: A snapshot of labels during optimiation with Yeast dataset. £4ch 1 labels is shown as a pot in the figuse
X-axis is theA(y, y;) and Y-axis isl + fw (y) — fw (v:)-

Appendix C  Monotonicity of ~ and g in A

Proof. Letgi = g(yx,), h1 = h(yx,), g2 = 9(yx,), andhy = h(yx,)-

hi+Xig1 > ha + A1ge, ha + Aag2 > hi + dagy
< hy—he+M(g1—g2) >0,—h1 +ha+ Aa(g92 —g1) >0
S (2—91)(A2— A1) >0

For h, change the role qf andh. O

Appendix D Improvements for the binary search

Appendix D.1 Early stopping

If L = [\, Aas], @and both endpoints have the same label,j.e,, = y»,,, then we can terminate the binary search safely
because from lemn it follows that the solutiony, will not change in this segment.

Appendix D.2  Suboptimality bound

Let K()\) be the value of the-oracle. i.e.,

K(\) =maxh(y) + Ag(y). (14)
yey
Lemma 5. ®* is upper bounded by
o~ KO)?
(y) < (15)
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Proof.

h(y) + Ag(y) < K(A)

Appendix E  Proof of the limitation of the \-oracle search

Theorem1. LetH = max, h(y) andG = max, g(y). For anye > 0, there exists a problem with 3 labels such that for

. 1. . . R
any > 0, yx = argmin, oy, ®(y) < ¢, while ®(y*) = ZHG.LetH = max, h(y) andG = max, g(y). For anye > 0

and > 0, there exists a problem of 3 labels thgt = argmin, ¢, ®(y) < ¢, and®(y*) — d(y\) = ~ HG.

=

Proof. We will first prove following lemma which will be used in the proof.

Lemma6. LetA = [A; As] € R%, B = [B; By] € R?, andC = [Cy (5] € R?, andA; < By < 1. If Bis under the
line AC,i.e.3t,0 <t <1,D=tA+ (1 —t)C, Dy = By, Dy > By. Then I\ > 0,v = [1 A\] € R?, such that

v-B>v-A andv-B>v-C (16)

Proof. Translate vectorsi, B, andC' into coordinates of0, As], [a, ], [C1,0] by adding a vectof—A;, —C5] to each
vectorsA, B, andC, since it does not change — Aor B — C. Let X = C; andY = A,.

X :
Ifog)\g?,thenv-A:)\YgX:sz.v~(B—C)>0 <= (a — X) + Ab > 0 corresponds to all the points

aboveline AC. Similarly, if A > %, (16) corresponds ta + A\(b — Y') > 0 is also all the points ab@AC. O

From lemmas, if y1,yo € Y, then all the labels which lies under ling andy, will not be found byA-oracle. In the
adversarial case, this holds When Iabgl lies on the IineAaIso; Therefore, Thédi@ds when tr]ere exists three labels, for
arbitrary smalk > 0, A = [¢,G], B = [H, €], andC = [$ H, 1G], Y = {4, B,C}. In this caseb ~ 0. O

Appendix F  Angular search

We first introduce needed notatiorés: (a) be the perpendicular slope ofi.e.,0+(a) = —a(la) = — 4. ForA CR? let
label set restricted td as)y = YN A, andyy 4 = O(X, A) = argmax ey ze 4 h(y) +Ag(y) = argmax ey, (711 + 72
Note that ifA = R?, y, g2 = yx. For P,Q € R?, defineA(P, Q) to be the area below tHime PQ, i.e.,A(P,Q) = {7 €
R?|[7]2 — [P]2 < 0H(Q — P)([5]2 — [Pl2)}. Ta = {¢ € R?|2(§) = [§]1 - [jl2 > ©(§r.4)} be the area abowe), and
X, ={7€R®() = 71 - [§]2 < P(¥xr.4)} be the area below.

