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Abstract

A standard model of (conditional) heteroscedas-
ticity, i.e., the phenomenon that the variance of
a process changes over time, is the Generalized
AutoRegressive Conditional Heteroskedasticity
(GARCH) model, which is especially important
for economics and finance. GARCH models
are typically estimated by the Quasi-Maximum
Likelihood (QML) method, which works un-
der mild statistical assumptions. Here, we sug-
gest a finite sample approach, called ScoPe,
to construct distribution-free confidence regions
around the QML estimate, which have exact
coverage probabilities, despite no additional as-
sumptions about moments are made. ScoPe is in-
spired by the recently developed Sign-Perturbed
Sums (SPS) method, which however cannot be
applied in the GARCH case. ScoPe works by
perturbing the score function using randomly
permuted residuals. This produces alternative
samples which lead to exact confidence regions.
Experiments on simulated and stock market data
are also presented, and ScoPe is compared with
the asymptotic theory and bootstrap approaches.

1 INTRODUCTION

Homoscedastic noises, such as i.i.d. variables, are widely
used in learning theory (Vapnik, 1998; Hastie et al., 2009),
though most real-world phenomena, from social systems
and stock markets to telecommunications and ECG signals,
can be better described by heteroscedastic models as their
variances change over time. It is typical that larger dis-
turbances are more likely followed by larger disturbances,
while smaller fluctuations tend to be followed by smaller
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fluctuations. In finance, for example, this phenomenon is
called volatility clustering and it is a widely-known feature
of financial time series (Francq and Zakoian, 2011).

AutoRegressive Conditional Heteroscedasticity (ARCH)
processes are standard models of this phenomenon. They
were introduced by Robert F. Engle (1982) for which
he was awarded the Nobel Prize for Economics in 2003
(jointly with Clive W. J. Granger) “for methods of an-
alyzing economic time series with time-varying volatility
(ARCH)”. The ARCH model was later exetended by Boller-
slev (1986) who introduced its generalized version, called
GARCH (see Section 2). Since then, various other gener-
alizations have also been proposed, but GARCH is still one
of the most widely used models (Hansen and Lunde, 2005).

An essential question about GARCH models is how to
fit them to available data. Several approaches were pro-
posed for this, but in practice, GARCH models are almost
exclusively estimated by the Quasi-Maximum Likelihood
(QML) method (see Section 3), which maximizes a (con-
ditional) Gaussian log-likelihood function (Berkes et al.,
2003). QML works well for a wide range of noise terms
and has favorable theoretical properties, e.g., it is strongly
consistent and, assuming its driving noise has finite 4th mo-
ment, asymptotically normal (see Theorem 1 in Section 4).

The QML method provides point estimates, i.e., single
models which best fit the data. Nonetheless, many appli-
cations require confidence regions, as well, showing how
reliable the estimates are. They are fundamental, e.g., for
risk management and robust control. The standard way of
building confidence sets around a point estimate is to use
the level sets of its limiting distribution, which typically
leads to asymptotic confidence ellipsoids (Ljung, 1999).

This however only provides approximate confidence re-
gions for finite datasets. Furthermore, in several cases, the
noises are heavy-tailed and fail to have 4th moments, which
means the asymptotic normality of the Quasi-Maximum
Likelihood Estimate (QMLE) is not guaranteed. In case
of relatively heavy-tailed innovations, which are common
in finance, directly estimating the asymptotic distribution
of QMLE becomes very difficult (Hall and Yao, 2003).
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Because of these issues, some authors suggested moving
away from the QMLE and using other methods (Chan et al.,
2007), like the Hill estimator (Hill, 1975), or applying the
ML theory with other specific (non-Gaussian) distributions.
The main issues with such approaches are not only that
specifying a distribution introduces the risk of misspeci-
fication (Spierdijk, 2014), but also that confidence regions
are typically built around a selected point estimate, and as
QMLE is the most widely applied method in practice, it
would be important to build confidence regions for them.

