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Abstract

We present an efficient method for training slack-
rescaled structural SVM. Although finding the
most violating label in a margin-rescaled for-
mulation is often easy since the target func-
tion decomposes with respect to the structure,
this is not the case for a slack-rescaled formula-
tion, and finding the most violated label might
be very difficult. Our core contribution is an
efficient method for finding the most-violating-
label in a slack-rescaled formulation, given an
oracle that returns the most-violating-label in a
(slightly modified) margin-rescaled formulation.
We show that our method enables accurate and
scalable training for slack-rescaled SVMs, reduc-
ing runtime by an order of magnitude compared
to previous approaches to slack-rescaled SVMs.

1 Introduction

Many problems in machine learning can be seen as struc-
tured output prediction tasks, where one would like to pre-
dict a set of labels with rich internal structure [1]. This gen-
eral framework has proved useful for a wide range of appli-
cations from computer vision, natural language processing,
computational biology, and others. In order to achieve high
prediction accuracy, the parameters of structured predictors
are learned from training data. One of the most effective
and commonly used approaches for this supervised learn-
ing task isStructural SVM, a method that generalizes bi-
nary SVM to structured outputs [15]. Since the structured
error is non-convex, Tsochantaridis et al. [15] propose to
replace it with a convex surrogate loss function. They for-
mulate two such surrogates, known asmargin and slack
rescaling.

While slack rescaling often produces more accurate pre-
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dictors, margin rescaling has been far more popular due to
its better computational requirements. In particular, both
formulations require optimizing over the output space, but
while margin rescaling preserves the structure of the score
and error functions, the slack-rescaling does not. This re-
sults in harder inference problems during training. To ad-
dress this challenge, Sarawagi and Gupta [11] propose a
method to reduce the problem of slack rescaling to a se-
ries of modified margin rescaling problems. They show
that their method outperforms margin rescaling in several
domains. However, there are two main caveats in their ap-
proach. First, the optimization is only heuristic, that is, it
is not guaranteed to solve the slack rescaling objective ex-
actly. Second, their method is specific to the cutting plane
training algorithm and does not easily extend to stochastic
algorithms. More recently, Bauer et al. [2] proposed an ele-
gant dynamic programming approach to the slack rescaling
optimization problem. However, their formulation is re-
stricted to sequence labeling and hamming error, and does
not apply to more general structures.

In this paper we propose an efficient method for solving the
optimization problem arising from the slack rescaling for-
mulation. Similar to Sarawagi and Gupta [11] our method
reduces finding the most violated label in slack rescaling
to a series of margin rescaling problems. However, in con-
trast to their approach, our approach can be easily used with
training algorithms like stochastic gradient descent (SGD)
[10] and block Frank-Wolfe (FW) [7], which often scale
much better than cutting plane. We first propose a very sim-
ple approach that minimizes an upper bound on the slack
rescaling objective function, and only requires access to a
margin rescaling oracle. This formulation is quite general
and can be used with any error function and model struc-
ture, and many training algorithms such as cutting plane,
SGD and FW. However, this method is not guaranteed to
always find the most violating label. Indeed, we show that
always finding the most violating label for a slack-rescaled
formulation is impossible using only a margin rescaling or-
acle. To address this, we suggest using a modified oracle,
that is typically as easy to implement as margin rescaling,
and present a more sophisticated algorithm which solves
the slack rescaling formulation exactly, and also enjoys
good approximation guarantees after a small number of it-
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erations. We demonstrate empirically that our algorithm
outperforms existing baselines on several real-world ap-
plications, including hierarchical and multi-label classifi-
cation.

2 Problem Formulation

In this section we review the basics of structured out-
put prediction and describe the relevant training objec-
tives. In structured output prediction the task is to map
data instancesx to a set of output labelsy ∈ Y . Struc-
tured SVMs use a linear discriminant mapping of the form
y(x; w) = argmaxy∈Y w>φ(x, y), whereφ(x, y) ∈ Rd is
a feature function relating input-output pairs, andw ∈ Rd

is a corresponding vector of weights. Our interest is in
the supervised learning setting, wherew is learned from
training data{xi, yi}ni=1 by minimizing the empirical risk.
The prediction quality is measured by an error function
L(y, yi) ≥ 0 which determines how bad it is to predict
y when the ground-truth is in factyi.

