Supplementary Material Fast and Scalable Structural SVM with Slack Rescaling

Appendix A Details of binary search

Lemma 1. Let $\bar{F}(\lambda) = \frac{1}{4} \max_{y \in \mathcal{Y}^+} \left(\frac{1}{\lambda}h(y) + \lambda g(y)\right)^2$, then

$$\max_{y \in \mathcal{Y}} \Phi(y) \le \min_{\lambda > 0} \bar{F}(\lambda)$$

and $\overline{F}(\lambda)$ is a convex function in λ .

Proof. First, let $\mathcal{Y}^+ = \{y | y \in \mathcal{Y}, h(y) > 0\}$, then $\max_{y \in \mathcal{Y}} \Phi(y) = \max_{y \in \mathcal{Y}^+} \Phi(y)$, since any solution y such that h(y) < 0 is dominated by y_i , which has zero loss. Second, we prove the bound w.r.t. $y \in \mathcal{Y}^+$. In the following proof we use a quadratic bound (for a similar bound see [9]).

$$\max_{y \in \mathcal{Y}^+} \Phi(y) = \max_{y \in \mathcal{Y}^+} h(y)g(y) = \max_{y \in \mathcal{Y}^+} \frac{1}{4} \left(2\sqrt{h(y)g(y)} \right)^2$$
$$= \frac{1}{4} \left(\max_{y \in \mathcal{Y}^+} \min_{\lambda > 0} \left\{ \frac{1}{\lambda} h(y) + \lambda g(y) \right\} \right)^2$$
$$\leq \frac{1}{4} \left(\min_{\lambda > 0} \max_{y \in \mathcal{Y}^+} \left\{ \frac{1}{\lambda} h(y) + \lambda g(y) \right\} \right)^2$$
(13)

To see the convexity of $\overline{F}(\lambda)$, we differentiate twice to obtain:

$$\frac{\partial^2 \bar{F}(\lambda)}{\partial \lambda^2} = \frac{1}{4} \max_{y \in \mathcal{Y}^+} 6 \frac{1}{\lambda^4} h(y)^2 + 2g(y)^2 > 0$$

Similar to [11], we obtain a convex upper bound on our objective. Evaluation of the upper bound $\bar{F}(\lambda)$ requires using only the λ -oracle. Importantly, this alternative bound $\bar{F}(\lambda)$ does not depend on the slack variable ξ_i , so it can be used with algorithms that optimize the unconstrained formulation (4), such as SGD, SDCA and FW. As in [11], we minimize $\bar{F}(\lambda)$ using *binary search* over λ . The algorithm keeps track of y_{λ_t} , the label returned by the λ -oracle for intermediate values λ_t encountered during the binary search, and returns the maximum label max_t $\Phi(y_{\lambda_t})$. This algorithm focuses on the upper bound min_{$\lambda>0$} $\bar{F}(\lambda)$, and interacts with the target function Φ only through evaluations $\Phi(y_{\lambda_t})$ (similar to [11]).

Appendix B An example of label mapping

Figure 5: A snapshot of labels during optimiation with Yeast dataset. Each $2^{14} - 1$ labels is shown as a pot in the figure 5. X-axis is the $\Delta(y, y_i)$ and Y-axis is $1 + f_W(y) - f_W(y_i)$.

Appendix C Monotonicity of h and g in λ

Proof. Let $g_1 = g(y_{\lambda_1}), h_1 = h(y_{\lambda_1}), g_2 = g(y_{\lambda_2}), \text{ and } h_2 = h(y_{\lambda_2}).$

$$\begin{aligned} h_1 + \lambda_1 g_1 &\ge h_2 + \lambda_1 g_2, \quad h_2 + \lambda_2 g_2 &\ge h_1 + \lambda_2 g_1 \\ \Leftrightarrow h_1 - h_2 + \lambda_1 (g_1 - g_2) &\ge 0, -h_1 + h_2 + \lambda_2 (g_2 - g_1) &\ge 0 \\ \Leftrightarrow (g_2 - g_1)(\lambda_2 - \lambda_1) &\ge 0 \end{aligned}$$

For h, change the role of g and h.