Recently there has been an increase of interest in boot-
strap (Efron and Tibshirani, 1993) approaches particularly
since some of them can create confidence regions around
the QMLE even if the innovations are heavy-tailed. One of
the most popular bootstrap methods for GARCH processes
is the residual bootstrap (Pascual et al., 2006; Shimizu,
2009) which is based on resampling (with replacement)
the innovations from the empirical distribution function
of the (standardized) QMLE residuals, simulating alterna-
tive trajectories based on which alternative QMLEs can be
constructed. Then, typically asymptotic statistics are esti-
mated, e.g., based on the sample of bootstrap QMLEs.

Nevertheless, standard bootstrap approaches are generally
not consistent if the distribution of the asymptotic statistic
is non-Gaussian and have inaccurate coverage probabilities
if the true innovations are skewed (Hall and Yao, 2003).

Alternatives bootstrap variants were also proposed. For ex-
ample, the likelihood ratio (LR) bootstrap (Luger, 2012a)
for stationary GARCH processes is based on defining a
p-value using conventional LR hypothesis tests combined
with bootstrap. For a particular parameter it builds alter-
native bootstrap trajectories and computes bootstrap LRs.
These are then compared with the LR of the original param-
eter. This approach can lead to finite sample guarantees, but
only for completely known noise distributions, moreover,
it is computationally demanding as it involves computing
several bootsrap ML estimates for each parameter it tests.

Here, we propose a finite sample inference technique for
GARCH models which can be seen as (i) an exact hypoth-
esis test as well as (ii) a way to construct distribution-free,
exact confidence regions around the QMLE without addi-
tional statistical assumptions about moments or stationar-
ity. Its core is a permutation type test (Good, 2005) and it
is called ScoPe as it applies randomly permuted residuals
in the score function, i.e., the gradient of the log-likelihood
(see Section 6). ScoPe was inspired by the recently devel-
oped Sign-Perturbed Sums (SPS) identification algorithm
(Csáji et al., 2012, 2014, 2015), which can build exact, non-
asymptotic, distribution-free confidence regions around the
prediction error estimate of general linear dynamical sys-
tems; however, SPS cannot be applied for GARCH models.

We should note that an exact, distribution-free permutation
test in the context of GARCH models was also proposed

by Luger (2012b, 2014). However, that test permutes the
GARCH process itself (not the residuals in the score func-
tion) and it is only applicable to test the hypothesis of con-
ditional homoskedasticity. Particularly, it cannot be used to
build confidence regions for the GARCH parameters.

2 GARCH MODELS

Formally, a GARCH(p, q) process, {Xt}, is defined by the
following two equations (Francq and Zakoian, 2011)

Xt , σt εt, (1a)

σ2
t , ω∗ +

p∑

i=1

α∗iX
2
t−i +

q∑

j=1

β∗j σ
2
t−j , (1b)

where {εt} is a strong white noise, i.e., an i.i.d. sequence
of real random variables with zero mean and unit variance;
variable σ2

t is latent and defines the conditional variance of
Xt, given its own past up to t − 1; and ω∗ > 0 as well as
α∗i , β

∗
j ≥ 0 are constants, where 1 ≤ i ≤ p and 1 ≤ j ≤ q.

Integers p and q are called the orders of the model. In case
q = 0, we get back Engle’s classical ARCH model.

It is known (Bollerslev, 1986) that there exists a wide-sense
stationary solution to (1a)-(1b) if and only if

p∑

i=1

α∗i +

q∑

j=1

β∗j < 1. (2)

If {Xt} is a wide-sense stationary GARCH process, it is
necessarily also strictly stationary. Moreover, it is a (po-
tentially scaled) weak white noise, that is E[Xt] = 0,
E[XtXk] = 0, and E[X2

t ] = η, for all t and k 6= t, where
E[·] denotes expectation and η can be calculated by

η =
ω∗

1−∑q
i=1 α

∗
i −

∑p
j=1 β

∗
j

.

Conditions for the unique existence of a strictly station-
ary and causal solution to system (1a)-(1b) can be given
in terms of the top Lyapunov exponent of its (Markovian)
state space representation (Straumann, 2005).