Since optimizingL(y, yi) directly is hard due to its com-
plicated dependence onw, several alternative formulations
minimize a convex upper bound instead. Structural SVM
is an elegant max-margin approach which uses a struc-
tured hinge loss surrogate [15, 14]. Two popular surrogates
are margin and slack rescaling. In particular, denoting the
model score byf(y) = w>φ(x, y) (we omit the depen-
dence onx andw to simplify notation), the margin rescal-
ing training objective is given by:

min
w,ξ

C

2
‖w‖22 +

1
n

∑

i

ξi (1)

s.t. f(yi)− f(y) ≥ L(y, yi)− ξi ∀i, y 6= yi

ξi ≥ 0 ∀i

whereC is the regularization constant. Similarly, the slack
rescaling formulation scales the slack variables by the error
term:

min
w,ξ

C

2
‖w‖22 +

1
n

∑

i

ξi (2)

s.t. f(yi)− f(y) ≥ 1−
ξi

L(y, yi)
∀i, y 6= yi

ξi ≥ 0 ∀i

Intuitively, both formulations seek to find aw which as-
signs high scores to the ground-truth compared to the other
possible labellings. Wheny is very different than the true
yi (L is large) then the difference in scores should also be
larger. There is, however, an important difference between
the two forms. In margin rescaling, high loss can occur
for labellings with high error even though they are already
classified correctly with a margin. This may divert training

from the interesting labellings where the classifier errs, es-
pecially whenL can take large values, as in the common
case of hamming error. In contrast, in slack rescaling la-
bellings that are classified with a margin incur no loss. An-
other difference between the two formulations is that the
slack rescaling loss is invariant to scaling of the error term,
while in margin rescaling such scaling changes the mean-
ing of the featuresφ.

In many cases it is easier to optimize an unconstrained
problem. In our case it is straightforward to write (1) and
(2) in an unconstrained form:

min
w

C
2
‖w‖2

2 + 1
n

∑

i

max
y∈Y

(L(y, yi) + f(y) − f(yi)) (3)

min
w

C
2
‖w‖2

2 + 1
n

∑

i

max
y∈Y

L(y, yi) (1 + f(y) − f(yi)) (4)

Most of the existing training algorithms for structural SVM
require solving the maximization-over-labellings problems
in (4) and (3):

Margin
rescaling

: argmax
y∈Y

L(y, yi) + f(y)− f(yi) (5)

Slack
rescaling

: argmax
y∈Y

L(y, yi) (1 + f(y)− f(yi)) (6)

To better understand the difference between margin and
slack rescaling we focus on a single training instancei
and define the functions:h(y) = 1 + f(y) − f(yi) and
g(y) = L(yi, y). With these definitions we see that the
maximization (5) for margin rescaling ismaxy∈Y h(y) +
g(y), while the maximization (6) for slack rescaling is
maxy∈Y h(y)g(y). It is now obvious why margin rescaling
is often easier. When the score and error functionsh andg
decomposeinto a sum of simpler functions, we can exploit
that structure in order to solve the maximization efficiently
[15, 14, 5]. In contrast, the slack rescaling score does not
decompose even when bothh andg do. What we show,
then, is how to solve problems of the formmaxy h(y)g(y),
and thus the maximization (6), having access only to an or-
acle for additive problems of the formmaxy h(y) + λg(y).

That is, we assume that we have access to a procedure, re-
ferred to as theλ-oracle, which can efficiently solve the
problem:

yλ = O(λ) = argmax
y∈Y

Lλ(y) (7)

whereLλ(y) = h(y)+λg(y). This problem is just a rescal-
ing of (5). E.g., for linear responses it is obtained by scal-
ing the weight vector by1/λ. If we can handle margin
rescaling efficiently we can most likely implement theλ-
oracle efficiently. This is also the oracle used by Sarawagi
and Gupta [11]. In Section4, we show how to obtain a
solution to the slack-rescaling problem (6) using such aλ-
oracle. Our method can be used as a subroutine in a variety
of training algorithms, and we demonstrate that it is more
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scalable than previous methods. However, we also show
that this approach is limited, since no procedure that only
has access to aλ-oracle can guarantee the quality of its so-
lution, no matter how much time it is allowed to run.