Appendix D Improvements for the binary search

Appendix D.1 Early stopping

If $L = [\lambda_m, \lambda_M]$, and both endpoints have the same label, i.e., $y_{\lambda_m} = y_{\lambda_M}$, then we can terminate the binary search safely because from lemma 4, it follows that the solution y_{λ} will not change in this segment.

Appendix D.2 Suboptimality bound

Let $K(\lambda)$ be the value of the λ -oracle. i.e.,

$$K(\lambda) = \max_{y \in \mathcal{Y}} h(y) + \lambda g(y).$$
(14)

Lemma 5. Φ^* is upper bounded by

$$\Phi(y^*) \le \frac{K(\lambda)^2}{4\lambda} \tag{15}$$

Proof.

$$\begin{split} h(y) &+ \lambda g(y) \leq K(\lambda) \\ \iff g(y)(h(y) + \lambda g(y)) \leq g(y)K(\lambda) \\ \iff \Phi(y) \leq g(y)K(\lambda) - \lambda g(y)^2 \\ &= -\lambda \left(g(y) - \frac{K(\lambda)}{2\lambda}\right)^2 + \frac{K(\lambda)^2}{4\lambda} \leq \frac{K(\lambda)^2}{4\lambda} \end{split}$$

Appendix E Proof of the limitation of the λ **-oracle search**

Theorem 1. Let $\hat{H} = \max_y h(y)$ and $\hat{G} = \max_y g(y)$. For any $\epsilon > 0$, there exists a problem with 3 labels such that for any $\lambda \ge 0$, $y_{\lambda} = \operatorname{argmin}_{y \in \mathcal{Y}} \Phi(y) < \epsilon$, while $\Phi(y^*) = \frac{1}{4}\hat{H}\hat{G}$. Let $\hat{H} = \max_y h(y)$ and $\hat{G} = \max_y g(y)$. For any $\epsilon > 0$ and $\lambda > 0$, there exists a problem of 3 labels that $y_{\lambda} = \operatorname{argmin}_{y \in \mathcal{Y}} \Phi(y) < \epsilon$, and $\Phi(y^*) - \Phi(y_{\lambda}) = \frac{1}{4}\hat{H}\hat{G}$.

Proof. We will first prove following lemma which will be used in the proof.

Lemma 6. Let $A = [A_1 \ A_2] \in \mathbb{R}^2$, $B = [B_1 \ B_2] \in \mathbb{R}^2$, and $C = [C_1 \ C_2] \in \mathbb{R}^2$, and $A_1 < B_1 < C_1$. If B is under the line \overline{AC} , i.e., $\exists t, 0 \le t \le 1, D = tA + (1-t)C$, $D_1 = B_1$, $D_2 > B_2$. Then, $\nexists \lambda \ge 0$, $v = [1 \ \lambda] \in \mathbb{R}^2$, such that

$$v \cdot B > v \cdot A \text{ and } v \cdot B > v \cdot C$$
 (16)

Proof. Translate vectors A, B, and C into coordinates of $[0, A_2], [a, b], [C_1, 0]$ by adding a vector $[-A_1, -C_2]$ to each vectors A, B, and C, since it does not change B - A or B - C. Let $X = C_1$ and $Y = A_2$.

If $0 \le \lambda \le \frac{X}{Y}$, then $v \cdot A = \lambda Y \le X = v \cdot C$. $v \cdot (B - C) > 0 \iff (a - X) + \lambda b > 0$ corresponds to all the points above line \overline{AC} . Similarly, if $\lambda \ge \frac{X}{Y}$, (16) corresponds to $a + \lambda(b - Y) > 0$ is also all the points above \overline{AC} .

From lemma 6, if $y_1, y_2 \in \mathcal{Y}$, then all the labels which lies under line y_1 and y_2 will not be found by λ -oracle. In the adversarial case, this holds when label lies on the line also. Therefore, Theorem 1 holds when there exists three labels, for arbitrary small $\epsilon > 0$, $A = [\epsilon, \hat{G}]$, $B = [\hat{H}, \epsilon]$, and $C = [\frac{1}{2}\hat{H}, \frac{1}{2}\hat{G}]$, $\mathcal{Y} = \{A, B, C\}$. In this case $\hat{\Phi} \approx 0$.