3 QUASI-MAXIMUM LIKELIHOOD

While there are several approaches to estimate GARCH
processes, such as prediction error methods or the Whit-
tle estimator (Straumann, 2005), the most widely used es-
timators belong to the class of Quasi-Maximum Likelihood
(QML) methods (Berkes et al., 2003). They are typically
applied off-line, while there is also a recursive extension of
the QML theory (Gerencsér and Orlovits, 2012). Now, we
briefly recall the QML method for GARCH processes.

We do not make further assumptions on the distribution of
the noise terms, {εt}, but accept a “working hypothesis”
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that they are Gaussian. This however will not be needed to
apply the method: as we will see, the QML method works
well under very mild statistical assumptions.

More precisely, if we were to assume that {εt} were
Gaussian (hence standard normal, since we assumed that
E[εt] = 0 and E[ε2

t ] = 1), then the conditional distribu-
tion of Xt/σt, given the σ-algebra generated by {εk}k<t,
would also be standard normal. The quasi maximum likeli-
hood estimate (QMLE) is derived under this hypothesis.

Assuming known initial values X0(θ), . . . , X1−p(θ) and
σ̂0(θ), . . . , σ̂1−q(θ), to be discussed below, the conditional
Gaussian quasi-likelihood function is defined as

Ln(θ) = Ln(θ;x) ,
n∏

t=1

1√
2πσ̂2

t (θ)
exp

(
− X2

t

2σ̂2
t (θ)

)
,

where x = (X1, . . . , Xn) is the available sample and

σ̂2
t (θ) , ω +

p∑

i=1

αiX
2
t−i +

q∑

j=1

βj σ̂
2
t−j(θ), (3)

where θ ∈ Rp+q+1 is a generic vector encod-
ing the parameters, θ , (ω, α1, . . . , αp, β1, . . . , βq),

while the “true” parameter vector is denoted by θ∗ ,
(ω∗, α∗1, . . . , α

∗
p, β
∗
1 , . . . , β

∗
q ).

We need initial conditions to calculate σ̂2
t (θ) recursively.

Standard choices include zero or X2
0 (θ) = · · · =

X2
1−p(θ) = σ̂2

0(θ) = · · · = σ̂2
1−q(θ) = ω, or the uncondi-

tional variance w.r.t. θ (Francq and Zakoian, 2011)

X2
0 (θ) = · · · = X2

1−p(θ) = σ̂2
0(θ) = · · · = σ̂2

1−q(θ) =

ω

1−∑q
i=1 αi −

∑p
j=1 βj

.

The QMLE is any measurable solution of the problem

θ̂n , arg max
θ∈Θ

Ln(θ),

where Θ is the set of allowed parameters, for example θ ∈
Θ if ω > 0, α∗i , β

∗
j ≥ 0, for all i, j, and there exists a

stationary solution to (1a)-(1b), i.e., property (2) holds.

Taking the natural logarithm, log(·), of Ln(θ) leads to the
conditional quasi-log-likelihood function

`∗n(θ) = `∗n(θ;x) , logLn(θ) = logLn(θ;x),

which, under the standard normal hypothesis, simplifies to

`∗n(θ) = −1

2

n∑

t=1

[
log(2π) + log σ̂2

t (θ) +
X2
t

σ̂2
t (θ)

]
.

Since the optimal point is not affected by the constants,
maximizing Ln(θ) is equivalent to minimizing `n(θ),

`n(θ) , 1

n

n∑

t=1

[
log σ̂2

t (θ) +
X2
t

σ̂2
t (θ)

]
,

where the 1/n term is included for numerical stability. The
minimization of `n(θ) is typically done by an iterative nu-
merical method, such as the Newton-Raphson algorithm.

4 ASYMPTOTICS OF QMLE

It is known that QMLE is strongly consistent and asymp-
totically normal. In order to make these claims more pre-
cise, let us introduce some assumptions (Straumann, 2005).
When we talk about the marginal distribution of a station-
ary process {Yt}, a generic element will be denoted by Y0.

(Q1) The noise is nondegenerate: the distribution of ε0 is
not concentrated in two points.