Recall theconstrained\-oracledefined in 8):

y}\,(x,ﬂ = OC(A7OL7B) = ‘Ck(y)

max
y€Y, ah(y)>g(y), Bh(y)<g(y)
wherea, 8 € R, anda > 3 > 0. Let A(«, 8) C R? be the restricted search space, idq, 3) = {a € R?|3 < 9(a) <
a}. Constrained\-oracle reveals maximal, label within restricted area defined byand3. The area is bounded by two
lines whose slope ie and3. Define a paifa, 8),a,3 € Ry, > 8 > 0 as anangle The angular search recursively

1 -
L
Vap'® e

andz’ = [A[z]2, 1 [2]1]. LetP be the point amongandz’ which has the greater slope (any if two equal), ghide the other

divides an angle into two different angles, which we call the procedursplitaFora > 5 > 0, let A =
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point, i.e., ifd(z) > 9(z’), P = z and@Q = 2/, otherwiseP = 2z’ andQ = z. LetR = [\/
Define splif, 3) as a procedure dividds, 3) into two anglega™,v") = (9(P),d(R)) and(y* ﬂ+) (o(

First, show thab(P) andd(Q) are in betweem andj3, andd(R) is betweerd(P) andd(Q).

3els - mz}
(R),0(Q)).

Q3>4>—I

Lemma 7. For each splita, 3),
8<0(Q) <A(R) < AP) <a

Proof. 8 < 9(z) < « follows from the definition of constrainektoracle in g).

1 ap

M= ) T o)

= [<0(¥)<a = f<IQ) <IP)<a

9(Q) < I(R) < 9(P) < min {8(3)7/\2;(2)} < % < max {8(2), /\231(2)} fromVa,b e Ry,b<a = b <

Vab < a. O

After each split, the union of the divided angte™(,v) and ¢, 37) can be smaller than angle;, 3). However, following
lemma shows it is safe to use<, ) and ¢, 57) when our objective is to fing*.

Lemma 8.

Ya € Jﬁ}‘A(a_ﬂ), <I>(a) > (b(y)\’a,g) i ﬁ-"_ < 8((1) < Oé+

Proof. From lemma2, Yaa.5) € A(P,Q). LetU = {a € R?d(a) > ay = d(P)}, B = {a € R?|9(a) < B+ = 0(Q)},
and two contours of functiof’ = {a € R2|®(a) = B(yr.a5)}, S = {a € R%|Lx(a) = Lr(Fra.p)}. S is the upper
bound of A(P,Q), andC is the upper bound of = {a € R%B(a) < ®(yr.a.5)}. P andQ are the intersections of
C and S. For area ofU and B, S is underC, therefore, A(P,Q) NU C C, andA(P,Q) N B C C. It implies that
Va € (A(P,Q)NU)U(AP,Q)NB) = ®&(a) < ®(yr.0.5). And the lemma follows fromA(a, 3) = U U B U {a €
R?|3T < 9(a) < a™}. O

We associate a quantity we caltapacityof an angle, which is used to prove the suboptimality of the algorithm. For an
angle(a, ), the capacity of an anglg«a, ) is

v(a, B) := B

Note that from the definition of an angle(a, 3) > 1. First show that the capacity of angle decreases exponentially for
each split.

Lemma 9. For any angle(«, 3) and its split(a™,v™) and (v, 8T),
v(a, B) = v(a™, 5F) = v(a®, v ") = v(yF, 67)°

Proof. Assumed(P) > 9(Q) (the other case is follows the same proof with changing the rolé ahdQ), thena™ =
1 af a(pP)

9(P) and ™ = 9(Q). 9(Q) = 3zap = arpy? (A7) = v(O(P). (@) = W(P) = T

upper bound angd is the lower bound of/( P), \/E <v(0(P),0(Q)) < \/g. Last two equalities in the lemma are from

. Sincea is the

v(0(P),0(R)) = v(9(R),0(Q)) = 8(P by plugging in the coordinate at. O

is

|
al-
iss

manGyA(a,B) (y)

(I)(y/\,aﬁ)
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Proof. From lemmaz2, ﬁA(a’ﬁ) C APQ) = A(z,2). Let9(z) = ~v. From7, < v < a. Letm =
argmax, e () $(a). m is online zz’ otherwise we can move: increasing direction of each axis till it meets the

_ . = - o 1—t)2
boundaryzz’ and® only increases, thus: = tz + (1 — t)z’. ®(m) = max; ®(tz + (1 — t)2’). 0% (tz +8(t D) =

1
0 = tiim:%[,zlﬁ*)\ZQ 22+Z71]

_a 2
manGjA(a,ﬁ) (I)(y) _ 1 < 21 4 >\22>
4

P(yx,a.6) Az 2
2
L N Ty
4 ~ vaf
Sincev(a) = v (%) andv(a) increases monotonically far > 1,

If iﬂ > 7 then—‘aﬁ < \/gsince'y > g If 7> ‘aﬁ, then — < \/gsince'y < «a. Therefore,

1T VB VaB = A Vab
MaXzey (%) Vap
Y€V A(a,5) . o |
ren L (V2 < Blu(a. ) .