Appendix F Angular search

We first introduce needed notations. $\partial^{\perp}(a)$ be the perpendicular slope of a, i.e., $\partial^{\perp}(a) = -\frac{1}{\partial(a)} = -\frac{a_1}{a_2}$. For $A \subseteq \mathbb{R}^2$, let label set restricted to A as $\vec{\mathcal{Y}}_A = \vec{\mathcal{Y}} \cap A$, and $y_{\lambda,A} = \mathcal{O}(\lambda, A) = \operatorname{argmax}_{y \in \mathcal{Y}, \vec{y} \in A} h(y) + \lambda g(y) = \operatorname{argmax}_{\vec{y} \in \vec{\mathcal{Y}}_A} [\vec{y}]_1 + \lambda [\vec{y}]_2$. Note that if $A = \mathbb{R}^2$, $y_{\lambda,\mathbb{R}^2} = y_{\lambda}$. For $P, Q \in \mathbb{R}^2$, define $\Lambda(P, Q)$ to be the area below the line \overline{PQ} , i.e., $\Lambda(P, Q) = \{\vec{y} \in \mathbb{R}^2 | \vec{y}|_2 - [P]_2 \leq \partial^{\perp}(Q - P)([\vec{y}]_2 - [P]_2)\}$. $\Upsilon_{\lambda} = \{\vec{y} \in \mathbb{R}^2 | \vec{\Phi}(\vec{y}) = [\vec{y}]_1 \cdot [\vec{y}]_2 \geq \vec{\Phi}(\vec{y}_{\lambda,A})\}$ be the area above C_{λ} , and $\Upsilon_{\lambda} = \{\vec{y} \in \mathbb{R}^2 | \vec{\Phi}(\vec{y}) = [\vec{y}]_1 \cdot [\vec{y}]_2 \geq \vec{\Phi}(\vec{y}_{\lambda,A})\}$ be the area above C_{λ} .

Recall the *constrained* λ -oracle defined in (8):

$$y_{\lambda,\alpha,\beta} = \mathcal{O}_c(\lambda,\alpha,\beta) = \max_{y \in \mathcal{Y}, \ \alpha h(y) \ge g(y), \ \beta h(y) < g(y)} \mathcal{L}_\lambda(y)$$

where $\alpha, \beta \in \mathbb{R}_+$ and $\alpha \ge \beta > 0$. Let $A(\alpha, \beta) \subseteq \mathbb{R}^2$ be the restricted search space, i.e., $A(\alpha, \beta) = \{a \in \mathbb{R}^2 | \beta < \partial(a) \le \alpha\}$. Constrained λ -oracle reveals maximal \mathcal{L}_{λ} label within restricted area defined by α and β . The area is bounded by two lines whose slope is α and β . Define a pair $(\alpha, \beta), \alpha, \beta \in \mathbb{R}_+, \alpha \ge \beta > 0$ as an *angle*. The angular search recursively divides an angle into two different angles, which we call the procedure as a *split*. For $\alpha \ge \beta \ge 0$, let $\lambda = \frac{1}{\sqrt{\alpha\beta}}, z = \vec{y}_{\lambda,\alpha,\beta}$ and $z' = [\lambda[z]_2, \frac{1}{\lambda}[z]_1]$. Let P be the point among z and z' which has the greater slope (any if two equal), and Q be the other

point, i.e., if $\partial(z) \geq \partial(z')$, P = z and Q = z', otherwise P = z' and Q = z. Let $R = \left[\sqrt{\lambda[z]_1 \cdot [z]_2} \sqrt{\frac{1}{\lambda}[z]_1 \cdot [z]_2}\right]$. Define split (α, β) as a procedure divides (α, β) into two angles $(\alpha^+, \gamma^+) = (\partial(P), \partial(R))$ and $(\gamma^+, \beta^+) = (\partial(R), \partial(Q))$. First, show that $\partial(P)$ and $\partial(Q)$ are in between α and β , and $\partial(R)$ is between $\partial(P)$ and $\partial(Q)$.