(Q2) The process is identifiable, that is (α∗p, β
∗
q ) 6= (0, 0),

ω > 0, ∃ i : α∗i > 0, and the polynomials p(z) ,
α∗1z + · · · + α∗pz

p and q(z) , β∗1z + · · · + β∗q z
q do

not have any common zeros.

(Q3) The true parameter, θ∗, is in the interior of Θ.

(Q4) ∃µ > 0, such that P(|ε0| ≤ t) = o(tµ) as t ↓ 0.

Then, using the four assumptions above, it can be proven
that (Berkes et al., 2003; Straumann, 2005)

Theorem 1 Let {Xt} be a stationary GARCH(p, q) pro-
cess with true parameter θ∗ ∈ Θ. Then, assuming Q1 and
Q2, QMLE is strongly consistent, that is

θ̂n
as−→ θ∗ as n→∞.

If additionally E[ε4
0] < ∞ and Q3, Q4 hold, the QMLE is

also asymptotically normally distributed, i.e.

√
n(θ̂n − θ∗) d−→ N (0, F−1

0 G0F
−1
0 ) as n→∞,

where F0, G0 are (p× q × 1)× (p× q × 1) matrices

F0 = − 2

E [ε4
0 − 1]

G0,

G0 =
E [ε4

0 − 1]

4
E
[

1

σ4
0

∇θ σ̂2
0(θ∗)∇θ σ̂2

0(θ∗)T

]
,

whereN (m,C) denotes the (multivariate) Gaussian distri-
bution with mean vectorm and covariance matrix C, while
∇θf(·) is the gradient vector of f(·) with respect to θ.

In many applications not just a point estimate, like QMLE,
but a confidence region is also needed. The standard ap-
proach in practice is to use the (level sets of the) asymp-
totic distribution of the estimate to build a confidence re-
gion (Ljung, 1999; Söderström and Stoica, 1989).
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To be more specific, assume we have an estimate Γn of the
true covariance matrix F−1

0 G0F
−1
0 , based on n data points.

Then, an asymptotic confidence ellipsoid can be built by

Θ̃n(s) ,
{
θ ∈ Rd : (θ−θ̂n)T Γ−1

n (θ−θ̂n) ≤ s

n

}
, (4)

where d , p+q+1 and the probability that the true param-
eter is covered, i.e., θ∗ ∈ Θ̃n, is approximately Fχ2(d)(s),
where Fχ2(d) is the cumulative distribution function (CDF)
of the standard χ2 distribution with d degrees of freedom.

The main problems with such an approach are that (i) even
if the covariance matrix of the asymptotic distribution was
known exactly, the levels sets for a finite sample would
still be only approximately correct, as they rely on a result
which is only guaranteed in the limit. Moreover, (ii) the
asymptotic normality of the estimation error requires finite
4th moment from the noise, which is often not the case in
practice, e.g., for heavy-tailed distributions. Hence, such
ellipsoids can only be used as heuristics in a finite sample
setup, as their confidence levels are not guaranteed.

5 FINITE SAMPLE, DISTRIBUTION-
FREE CONFIDENCE REGIONS

Now we turn our attention to finite sample, distribution-
free results to overcome the issues mentioned above. In
the next section, the ScoPe method is introduced to con-
struct non-asymptotic, distribution-free confidence regions
around the QML estimate for GARCH processes, which
have exact confidence probabilities. The main motivation
of the suggested approach comes from the Sign-Perturbed
Sums (SPS) algorithm (Csáji et al., 2012, 2014, 2015).
Though, SPS cannot be used for GARCH processes, for
reasons discussed below, we briefly present it here to moti-
vate our permutation-rank based method.

Let us consider the following scalar general linear dynam-
ical system (Ljung, 1999; Box et al., 2008):

Yt , G(z−1; θ∗)Ut +H(z−1; θ∗)Nt,

where t denotes (discrete) time, Yt is output, Ut is an input,
Nt is a noise, G, H are (causal) rational transfer functions,
and z−1 is the backward shift operator. As previously, θ∗

denotes the unknown true parameter of the system. The as-
sumptions on the system are as follows (Csáji et al., 2012)

(S1) The “true” system is in the model class which has
polynomials with known orders.