Therefore, we propose an alternative procedure that can ac-
cess a more powerful oracle, which we call theconstrained
λ-oracle:

yλ,α,β = Oc(λ, α, β) = max
y∈Y, αh(y)>g(y), βh(y)≤g(y)

Lλ(y),

(8)

whereα, β ∈ R. This oracle is similar to theλ-oracle,
but can additionally handle linear constraints on the values
h(y) andg(y). In the sequel we show that in many inter-
esting cases this oracle is not more computationally expen-
sive than the basic one. For example, when theλ-oracle
is implemented as a linear program (LP), the additional
constraints are simply added to the LP formulation and do
not complicate the problem significantly. Before present-
ing our algorithms for optimizing (6), we first review the
training framework in the next section.

3 Optimization for Slack Rescaling

In this section we briefly survey cutting plane and stochas-
tic gradient descent optimization for the slack rescaled ob-
jective (2) and (4). This will be helpful in understanding
the difference between our approach and that of prior work
on the slack rescaled objective by Sarawagi and Gupta [11].

The cutting plane algorithm was proposed for solving the
structural SVM formulation in [15, 6]. This algorithm has
also been used in previous work on slack rescaling opti-
mization [11, 2]. The difficulty in optimizing (2) stems
from the number of constraints, which is equal to the size
of the output spaceY (for each training instance). The cut-
ting plane method maintains a small set of constraints and
solves the optimization problem only over that set. At each
iteration the active set of constraints is augmented with new
violated constraints, and it can be shown that not too many
such constraints need to be added for a good solution to be
found [6]. The main computational bottleneck here is to
find a violating constraint at each iteration, which is chal-
lenging since it requires searching over the output space for
some violating labelingy.

Relying on this framework, Sarawagi and Gupta [11] use
the formulation in (2) and rewrite the constraints as:

1 + f(y)− f(yi)−
ξi

L(y, yi)
≤ 0 ∀i, y 6= yi (9)

In our notation, to find a violated constraint they aim at
solving the problem:

argmax
y∈Y′

(

h(y)−
ξi

g(y)

)

(10)

whereY ′ = {y|y ∈ Y , h(y) > 0, y 6= yi}. They suggest to
minimize a convex upper bound of (10) which stems from

the convex conjugate function of
ξi

g(y)
:

max
y∈Y′

h(y)−
ξi

g(y)
= max

y∈Y′
min
λ≥0

(
h(y) + λg(y)− 2

√
ξiλ
)

≤min
λ≥0

max
y∈Y′

F ′(λ, y) = min
λ≥0

max
y∈Y′

F ′(λ, y) = min
λ≥0

F (λ)

(11)

whereF (λ) = max
y∈Y′

F ′(λ, y) = maxy∈Y′ h(y) + λg(y)−

2
√

ξiλ. SinceF (λ) is a convex function, (11) can be solved
by a simple search method such as golden search overλ
[11].

Although this approach is suitable for the cutting plane al-
gorithm, unfortunately it cannot be easily extended to other
training algorithms. In particular,F ′(λ, y) is defined in
terms of slack variablesξi, which ties it to the constrained
form (2). On the other hand, algorithms such as stochastic
gradient descent (SGD) [10, 12], stochastic dual coordi-
nate ascent (SDCA) [13], or block-coordinate Frank-Wolfe
(FW) [7], all optimize the unconstrained objective form (4).
These methods are typically preferable in the large scale
setting, since they have very low per-iteration cost, han-
dling a single example at a time, with the same overall it-
eration complexity as cutting plane methods. In contrast,
the cutting plane algorithm considers the entire training set
at each iteration, so the method does not scale well to large
problems. Since our goal in this work is to handle large
datasets, we would like to be able to use the stochastic
methods mentioned above, working on the unconstrained
formulation (4). The update in these algorithms requires
solving the maximization problem (6), which is the goal of
Section4. Note that solving (6) also allows using a cutting
plane method if desired.