Lemma 7. For each split(α, β),

$$\beta \leq \partial(Q) \leq \partial(R) \leq \partial(P) \leq \alpha$$

Proof. $\beta \leq \partial(z) \leq \alpha$ follows from the definition of constrained λ -oracle in (8). $\partial(z') = \frac{1}{\lambda^2 \partial(z)} = \frac{\alpha \beta}{\partial(z)} \implies \beta \leq \partial(z') \leq \alpha \implies \beta \leq \partial(Q) \leq \partial(P) \leq \alpha.$ $\partial(Q) \leq \partial(R) \leq \partial(P) \iff \min\left\{\partial(z), \frac{1}{\lambda^2 \partial(z)}\right\} \leq \frac{1}{\lambda} \leq \max\left\{\partial(z), \frac{1}{\lambda^2 \partial(z)}\right\}$ from $\forall a, b \in \mathbb{R}_+, b \leq a \implies b \leq a$

$$\sqrt{ab} \le a.$$

After each split, the union of the divided angle (α^+, γ) and (γ, β^+) can be smaller than angle (α, β) . However, following lemma shows it is safe to use (α^+, γ) and (γ, β^+) when our objective is to find y^* .

Lemma 8.

$$\forall a \in \vec{\mathcal{Y}}_{A(\alpha,\beta)}, \Phi(a) > \Phi(y_{\lambda,\alpha,\beta}) \implies \beta^+ < \partial(a) < \alpha^+$$

Proof. From lemma 2, $\vec{\mathcal{Y}}_{A(\alpha,\beta)} \subseteq \Lambda(P,Q)$. Let $U = \{a \in \mathbb{R}^2 | \partial(a) \ge \alpha_+ = \partial(P)\}$, $B = \{a \in \mathbb{R}^2 | \partial(a) \le \beta_+ = \partial(Q)\}$, and two contours of function $C = \{a \in \mathbb{R}^2 | \vec{\Phi}(a) = \Phi(y_{\lambda,\alpha,\beta})\}$, $S = \{a \in \mathbb{R}^2 | \mathcal{L}_{\lambda}(a) = \mathcal{L}_{\lambda}(\vec{y}_{\lambda,\alpha,\beta})\}$. S is the upper bound of $\Lambda(P,Q)$, and C is the upper bound of $\underline{C} = \{a \in \mathbb{R}^2 | \vec{\Phi}(a) \le \Phi(y_{\lambda,\alpha,\beta})\}$. P and Q are the intersections of C and S. For area of U and B, S is under C, therefore, $\Lambda(P,Q) \cap U \subseteq \underline{C}$, and $\Lambda(P,Q) \cap B \subseteq \underline{C}$. It implies that $\forall a \in (\Lambda(P,Q) \cap U) \cup (\Lambda(P,Q) \cap B) \implies \vec{\Phi}(a) \le \Phi(y_{\lambda,\alpha,\beta})$. And the lemma follows from $A(\alpha,\beta) = U \cup B \cup \{a \in \mathbb{R}^2 | \beta^+ < \partial(a) < \alpha^+\}$.

We associate a quantity we call a *capacity* of an angle, which is used to prove the suboptimality of the algorithm. For an angle (α, β) , the capacity of an angle $v(\alpha, \beta)$ is

$$v(\alpha,\beta) := \sqrt{\frac{\alpha}{\beta}}$$

Note that from the definition of an angle, $v(\alpha, \beta) \ge 1$. First show that the capacity of angle decreases exponentially for each split.

Lemma 9. For any angle (α, β) and its split (α^+, γ^+) and (γ^+, β^+) ,

$$v(\alpha,\beta) \ge v(\alpha^+,\beta^+) = v(\alpha^+,\gamma^+)^2 = v(\gamma^+,\beta^+)^2$$