Now we can prove the theorems.

Theorem2. Angular search described in algorith#finds optimuny* = argmax, ., ®(y) at mostt = 2M + 1 iteration
where)! is the number of the labels.

Proof. Denotey;, oy, B, 2, 21, K}, and K2 for y, «, 8, 2,2', K, and K2 at iterationt respectively. A(ay, 3;) is the
search space at each iterationAt the first iterationt = 1, the search space contains all the labels with posibivee.,
{y|®(y) > 0} C A(oc0,0). Atiterationt > 1, firstly, wheny, = 0, the search ared(a., 8;) is removed from the search
sincey; = () implies there is no label insidd (o, 5;). Secondly, whemy; # 0, A(ay, 5;) is dequeued, and}! and K? is
enqueued. From lemn@& at every step, we are ensured that do not lgdsdy using strict inequalities in the constrained
oracle with valuable, we can ensurg; which oracle returns is an unseen label. Note that split only happens if a label is
found, i.e.,y; # 0. Therefore, there can be only splits, and each split can be viewed as a branch in the binary tree, and
the number of queries are the number of nodes. Maximum number of the node®/ \eitanches ar@ M + 1. O

Theorem4. In angular search, described in Algorithgy at iterationt,

4

O(j") = @(y") (v, )

Ao O(y1)
8(y‘i)’ Ao

whereg! = argmax, y' is the optimum up to, v; = max{ } o is the initial A used, andy, is the first

label returned by the constrainedoracle.

Proof. After ¢t > 2" — 1 iteration as in algorithn2 wherer is an integer, for all the anglgy, 5) in the queu&, v(«, 5) <

(v1)21_r. This follows from the fact that since the algorithm uses the depth first searchR’aftelr iterations all the nodes
at the search is at least At each iteration, for a angle, the capacity is square rooted from the |é&narad the depth is
increased by one. And the theorem follows from the fact that afte” — 1 iterations, all splits are at depth > r, and
at least one of the split contains the optimum with suboptimality bound with lefim@hus,

(y”)
(7))

2—r

<B ((v1)21_1‘> < )¥ < (vy)T
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a A2
Theorem 5. Assuming®(y*) > ¢, angular search described in algorithenwith Ay = %7% = %,ﬁo = 52, finds
e-optimal solution®(y) > (1 — €)®(y*), in T queries and)(T") operations wherd" = 4 log > | andé-optimal
€
. : . . CHY\ oy
solution,®(y) > ®(y*) — 4, in T’ queries and)(T") operations wherd” = 4log <G¢ ) : (;J ).
¢ 9(y”) - G { Ao 3(3/1)} - -
Proof. &(y*) > ¢ & — < = J(y*) < —. vy = max , from Theoremd. Algorithm finds
W) 209 g Sy W) 2w Ao 0
2
y*if B < d(y*) < a, thus setr = % andg = }flb?' Also from the definition of constrainesl-oracle,5 = 52 <
Ao :
o) <a= G— Thereforep; < max{ Ao , 1) } And the upper bound of two terms equal when= E then
~ ¢ A(y1)” Xo H
H N
v < e 0 bound follows plugging in the upper bound«@f, ande = (I)(Z*). O

Appendix G lllustration of the angular search

Following figure6 illustrates Angular search. Block dots are the labels from fidurdBlue X denotes the new label
returned by the oracle. Red X is the maximum point. Two straights lines are the upper bound and the lower bound used
by the constrained oracle. Constrained oracle returns a blue dot between the upper and lower bounds. We can draw a line

that passes blue X that no label can be above the line. Then, split the angle into half. This process continueg uistil the
found.
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Figure 6: lllustration of the Angular search.