(S2) H( z−1; θ ) has a stable inverse, G( 0 ; θ ) = 0 and
H( 0 ; θ ) = 1 , for θ ∈ Θ.

(S3) The noise {Nt} is independent, and each Nt has a
symmetric distribution about zero.

(S4) The system operates in open-loop, i.e., the inputs {Ut}
are independent of {Nt}.

(S5) The initialization of the system is known; for simplic-
ity, we use Yt = Nt = Ut = 0 , for t ≤ 0.

Under these assumptions, the noise terms can be recon-
structed, given a particular θ, by

N̂t(θ) , H−1(z−1; θ)(Yt −G(z−1; θ)Ut),

which are called residuals or prediction errors. It is impor-
tant to note that N̂t(θ∗) = Nt, for all t.

The prediction error estimate, θ̃n, is defined as the mini-
mizer of the squared prediction errors (Ljung, 1999),

θ̃n , arg min
θ∈Θ

n∑

t=1

N̂2
t (θ),

which can be found be solving the normal equation,

n∑

t=1

N̂t(θ̃n)∇θN̂t(θ̃n) = 0.

where Θ contains the allowed models, e.g., stable systems.

SPS builds its confidence region by perturbing the normal
equation: given a θ, it buildsm−1 alternative output trajec-
tories using perturbed versions of the estimated residuals,

Ȳt(θ, αi) , G(z−1; θ)Ut +H(z−1; θ) (αi,tN̂t(θ)),

where {αi,t} are (m − 1) × n i.i.d. random signs, that is
random variables which take values ±1 with probability
1/2 each; and αi denotes the vector (αi,1, . . . , αi,n). Note
that n is the sample size of the residuals we can reconstruct
from {Yt}, and m is a user-chosen design parameter.

Let us denote ∇θN̂t(θ) by ψt(θ). Then, ψt(θ) can be
treated as a linear filter on {Yt} and {Ut},

ψt(θ) = W0(z−1; θ)Yt +W1(z−1; θ)Ut,

where W0 and W1 are vector-valued linear filters (Ljung,
1999). We produce perturbed versions of ψt(θ) by

ψ̄t(θ, αi) , W0(z−1; θ) Ȳt(θ, αi) +W1(z−1; θ)Ut,

where i ∈ {1, . . . ,m}, and define a reference function, S0,
and m− 1 sign-perturbed functions, {Si}, as

S0(θ) , Ψ
− 1

2
n (θ)

n∑

t=1

ψt(θ)N̂t(θ),

Si(θ) , Ψ̄
− 1

2
n (θ, αi)

n∑

t=1

αi,t ψ̄t(θ, αi)N̂t(θ),

where Ψn and Ψ̄n(θ, αi) are covariance estimates, only
used to shape the confidence region (Csáji et al., 2012).
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Let use denote by R0
m(θ) the position of ‖S0(θ)‖2 in the

ordering of variables {‖Si(θ)‖2}, where ties are broken
randomly. Therefore,R0

m(θ) = 1 if ‖S0(θ)‖2 is the small-
est in the ordering, R0

m(θ) = 2 if it is the second smallest
and so on. Then, the SPS confidence region is built by

Θ̃n(m, r) ,
{
θ ∈ Θ : R0

m(θ) ≤ m− r
}
,

where m > r > 0 are user-chosen integers. The SPS re-
gion has exact confidence probability (Csáji et al., 2012):

Theorem 2 Under assumptions S1, S2, S3, S4, S5,

P
(
θ∗ ∈ Θ̃n(m, r)

)
= 1− r

m
.

Since ‖S0(θ̃n)‖2 = 0, i.e., the prediction error estimate sat-
isfies the normal equation, it is always in the confidence re-
gion, assuming it is non-empty. In the special case of linear
regression problems in which the regressors are indepen-
dent of the noise, for example, generalized finite impulse
response systems, it can be proved, as well, that the SPS
confidence region is strongly consistent (Csáji et al., 2014)
and it is also star convex with the least-squares estimate as
a star center (Csáji et al., 2015). Nevertheless, the main
strength of SPS lies in the fact that its confidence probabil-
ity is exact, i.e., its confidence sets are non-conservative.