Proof. Assume $\partial(P) \geq \partial(Q)$ (the other case is follows the same proof with changing the role of P and Q), then $\alpha^+ = \partial(P)$ and $\beta^+ = \partial(Q)$. $\partial(Q) = \frac{1}{\lambda^2 \partial(P)} = \frac{\alpha \beta}{\partial(P)}$, $v(\alpha^+, \beta^+) = v(\partial(P), \partial(Q)) = \lambda \partial(P) = \frac{\partial(P)}{\sqrt{\alpha\beta}}$. Since α is the upper bound and β is the lower bound of $\partial(P)$, $\sqrt{\frac{\beta}{\alpha}} \leq v(\partial(P), \partial(Q)) \leq \sqrt{\frac{\alpha}{\beta}}$. Last two equalities in the lemma are from $v(\partial(P), \partial(R)) = v(\partial(R), \partial(Q)) = \sqrt{\frac{\partial(P)}{\sqrt{\alpha\beta}}}$ by plugging in the coordinate of R. \Box Lemma 10. Let $\mathcal{B}(a) = \frac{1}{4} \left(a + \frac{1}{a}\right)^2$. The suboptimality bound of an angle (α, β) with $\lambda = \frac{1}{\sqrt{\alpha\beta}}$ is

$$\frac{\max_{\vec{y}\in\vec{\mathcal{Y}}_{A(\alpha,\beta)}}\vec{\Phi}(\vec{y})}{\Phi(y_{\lambda,\alpha,\beta})} \leq \mathcal{B}(v(\alpha,\beta)).$$

Proof. From lemma 2, $\vec{\mathcal{Y}}_{A(\alpha,\beta)} \subseteq \Lambda(P,Q) = \Lambda(z,z')$. Let $\partial(z) = \gamma$. From 7, $\beta \leq \gamma \leq \alpha$. Let $m = \arg\max_{a \in \Lambda(z,z')} \vec{\Phi}(a)$. m is on line $\overline{zz'}$ otherwise we can move m increasing direction of each axis till it meets the boundary $\overline{zz'}$ and Φ only increases, thus m = tz + (1-t)z'. $\vec{\Phi}(m) = \max_t \vec{\Phi}(tz + (1-t)z')$. $\frac{\partial \vec{\Phi}(tz + (1-t)z')}{\partial t} = 0 \implies t = \frac{1}{2}$. $m = \frac{1}{2}[z_1 + \lambda z_2 \ z_2 + \frac{z_1}{\lambda}]$.

$$\frac{\max_{\vec{y}\in\vec{\mathcal{Y}}_{A(\alpha,\beta)}}\vec{\Phi}(\vec{y})}{\Phi(y_{\lambda,\alpha,\beta})} = \frac{1}{4}\left(\sqrt{\frac{z_1}{\lambda z_2}} + \sqrt{\frac{\lambda z_2}{z_1}}\right)^2$$
$$= \frac{1}{4}\left(\sqrt{\frac{\sqrt{\alpha\beta}}{\gamma}} + \sqrt{\frac{\gamma}{\sqrt{\alpha\beta}}}\right)^2$$

Since $v(a) = v\left(\frac{1}{a}\right)$ and v(a) increases monotonically for $a \ge 1$,

$$\mathcal{B}(a) \leq \mathcal{B}(b) \iff \max\left\{a, \frac{1}{a}\right\} \leq \max\left\{b, \frac{1}{b}\right\}$$

If $\frac{\sqrt{\alpha\beta}}{\gamma} \geq \frac{\gamma}{\sqrt{\alpha\beta}}$, then $\frac{\sqrt{\alpha\beta}}{\gamma} \leq \sqrt{\frac{\alpha}{\beta}}$ since $\gamma \geq \beta$. If $\frac{\gamma}{\sqrt{\alpha\beta}} \geq \frac{\sqrt{\alpha\beta}}{\gamma}$, then $\frac{\gamma}{\sqrt{\alpha\beta}} \leq \sqrt{\frac{\alpha}{\beta}}$ since $\gamma \leq \alpha$. Therefore,
 $\frac{\max_{\vec{y} \in \vec{\mathcal{Y}}_{A(\alpha,\beta)}} \vec{\Phi}(\vec{y})}{\Phi(y_{\lambda,\alpha,\beta})} = \mathcal{B}\left(\frac{\sqrt{\alpha\beta}}{\gamma}\right) \leq \mathcal{B}(v(\alpha,\beta)).$

Now we can prove the theorems.

Theorem 2. Angular search described in algorithm 2 finds optimum $y^* = \operatorname{argmax}_{y \in \mathcal{Y}} \Phi(y)$ at most t = 2M + 1 iteration where M is the number of the labels.