Appendix H Limitation of the constraint \-oracle search

Theorem3. Any search algorithm accessing labels only througbracle with any number of the linear constraints cannot
findy* in less than)M iterations in the worst case wherd is the number of labels.

Proof. We show this in the perspective of a game between a searcher and an oracle. At each iteration, the searcher query
the oracle with\ and the search space denoteddasnd the oracle reveals a label according to the query. And the claim
is that with any choice o/ — 1 queries, for each query the oracle can either give an consistent label or indicate that there

is no label inA4 such that aften/ — 1 queries the oracle provides an unseen lgtethich has bigge than all previous
revealed labels.

Denote each query at iterationwith )\, > 0 and a query closed and convex sgtC R?, and denote the revealed label at
iterationt asy;. We will usey, = () to denote that there is no label inside query spagelet YV, = {yv |t' < t}.

Algorithm 3 describes the pseudo code for generating guciihe core of the algorithm is maintaining a rectangular area
R for each iteratiort with following properties. Last two properties are fgr
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Algorithm 3 Construct a consistent label St

Input:  {\;, A} M7\, >0, A, C R?, Ayis closed and convex region.
Output: {y; € R2}VZM1 4 ¢ R?
Initialize: Ry = {(a,b)|0 < a,0 < b}, = 0.

1. fort=1,2,...,M —1 do

2: if Y,_1 N A, = 0then

3: §~: argmax,cy, h(y) + Aeg(y).
4: R =Ri—1 N{ylh(y) + Meg(y) < h(F) + Aeg(y) ory ¢ A}
5: else
6: ;&:@,QZRpl—At.
7:  if R #0then
8: y: = 0. Ry = FindRect(R)
9: else
10: yr = FindPoint(Ri—1, \t).
11: R: = FindRect(Shrink(Ri—1, yt, \t))-
12:  if y; # O then

14: Pick anyy* € Ry;_1

1.Vt < t,Vy € Ry, P(y) > P(yv).

2.V <t,Vy e Ry N Ay, h(yy) + Aevg(ye) > h(y) + A g(y).
3. R: CRi—1.

4. R, is a non-empty open set.

5y € Re N A

6. yi = argmax,cy, 4, h(y) + Mg (y).

Note that if these properties holds till iteratidn, we can simply seg* as any label iR 5, which proves the claim.

First, we show that property 4 is tru&, is a non-empty open set. Consider iterattpand assum&;_; is a non-empty
open set. TherR is an open set sincB,_, is an open set. There are two unknown functiafisyink and FindRect.

For open setd C R2,y € R2, let Shink(A,y,\) = A — {y'|®(y') < ®(y) or h(y') + Ag(y') > h(y) + Ag(v)}

Note that Shrink(A,y,\) C A, and Shrink(A,y,\) is an open set. Assume now that there existg auch
that Shrink(Ri—1,y,\:) # 0 and FindPoint(R:_1,\:) returns suchly. Function FindPoint will be given later.
FindRect(A) returns an open non-empty rectangle insitleNote thatRect(A) C A, and since input tdRect is al-

ways non empty open set, such rectangle exists. 3fcs non-empty open sét, R, is a non-empty open set.

Property 3 and 5 are easy to check. Property 1 and 2 follows from the factthat {¢|y; # 0},V¢ > t,Ry C
Sh’l"ink(Rt,h Yt, )\tfl).

Property 6 follows from the facts that¥,_; N A, # 0, R =0 = Ry_1 C {y|h(y) + Mg(y) > h(H) + \g(7) and
y € A}, otherwise); 1 N A, = 0, andR;_1 C A;.

FindPoint(A, \) returns any € A—{y € R?|\y, = y;}. Given inputA is always an non-empty open set, syatxists.
Shrink(Ri_1,y, A\t) # 0 is ensured from the fact that two boundaries; {y'|®(y') = ®(y)} andd = {h(y)+ A g(y’) =
h(y)+ Ag(y)} meets ay. Sincec is a convex curve; is underd on one side. Therefore the intersection of set atacued
belowd is non-empty and alsopen. O
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Appendix |
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Figure 7: Additional experiment plot (RCV)

Additional Plots from the Experiments
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