4 Algorithms

In this section we present our main contribution, a frame-
work for solving the maximization problem (6), which we
write as:

max
y

Φ(y) := max
y

h(y)g(y) (12)

We describe two new algorithms to solve this problem us-
ing access to theλ-oracle, which have several advantages
over previous approaches. However, we also show that any
algorithm which uses only theλ-oracle cannot always re-
cover an optimal solution. Therefore, in Section4.5 we
proposed an improved algorithm which requires access to
an augmentedλ-oracle that can also handle linear con-
straints.
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h(y)

g(
y)

(a)Φ contour.

h(y)

g(
y)

(b) λ contour.

Figure 1: Contour of the two functions considered inR2.
Φ contour is the contour of the objective function, andλ
contour is the contour used by the oracle.

4.1 Binary search

We first present a binary search algorithm similar to the
one proposed by Sarawagi and Gupta [11], but with one
main difference. Our algorithm can be easily used with
training methods that optimize the unconstrained objective
(4), and can therefore be used for SGD, SDCA and FW. The
algorithm minimizes a convex upper bound onΦ without
slack variableξi. The algorithm is based on the following
lemma (details and proofs are inAppendix A).

Lemma 1. Let F̄ (λ) = 1
4 maxy∈Y+

(
1
λh(y) + λg(y)

)2
,

then

max
y∈Y

Φ(y) ≤ min
λ>0

F̄ (λ)

andF̄ (λ) is a convex function inλ.

Rather than minimizing this upper bound, we next present
an algorithm that aims to optimizeΦ(y) in a more direct
manner, using a geometrical interpretation of mapping la-
bels intoR2.

4.2 Geometrical Interpretation of λ-oracle search

To understand the problem better and motivate our ap-
proach, it is useful to consider the following geometrical
interpretation of (12): we map each labelingy to a vector
~y = [h(y) g(y)] ∈ R2. Let ~Y = {~y ∈ R2|y ∈ Y} be the
set of all mapped labels. The maximization (12) reduces to
the problem: given a set of points~Y ⊂ R2, maximize the
product of their coordinates~y∗ = argmax~y∈~Y [~y]1 ∙ [~y]2.

The contours of our objective function~Φ(~y) = [~y]1 ∙ [~y]2
are then hyperbolas. We would like to maximize this func-
tion by repeatedly finding points that maximize linear ob-
jectives of the form~Lλ(~y) = [~y]1 + λ[~y]2, whose contours
form lines in the plane (see Figure1). An example of map-
ping labels intoR2 is shown inAppendix B.

The importance of theR2 mapping is that eachyλ revealed
by theλ-oracle shows that the optimaly∗ can only reside
in a small slice of the plane. See figure2.

y6

_H

z

y$

C6

S6
_G

Figure 2: Geometric interpretation of theλ-oracle: ~y∗ must
reside in the marked area between the upper boundSλ and
the lower boundCλ. It follows thath(y∗) andg(y∗) reside
in a simple segmenṫH andĠ respectively.

Lemma 2. Let Sλ be a line through~yλ and ~z =
[λ[~yλ]2, 1

λ [~yλ]1], and let Cλ = {~y ∈ R2|[~y]1 ∙ [~y]2 =
~Φ(~yλ)} be the hyperbola through~yλ. Then, ~y∗ is on or
below lineSλ, and ~y∗ is on or above hyperbolaCλ.

Proof. If there exists a~y ∈ ~Y which is aboveSλ, it con-
tradicts the fact that~yλ is the argmax point for function
~Lλ. And the second argument follows from~y∗ being the
argmax label w.r.t.~Φ, and the area aboveCλ corresponds
to points whose~Φ value is greater than~yλ.

It follows thath(y∗) andg(y∗) must each reside in a seg-
ment:

Lemma 3. Let Ḣ = [min([ ~yλ]1, [~z]1), max([ ~yλ]1, [~z]1)]
andĠ = [min([ ~yλ]2, [~z]2), max([ ~yλ]2, [~z]2)]. Then,

h(y∗) ∈ Ḣ, g(y∗) ∈ Ġ

Proof. This follows from the fact thatSλ andCλ intersects
at two points,~yλ and~z, and the boundaries,Sλ andCλ, are
strictly decreasing functions inR2.