Proof. Denote $y_t, \alpha_t, \beta_t, z_t, z'_t, K^1_t$, and K^2_t for $y, \alpha, \beta, z, z', K^1$, and K^2 at iteration t respectively. $\mathcal{A}(\alpha_t, \beta_t)$ is the search space at each iteration t. At the first iteration t = 1, the search space contains all the labels with positive Φ , i.e., $\{y|\Phi(y) \ge 0\} \subseteq \mathcal{A}(\infty, 0)$. At iteration t > 1, firstly, when $y_t = \emptyset$, the search area $\mathcal{A}(\alpha_t, \beta_t)$ is removed from the search since $y_t = \emptyset$ implies there is no label inside $\mathcal{A}(\alpha_t, \beta_t)$. Secondly, when $y_t \neq \emptyset$, $\mathcal{A}(\alpha_t, \beta_t)$ is dequeued, and K^1_t and K^2_t is enqueued. From lemma 8, at every step, we are ensured that do not loose y^* . By using strict inequalities in the constrained oracle with valuable s, we can ensure y_t which oracle returns is an unseen label. Note that split only happens if a label is found, i.e., $y_t \neq \emptyset$. Therefore, there can be only M splits, and each split can be viewed as a branch in the binary tree, and the number of queries are the number of nodes. Maximum number of the nodes with M branches are 2M + 1.

Theorem 4. In angular search, described in Algorithm 2, at iteration t,

$$\Phi(\hat{y}^t) \ge \Phi(y^*)(v_1^{-\frac{4}{t+1}})$$

where $\hat{y}^t = \operatorname{argmax}_t y^t$ is the optimum up to $t, v_1 = \max\left\{\frac{\lambda_0}{\partial(\vec{y_1})}, \frac{\partial(\vec{y_1})}{\lambda_0}\right\}, \lambda_0$ is the initial λ used, and y_1 is the first label returned by the constrained λ -oracle.

Proof. After $t \ge 2^r - 1$ iteration as in algorithm 2 where r is an integer, for all the angle (α, β) in the queue $Q, v(\alpha, \beta) \le (v_1)^{2^{1-r}}$. This follows from the fact that since the algorithm uses the depth first search, after $2^r - 1$ iterations all the nodes at the search is at least r. At each iteration, for a angle, the capacity is square rooted from the lemma 9, and the depth is increased by one. And the theorem follows from the fact that after $t \ge 2^r - 1$ iterations, all splits are at depth $r' \ge r$, and at least one of the split contains the optimum with suboptimality bound with lemma 10. Thus,

$$\frac{\Phi(y^*)}{\Phi(\hat{y})} \le \mathcal{B}\left((v_1)^{2^{1-r}}\right) < (v_1)^{2^{2-r}} \le (v_1)^{\frac{4}{t+1}}$$

Theorem 5. Assuming $\Phi(y^*) > \phi$, angular search described in algorithm 2 with $\lambda_0 = \frac{\hat{G}}{\hat{H}}, \alpha_0 = \frac{\hat{G}^2}{\phi}, \beta_0 = \frac{\phi}{\hat{H}^2}$, finds ϵ -optimal solution, $\Phi(y) \ge (1-\epsilon)\Phi(y^*)$, in T queries and O(T) operations where $T = 4\log\left(\frac{\hat{G}\hat{H}}{\phi}\right) \cdot \frac{1}{\epsilon}$, and δ -optimal solution, $\Phi(y) \ge \Phi(y^*) - \delta$, in T' queries and O(T') operations where $T' = 4\log\left(\frac{\hat{G}\hat{H}}{\phi}\right) \cdot \frac{\Phi(y^*)}{\delta}$.