6 SCORE PERMUTATION

In this section, inspired by the core ideas underlying SPS,
we present the Score Permutation (ScoPe) method, which
can construct exact, finite sample, distribution-free confi-
dence regions around the QMLE of GARCH processes.

Unfortunately, SPS cannot be applied to build such confi-
dence regions, since, e.g., (i) SPS is defined for linear sys-
tems, while GARCH processes are nonlinear; (ii) it is built
for a quadratic cost criterion, not for the QMLE; moreover,
(iii) the GARCH residuals appear squared in the dynam-
ics of the conditional variances, see (1b), thus, perturbing
their signs does not produce alternative variance trajecto-
ries. Instead of sign-perturbations, ScoPe uses random per-
mutations in the spirit of statistical permutation-rank tests
(Good, 2005). A random permutation matrix based alterna-
tive to SPS was also analyzed by Kolumbán et al. (2015) for
linear regression problems with deterministic regressors.

Recall that the QMLE satisfies the likelihood equation,

∇θ `n(θ̂n) = 0,

and the gradient of the (conditional) log-likelihood func-
tion, the score function, can be written as

∇θ `n(θ) =
1

n

n∑

t=1

(
1− X2

t

σ̂2
t (θ)

)
1

σ̂2
t (θ)
∇θ σ̂2

t (θ) =

1

n

n∑

t=1

(
1− ε̂ 2

t (θ)
) 1

σ̂2
t (θ)
∇θ σ̂2

t (θ),

where ε̂t(θ) , Xt/σ̂t(θ) is a reconstructed residual (inno-
vation) for time t assuming a particular parameter θ, and
σ̂t(θ) is an estimate of σt, which can be calculated recur-
sively using (the square root of) formula (3).

We can observe that ε̂t(θ∗) = εt, for all t, assuming the
initial conditions are known, more precisely

(P1) The “true” system is in the model class, i.e., upper
bounds on the orders p, q are known and θ∗ is in Θ.

(P2) The initial conditions σ̂2
0(θ), . . . , σ̂2

1−q(θ) of the con-
ditional variances are known, i.e., σ̂2

t (θ∗) = σ2
t .

Initial conditions for {X2
t } are not needed, as system (1b)

is autoregressive with finite order in the X2
t variables and

{Xt} is observed. Henceforth, for notational simplicity, we
assume (w.l.o.g.) that X0, . . . , X1−p are available.

Note that P1 is a standard assumption and it is even needed
to define the concept of confidence regions (namely, a sub-
set of parameters which contains the “true” parameter with
at least a given probability). Assumption P2 is also typical,
especially for methods aiming at finite sample guarantees.
It is mild, as it can be simply omitted if the system is ARCH
(which was Engle’s original model). Even if it is GARCH,
the autocorrelation of conditional variances decays expo-
nentially, therefore, it is expected that the effect of violating
this assumption vanishes as we have more and more data.
This is also supported by our experiments (Section 7).

Since {εt} is i.i.d., its every permutation results in a se-
quence having the same distribution, namely

{εt} d
= {επ(t)}

where π(·) is an arbitrary permutation on the indices, i.e.,
a bijection of {1, . . . , n} onto itself.

Given a parameter θ, the main idea is to first “invert” the
system to get the residuals {ε̂t(θ)} and then generate al-
ternative trajectories by applying random permutations on
their indices. More precisely, we must generate m− 1 ran-
dom permutations π1, . . . , πm−1, where each permutation
has the same probability 1/n! to be selected. Then, we can
define alternative residuals for parameter θ by

ε̂πi(1)(θ), . . . , ε̂πi(n)(θ),

for all i ∈ {1, . . . ,m − 1}, where m is a user-chosen pa-
rameter as before. For simplicity, we denote the identity
permutation by π0, i.e., π0(t) = t, for all t. In some cases
it is useful to first standardize the residuals, by subtracting
their sample mean and dividing with their standard devi-
ation. Using this notation, the original and the perturbed
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score function (the gradient of the log-likelihood) is

B(θ, πi) ,
1

n

n∑

t=1

(
1− ε̂ 2

πi(t)
(θ)
)

σ̄2
t (θ, πi)

∇θ σ̄2
t (θ, πi),

where the perturbed variances σ̄2
t (θ, πi) are defined as

σ̄2
t (θ, πi) , ω +

p∑

k=1

αkX̄
2
t−k(θ, πi) +

q∑

j=1

βj σ̄
2
t−j(θ, πi),

with the same initial values for all generated permutations,

σ̄2
0(θ, πi) , σ̂0(θ), . . . , σ̄2

1−q(θ, πi) , σ̂1−q(θ).