4.3 Bisecting search

In this section, we propose a search algorithm which is
based on the previous geometric interpretation. Similar to
the binary search, our method also relies on the basicλ-
oracle.

We first give an overview of the algorithm. We maintain
a set of possible value rangesλ∗ = argmaxλ>0 Φ(yλ),
h(λ∗), andg(λ∗) asL,H, andG, respectively; all initial-
ized asR. First, for eachyλ returned by the oracle, we take
an intersection ofG andH with a segment of possible val-
ues ofh(y) andg(y), respectively, using Lemmas2 and3.
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Second, we reduce the spaceL of potentialλ’s based on
the following Lemma (proved inAppendix C).

Lemma 4. h(yλ) is a non-increasing function ofλ, and
g(yλ) is a non-decreasing function ofλ.

Thus, we can discard{λ′|λ′ > λ} if h(y∗
λ) > h(yλ) or

{λ′|λ′ < λ} otherwise fromL. Next, we pickλ ∈ L in
the middle, and queryyλ. The algorithm continues until at
least one ofL,H, andG is empty. Thisbisecting search
procedure is given in Algorithm1.

Similar to the binary search from the previous section, this
algorithm can be used with training methods like SGD and
SDCA, as well as the cutting-plane algorithm. However,
this approach has several advantages compared to the bi-
nary search. First, the binary search needs explicit upper
and lower bounds onλ, thus it has to search the entireλ
space [11]. However, the bisecting search can directly start
from anyλ without an initial range, and for instance, this
can be used to warm-start from the optimalλ in the pre-
vious iteration. Furthermore, we point out that since the
search space ofh andg is also bisected, the procedure can
terminate early if either of them becomes empty.

Finally, in Appendix Dwe propose two improvements that
can be applied to either the binary search or the bisecting
search. Specifically, we first provide a simple stopping cri-
terion that can be used to terminate the search when the
current solutionyλt will not further improve. Second, we
show how to obtain a bound on the suboptimality of the cur-
rent solution, which can give some guarantee on its quality.

So far we have used theλ-oracle as a basic subroutine in
our search algorithms. Unfortunately, as we show next, this
approach is limited as we cannot guarantee finding the opti-
mal solutiony∗, even with unlimited number of calls to the
λ-oracle. This is somewhat distressing since with unlimited
computation we can find the optimum of (6) by enumerat-
ing all y’s.

4.4 Limitation of the λ-oracle

Until now, we used only theλ-oracle to search forΦ∗ with-
out directly accessing the functionsh andg. We now show
that this approach, searchingΦ∗ with only a λ-oracle, is
very limited: even with an unlimited number of queries,
the search cannot be exact and might return a trivial solu-
tion in the worst case (seeAppendix Efor proof).

Theorem 1. Let Ĥ = maxy h(y) and Ĝ = maxy g(y).
For any ε > 0, there exists a problem with 3 labels such
that for anyλ ≥ 0, Φ(yλ) = miny∈Y Φ(y) < ε, while

Φ(y∗) =
1
4
ĤĜ.

Theorem1 shows that any search algorithm that can access
the function only throughλ-oracle, including the method
of Sarawagi and Gupta [11] and both methods presented

Algorithm 1 Bisecting search

1: procedure BISECTING(λ0)
Input: Initial λ for the searchλ0 ∈ R+

Output: ŷ ∈ Y .
Initialize: H = G = L = R+, λ = λ0, Φ̂ = 0.
2: while H 6= ∅ andG 6= ∅ do
3: y′ ← O(λ)
4: u← [h(y′) λg(y′)], v ← [g(y′) 1

λh(y′)]
5: H ← H ∩ {h′|min u ≤ h′ ≤ max u} .