 $\begin{array}{l} \textit{Proof. } \Phi(y^*) > \phi \Leftrightarrow \frac{\phi}{\hat{H}^2} < \frac{g(y^*)}{h(y^*)} = \partial(y^{\vec{*}}) < \frac{\hat{G}^2}{\phi}. \ v_1 = \max\left\{\frac{\lambda_0}{\partial(y_1)}, \frac{\partial(y_1)}{\lambda_0}\right\} \text{ from Theorem 4. Algorithm finds}\\ y^* \text{ if } \beta \leq \partial(y^{\vec{*}}) \leq \alpha, \text{ thus set } \alpha = \frac{\hat{G}^2}{\phi} \text{ and } \beta = \frac{\phi}{\hat{H}^2}. \text{ Also from the definition of constrained } \lambda \text{-oracle, } \beta = \frac{\phi}{\hat{H}^2} \leq \partial(y_1) \leq \alpha = \frac{\hat{G}^2}{\phi}. \text{ Therefore, } v_1 \leq \max\left\{\frac{\lambda_0}{\partial(y_1)}, \frac{\partial(y_1)}{\lambda_0}\right\}. \text{ And the upper bound of two terms equal when } \lambda_0 = \frac{\hat{G}}{\hat{H}}, \text{ then}\\ v_1 \leq \frac{\hat{G}\hat{H}}{\phi}. \delta \text{ bound follows plugging in the upper bound of } v_1, \text{ and } \epsilon = \frac{\delta}{\Phi(y^*)}. \end{array}$

Appendix G Illustration of the angular search

Following figure 6 illustrates Angular search. Block dots are the labels from figure 5. Blue X denotes the new label returned by the oracle. Red X is the maximum point. Two straights lines are the upper bound and the lower bound used by the constrained oracle. Constrained oracle returns a blue dot between the upper and lower bounds. We can draw a line that passes blue X that no label can be above the line. Then, split the angle into half. This process continues until the y^* is found.

Figure 6: Illustration of the Angular search.

Appendix H Limitation of the constraint λ -oracle search

Theorem 3. Any search algorithm accessing labels only through λ -oracle with any number of the linear constraints cannot find y^* in less than M iterations in the worst case where M is the number of labels.

Proof. We show this in the perspective of a game between a searcher and an oracle. At each iteration, the searcher query the oracle with λ and the search space denoted as \mathcal{A} , and the oracle reveals a label according to the query. And the claim is that with any choice of M - 1 queries, for each query the oracle can either give an consistent label or indicate that there is no label in \mathcal{A} such that after M - 1 queries the oracle provides an unseen label y^* which has bigger Φ than all previous revealed labels.

Denote each query at iteration t with $\lambda_t > 0$ and a query closed and convex set $\mathcal{A}_t \subseteq \mathbb{R}^2$, and denote the revealed label at iteration t as y_t . We will use $y_t = \emptyset$ to denote that there is no label inside query space \mathcal{A}_t . Let $\mathcal{Y}_t = \{y_{t'} | t' < t\}$.

Algorithm 3 describes the pseudo code for generating such y_t . The core of the algorithm is maintaining a rectangular area \mathcal{R}_t for each iteration t with following properties. Last two properties are for y_t .

Algorithm 3 Construct a consistent label set \mathcal{Y} .

Input: $\{\lambda_t, \mathcal{A}_t\}_{t=1}^{M-1}, \lambda_t > 0, \mathcal{A}_t \subseteq \mathbb{R}^2, \mathcal{A}_t$ is closed and convex region. **Output:** $\{y_t \in \mathbb{R}^2\}_{t=1}^{t=M-1}, y^* \in \mathbb{R}^2$ **Initialize:** $\mathcal{R}_0 = \{(a, b) | 0 < a, 0 < b\}, \mathcal{Y}_0 = \emptyset.$ 1: for $t = 1, 2, \ldots, M - 1$ do if $\mathcal{Y}_{t-1} \cap \mathcal{A}_t = \emptyset$ then 2: $\tilde{y} = \operatorname{argmax}_{y \in \mathcal{Y}_t} h(y) + \lambda_t g(y).$ 3: $\tilde{\mathcal{R}} = \mathcal{R}_{t-1} \cap \{ y | h(y) + \lambda_t g(y) < h(\tilde{y}) + \lambda_t g(\tilde{y}) \text{ or } y \notin \mathcal{A}_t \}.$ 4: 5: else $\tilde{y} = \emptyset, \tilde{\mathcal{R}} = \mathcal{R}_{t-1} - \mathcal{A}_t.$ 6: if $\tilde{\mathcal{R}} \neq \emptyset$ then 7: $y_t = \emptyset. \ \mathcal{R}_t = FindRect(\tilde{\mathcal{R}})$ 8: 9: else 10: $y_t = FindPoint(\mathcal{R}_{t-1}, \lambda_t).$ $\mathcal{R}_t = FindRect(Shrink(\mathcal{R}_{t-1}, y_t, \lambda_t)).$ 11: 12: if $y_t \neq \emptyset$ then $\mathcal{Y} = \mathcal{Y} \cup \{y_t\}.$ 13: 14: Pick any $y^* \in \mathcal{R}_{M-1}$