This gives rise to an alternative output trajectory with

X̄t(θ, πi) , σ̄t(θ, πi) ε̂πi(t)(θ). (5)

Observe that B(θ, π0) = ∇θ `n(θ) as π0 is the identity per-
mutation. We use ‖B(θ, π0)‖2 as a reference and compute
its rank in the ordering of {‖B(θ, πi)‖2} variables. There
is a chance two such functions take on the same value, e.g.,
if the noise is discrete. In order to handle this, we use a
tie-breaking, namely, with the help of another random per-
mutation ν. This one is on {0, . . .m − 1}. Given m real
numbers Z0, . . . , Zm−1 we define a strict total order �ν as

Zk �ν Zj if and only if

(Zk > Zj ) or (Zk = Zj and ν(k) > ν(j) ) .

The rank of ‖B(θ, π0)‖2 w.r.t. the ordering �ν is then

Rm(θ) , 1 +

m−1∑

i=1

I
(
‖B(θ, π0)‖2 �ν ‖B(θ, πi)‖2

)
,

where I(·) is an indicator function: it is 1 if its argument is
true and 0 otherwise. The ScoPe confidence set is

Θ̂n(m, r) , { θ ∈ Θ : Rm(θ) ≤ m− r } ,

where m > r > 0 are user-chosen integers affecting the
coverage probability of the confidence region. The main
theoretical claim of the paper is the following theorem.

Theorem 3 Assuming P1 and P2, we have

P
(
θ∗ ∈ Θ̂n(m, r)

)
= 1− r

m
.

Proof of Theorem 3

The main idea is to show that {‖B(θ∗, πi)‖2} are condi-
tionally i.i.d. (for the case of the true parameter, θ∗), there-
fore exchangeable, which leads to the fact that each order-
ing of them has the same probability, namely, 1/m!.

By definition, θ∗ ∈ Θ̂n(m, r) if and only if Rm(θ∗) ≤
m − r, i.e., if ‖B(θ∗, π0)‖2 takes one of the positions

1, . . . ,m − r in the ordering of {‖B(θ∗, πi)‖2} variables,
with respect to �ν . Our main aim will be to prove that
{‖B(θ∗, πi)‖2} are uniformly ordered, that is to show that

P
(
‖B(θ∗, πγ(0))‖2�ν . . .�ν ‖B(θ∗, πγ(m−1))‖2

)
=

1

m!
,

for all possible permutation γ on {0, . . . ,m−1}. From this,
the theorem follows immediately, since then ‖B(θ∗, π0)‖2
takes each position in the ordering with probability exactly
1/m, thus P(Rm(θ∗) = i) = 1/m for i ∈ {0, . . . ,m−1},
from which P

(
θ∗ ∈ Θ̂n(m, r)

)
= 1− r/m.

Before we show the uniform ordering of {‖B(θ∗, πi)‖2},
we introduce some notations and state some useful facts
about random permutations.

If γ is a permutation on {1, . . . , n} and Z = (Z1, . . . , Zn)
is a vector of dimension n, then let

γ(Z) , (Zγ(1), . . . , Zγ(n)).

The inverse of a permutation γ is denoted by γ−1, that is
γ−1(γ(Z)) = Z. If γ and π are permutations, their com-
position is denoted by γ ◦π, that is (γ ◦π)(Z) = γ(π(Z)).

It can be proven that if Z = (Z1, . . . , Zn) is an i.i.d.
random vector and γ is a random permutation which
is uniformly chosen from all possible permutations of
{1, . . . , n}, with γ being independent of Z, then we can
conclude that γ and γ−1(Z) are independent, as well.