Update
6: G← G ∩ {g′|min v ≤ g′ ≤ max v}
7: if v1 ≤ v2 then . Increaseλ
8: L← L ∩ {λ′ ∈ R|λ′ ≥ λ}
9: else . Decreaseλ

10: L← L ∩ {λ′ ∈ R|λ′ ≤ λ}

11: λ← 1
2 (min L + max L)

12: if h(y′)g(y′) ≥ Φ̂ then
13: ŷ ← y′, Φ̂← h(y′)g(y′).

above, cannot be guaranteed to find a label optimizing
Φ(y), even approximately, and even with unlimited ac-
cesses to the oracle. This problem calls for a more powerful
oracle.

4.5 Angular search with the constrained-λ-oracle

Theconstrainedλ-oracledefined in (8) has two inequality
constraints to restrict the search space. Using this modified
oracle, we can present an algorithm thatis guranteed to find
the most violating constraint, as captured by the following
theorem, proved inAppendix F:

Theorem 2. Angular search described in Algorithm2 finds
the optimumy∗ = argmaxy∈Y Φ(y) using at mostt =
2M + 1 iteration whereM = |Y| is the number of the
labels.

This is already an improvement over the previous methods,
as at least we are guaranteed to return the actual most vi-
olating label. However, it is still disappointing since the
number of iterations, and thus number of oracle accesses
might actually be larger than the number of labels. This
defies the whole point, since we might as well just enumer-
ate over allM possible labels. Unfortunately, even with
a constrained oracle, this is almost the best we can hope
for. In fact, even if we allow additional linear constraints,
we might still needM oracle accesses, as indicated by the
following theorem, proved inAppendix E.

Theorem 3. Any search algorithm accessing labels only
through aλ-oracle with any number of linear constraints
cannot findy∗ using less thanM iterations in the worst
case, whereM = |Y| is the number of labels.

Fortunately, even though we cannot guarantee optimizing
Φ(y) exactly using a small number of oracle accesses, we

671



Fast and Scalable Structural SVM with SlackRescaling

h(y)

g(y)

O
L

L2

R

Q = ~z

M

P = ~y6U

U1

L1=U2

Figure 3: Split procedure.

can at least do so approximately. This can be achieved
by Algorithm 2, as the next theorem states (proved inAp-
pendix F).

Theorem 4. In angular search, described in Algorithm2,
at iterationt,

Φ(ŷt) ≥ Φ(y∗)(v
− 4

t+1
1 )

where ŷt = argmaxt yt is the optimum up tot, v1 =

max

{
λ0

∂(~y1)
,
∂(~y1)
λ0

}

, λ0 is the initial λ used, andy1 is

the first label returned by the constrainedλ-oracle.

We use∂(a) = a2
a1

to denote the slope of a vector inR2.

With proper initialization, we get the following runtime
guarantee:

Theorem 5. AssumingΦ(y∗) > φ, angular search de-

scribed in algorithm2 with λ0 =
Ĝ

Ĥ
, α0 =

Ĝ2

φ
, β0 =

φ

Ĥ2
,

finds anε-optimal solution,Φ(y) ≥ (1 − ε)Φ(y∗), in T

queries andO(T ) operations, whereT = 4 log

(
ĜĤ

φ

)

∙

1
ε

, andδ-optimal solution,Φ(y) ≥ Φ(y∗)−δ, in T ′ queries

andO(T ′) operations, whereT ′ = 4 log

(
ĜĤ

φ

)

∙
Φ(y∗)

δ
.

Here we give an overview of the algorithm with an illus-
tration in Figure3. The constrainedλ-oracle restricts the
search space, and this restriction can be illustrated as a lin-
ear upper boundU and a lower boundL. The search is
initialized with the entire right angle:U = [0 ∞] and
L = [∞ 0], and maintains that~y∗ is always betweenU
andL. The constrainedλ-oracle is used withU,L and a
certainλ to reduce the potential area where~y∗ can reside.