- 1. $\forall t' < t, \forall y \in \mathcal{R}_t, \Phi(y) > \Phi(y_{t'}).$
- 2. $\forall t' < t, \forall y \in \mathcal{R}_t \cap \mathcal{A}_{t'}, h(y_{t'}) + \lambda_{t'}g(y_{t'}) > h(y) + \lambda_{t'}g(y).$
- 3. $\mathcal{R}_t \subseteq \mathcal{R}_{t-1}$.
- 4. \mathcal{R}_t is a non-empty open set.
- 5. $y_t \in \mathcal{R}_t \cap \mathcal{A}_t$
- 6. $y_t = \operatorname{argmax}_{y \in \mathcal{V}_t \cap \mathcal{A}_t} h(y) + \lambda_t g(y).$

Note that if these properties holds till iteration M, we can simply set y^* as any label in \mathcal{R}_M which proves the claim.

First, we show that property 4 is true. \mathcal{R}_0 is a non-empty open set. Consider iteration t, and assume \mathcal{R}_{t-1} is a non-empty open set. Then \tilde{R} is an open set since \mathcal{R}_{t-1} is an open set. There are two unknown functions, Shrink and FindRect. For open set $A \subseteq \mathbb{R}^2, y \in \mathbb{R}^2$, let $Shink(A, y, \lambda) = A - \{y' | \Phi(y') \leq \Phi(y) \text{ or } h(y') + \lambda g(y') \geq h(y) + \lambda g(y)\}$. Note that $Shrink(A, y, \lambda) \subseteq A$, and $Shrink(A, y, \lambda)$ is an open set. Assume now that there exists a y such that $Shrink(\mathcal{R}_{t-1}, y, \lambda_t) \neq \emptyset$ and $FindPoint(\mathcal{R}_{t-1}, \lambda_t)$ returns such y. Function FindPoint will be given later. FindRect(A) returns an open non-empty rectangle inside A. Note that $Rect(A) \subseteq A$, and since input to Rect is always non empty open set, such rectangle exists. Since \mathcal{R}_0 is non-empty open set, $\forall t, \mathcal{R}_t$ is a non-empty open set.

Property 3 and 5 are easy to check. Property 1 and 2 follows from the fact that $\forall t \in \{t | y_t \neq \emptyset\}, \forall t' > t, \mathcal{R}_{t'} \subseteq Shrink(\mathcal{R}_{t-1}, y_t, \lambda_{t-1}).$

Property 6 follows from the facts that if $\mathcal{Y}_{t-1} \cap \mathcal{A}_t \neq \emptyset$, $\tilde{\mathcal{R}} = 0 \implies \mathcal{R}_{t-1} \subseteq \{y | h(y) + \lambda_t g(y) > h(\tilde{y}) + \lambda_t g(\tilde{y}) \text{ and } y \in \mathcal{A}_t\}$, otherwise $\mathcal{Y}_{t-1} \cap \mathcal{A}_t = \emptyset$, and $\mathcal{R}_{t-1} \subseteq \mathcal{A}_t$.

FindPoint(A, λ) returns any $y \in A - \{y \in \mathbb{R}^2 | \lambda y_2 = y_1\}$. Given input A is always an non-empty open set, such y exists. Shrink($\mathcal{R}_{t-1}, y, \lambda_t$) $\neq \emptyset$ is ensured from the fact that two boundaries, $c = \{y' | \Phi(y') = \Phi(y)\}$ and $d = \{h(y') + \lambda g(y') = h(y) + \lambda g(y)\}$ meets at y. Since c is a convex curve, c is under d on one side. Therefore the intersection of set above c and below d is non-empty and also open.

Appendix I Additional Plots from the Experiments

Figure 7: Additional experiment plot (RCV)