Algorithm 2 Angular search

1: procedure ANGULARSEARCH(λ0, T )
Input: λ0 ∈ R+, and maximum iterationT ∈ R+

Output: ŷ ∈ Y .
Initialize: α0 = ∞, β0 = 0, Empty queueQ, ŷ = ∅.λ ←

λ0

2: ADD(Q, (α, β, 0))
3: while Q 6= ∅ do
4: (α, β, s)← Dequeue(Q)
5: if β 6= 0 then
6: λ← 1√

αβ

7: if s = 0 then
8: y ← Oc(λ, α, β)
9: else

10: y ← Oc(λ, α, β)

11: if Φ(y) > Φ(ŷ) then
12: ŷ ← y

13: if y 6= ∅ then

14: z ← [h(y) g(y)], z′ ← [λg(y)
1
λ

h(y)]

15: r ←
[√

λh(y)g(y)
√

1
λh(y)g(y)

]

16: if z1 = z′1 then
17: returny
18: else if∂(z) > ∂(z′) then
19: K1 ← (∂(z), ∂(r), 1)
20: K2 ← (∂(r), ∂(z′), 0)
21: else
22: K1 ← (∂(z′), ∂(r), 1)
23: K2 ← (∂(r), ∂(z), 0)

24: ADD(Q, K1) .ADD(Q,K2)

25: t← t + 1
26: if t = T then . maximum iteration reached
27: return ŷ

Specifically, the search space is reduced using an angle de-
fined byU = OP andL = OQ. In the next iteration,
the constrainedλ-oracle is invoked withU1 = OP and
L1 = OM , and also withU2 = OM andL2 = OQ. In-
tuitively, each such query shrinks the search space, and as
the search space shrinks, the suboptimaly bound improves.
This process is continued until the remaining search space
is empty. The angular search algorithm defines the optimal
λ and values to be passed to the constrainedλ-oracle.

In Algorithm 2 each angle is dequeued, split, and enqueued
recursively. Each angle maintains its upper bound from
the previous iterations and stops splitting itself and termi-
nates if it is ensured that there exists no label with larger
Φ value within the angle. When the oracle reveals a la-
bel with Φ(yλ) = c, we can safely discard all area corre-
sponding to{~y|Φ(~y) ≤ c}. This works as a global con-
straint which shrinks the search space. Therefore, acquir-
ing a label with highΦ value in the early stages facilitate
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Angular Bisecting Sarawagi

Yeast(N=160)
Success 22.4% 16.5% 16.4%
Queries persearch 3.8 10.3 43.2
Average time(ms) 4.7 3.6 18.5

RCV1(N=160)
Success 25.6% 18.2% 18%
Queries persearch 4.8 12.7 49
Average time(ms) 4.4 5.2 20.9

Table 1: Comparison of the search algorithm.

convergence. Thus, it is suggested to use a priority queue,
and dequeue the angle with the highest upper bound onΦ.
A similar strategy is to have alabel cache, the subset of
previous most violated labels, denoted asC. With the la-
bel cache, we can discard a large part of the search space
{~y|Φ(~y) ≤ maxy′∈C Φ(~y′)} immediately. Algorithm2
also uses the constrainedλ-oracle to avoid returning pre-
viously found labels. Finally, forλ0, we suggest to use
λ0 = Ĥ

Ĝ
, with Ĥ calculated from the current weightsw.

SeeAppendix Gfor an illustration of the angular search.

5 Experiments

In this section we compare the behavior of various search
algorithms on standard benchmark datasets, and its effect
on the learning algorithm. Specifically, we show that Angu-
lar search with SGD is not only much faster than the other
alternatives, but also results in an accurate predictor which
outperforms both margin rescaling and other slack rescal-
ing methods.

Unlike the simple structure used in [2], we apply our ap-
proach to complicated structures. Specifically, we experi-
ment with multi-label dataset modeled by a Markov Ran-
dom Field with pairwise potentials as in [5]. Since the
inference of margin rescaling is NP-hard in this case, we
rely on linear programming relaxation to compute theλ-
oracle. Note that this complicates the problem, since the
number of labels becomes even larger with additional frac-
tional solutions. Also notice that all of our results above
apply with mild modifications to this harder setting. Two
standard benchmark multi-label datasets, Yeast [4] (14 la-
bels) and RCV1 [8], are tested. For RCV1 we reduce the
data to the50 most frequent labels. For angular search, we
stop the search wheneverΦ(ŷ) > 0.999 ∙ Φ(y∗) holds, to
avoid numerical issues.

5.1 Comparison of the search algorithms

We first focus on the search method and run cutting-
plain optimization, where at each iteration we call all
three algorithms to find the most violating label: Angu-

Yeast
Acc Labelloss MiF1 MaF1

Slack .54 .205 .661 .651
Margin .545 .204 .666 .654

RCV1
Acc Labelloss MiF1 MaF1

Slack .676 .023 .755 .747
Margin .662 .023 .753 .742

Table 2: Results on Multi-label Dataset with Markov Ran-
dom Field.

lar search, Bisecting search, and Sarawagi and Gupta’s
search (Sarawagi) [11]. The cutting-plane algorithm calls
the search procedures to find the most violating labelŷ, and
adds it to the active set if the violation is larger than some
marginε, i.e., Δ(ŷ, yi)(1 + f(ŷ) − f(yi)) > ξi + ε. We
use the result of Angular search for the actual update and
repeat. Table1 compares the performance of the search in
terms of the time spend, the number of oracle queries, and
the success rate of finding the most violating label. Success
is measured by the percentage in which the search algo-
rithm finds such a violating label. As expected by Theorem
1, Bisecting and Sarawagi’s search miss the violating label
in cases where Angular search successfully finds one. For
RCV1 dataset, not only is Angular search more accurate,
but it also uses about 2.6 times less oracle queries than Bi-
secting and 10.1 times less queries than Sarawagi’s search.
As for runtime, Angular search is 1.18 times faster than
Bisecting search, and 4.7 times faster than Sarawagi’s al-
gorithm.

In order to understand the effect of the search procedure on
the overall performance, we next compare combinations of
learning and search algorithms. In figure4 we compare
convergence rate and accuracy for the different combina-
tions. These show that Angular search with SGD converges
much faster than other schemes. Additional plots showing
convergence w.r.t. the number of queries and iterations can
be found inAppendix I.

Table2 shows a comparison of predictive performance for
the multi-label datasets. In this case margin and slack
rescaling perform similarly, with a slight advantage for
slack rescaling on RCV1.

5.2 Hierarchical Multi-label Classification

We further run experiments on a hierarchical multi-label
classification problem [3]. In hierarchical multi-label clas-
sification, each labely is a leaf node in a given graph, and
it shares ancestor nodes. It can be described as a graphical
model where a potential of a multi-labelY = {y1, . . . , yk}
is the sum of all potentials of its ancestors, i.e.,Φ(Y ) =∑

n′∈
⋃

n∈Y Anc(n) Φ(n). We extracted 1500 instances with
dimensionality 17944 and a graph structure of 156 nodes
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Figure 4: Convergence and accuracy of various learning
and search algorithms.

with 123 labels from SWIKI-2011. SWIKI-2011 is a multi-
label dataset of Wikipedia pages with a DAG structure from
LSHTC competition.1 We used 750 instances as training
set, 250 instances as holdout set, and 500 instances as test
set. The hamming distance of label vectors including inner
nodes is used as label loss. Unfortunately, the cutting-plane
approach failed to scale up to the large problem size, how-
ever, using our approach we show that slack rescaling in
such large label structure is tractable and outperforms mar-
gin rescaling. See Table3.

Acc Labelloss MiF1 MaF1
Slack .3798 .0105 .3917 .3880
Margin .3327 .0110 .3394 .3378

Table 3: Result on hierarchical multi-label dataset

6 Summary

As we saw in our experiments, and has also been previously
noted, slack rescaling is often beneficial compared to mar-
gin rescaling in terms of predictive performance. However,
the margin-rescaled argmax (5) is often much easier com-
putationally due to its additive form. Here we show how
an oracle for solving an argmax of the form (5), or per-
haps a slightly modified form (the constrained-λ oracle),
is sufficient for also obtaining exact solutions to the slack-
rescaling argmax (6). This allows us to train slack-rescaled
SVMs using SGD, obtaining better predictive performance
than using margin rescaling. Prior work in this direction
provided only approximations [11] or handled only specific
models and losses [2], and more significantly, was specific
to cutting-plane optimization. In this work we provide a
generic method relying on a simple explicitly specified or-
acle that is guaranteed to be exact and efficient even when
the number of labels is infinite. Our approach allows using
SGD and is thus more suitable for large scale problems.
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