Also if γ, π1, . . . , πk are k + 1 i.i.d. uniformly chosen ran-
dom permutations, then γ, π1 ◦ γ−1, . . . , πk ◦ γ−1 are also
k + 1 i.i.d. random permutations (also uniform).

Finally, if Z0, . . . , Zm−1 are i.i.d. random variables, then
they are uniformly ordered w.r.t. �ν (Csáji et al., 2015,
Lemma 3). Note that this is even the case for discrete ran-
dom variables, since �ν takes care of the tie-breaking; re-
call that ν is a random permutation on {0, . . . ,m− 1}.
Now, we proceed with the proof by showing the uniform
ordering property of {‖B(θ∗, πi)‖2} variables.

In order to simplify the notations, let us introduce

f(ε, πi) , ‖B(θ∗, πi)‖2,

for indices i ∈ {0, . . . ,m− 1}, where ε = (ε1, . . . , εn) =
(ε̂1(θ∗), . . . , ε̂n(θ∗)). Note that here we used our assump-
tions P1 and P2, i.e., that we could reconstruct the “true”
noise sequence ε, in case we knew the true parameter θ∗.

Let us introduce a new (uniform) random permutation µ on
{1, . . . , n}, generated independently of π1, . . . , πm−1. We
can “inject” the new permutation µ into our system by

f(µ(ε), πi ◦ µ−1) = f(ε, πi),

for all i ∈ {0, . . . ,m− 1}, since we simply undo the effect
of permutation µ by composing πi with its inverse.
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Now, let us fix a realization of µ(ε), denoted by r, i.e., from
now on we condition on this realization. Then, the only
random element in the variables Wi , f(r, πi ◦ µ−1) are
πi◦µ−1. Now, we know that π0 is the identity permutation,
but with injecting µ we have managed to “re-randomize”
it without chaining the method. By using the previously
mentioned fact, we know that µ−1, π1 ◦ µ−1, . . . , πm−1 ◦
µ−1 are i.i.d. random elements. Since applying the same
function to elements of an i.i.d. collection results in an i.i.d.
collection, it follows that W0, . . . ,Wm−1 are i.i.d. Hence,
they are uniformly ordered w.r.t. �ν , conditionally on r.

Until now, we have showed that {‖B(θ∗, πi)‖2} are uni-
formly ordered given a realization of µ(ε). To get rid
of this conditioning, we can observe that (i) the order-
ing distribution we got is independent of the actual re-
alization of µ(ε), and (ii) vector µ(ε) is independent of
µ−1, π1 ◦ µ−1, . . . , πm−1 ◦ µ−1. In this case, we know
(Csáji et al., 2015, Lemma 2) that the uniform ordering also
holds without conditioning on a realization. �

Now, let us make some remarks on ScoPe:

(i) The confidence probability is exact for any finite sam-
ple, thus no conservativism is introduced.

(ii) Parameters m and r are user-chosen, hence, the confi-
dence probability is under our control.

(iii) The applied statistical assumptions are very mild, e.g.,
we do not assume knowing the particular distribution
of the noise, i.e., it is a distribution-free method.

(iv) Unlike the standard asymptotic ellipsoids or bootstrap
approaches, the confidence probability of ScoPe is ex-
act even for heavy-tailed and skewed distributions.

(v) Scope neither needs assumptions on stationary, there-
fore, it can work for nonstationary processes.

(vi) Since the QMLE satisfies the likelihood equation, i.e.,
∇θ `n(θ̂n) = 0, we have ‖B(θ̂n, π0)‖2 = 0. Hence,
the QMLE is always included in the confidence set, as-
suming it is non-empty. In other words, ScoPe builds
its confidence regions around the QML estimate.

(vii) Finally, if we evaluate Rm(θ) on a set of θ values,
their ranks indicate which confidence levels can be
associated to those parameters, therefore, these “rank
fields” contain information about the distribution of
the estimation error. On the other hand, since the con-
fidence region also contains potential other roots of
the score, it is not a direct estimate of this distribution.

The main idea of the proof is that {‖B(θ, πi)‖2} are uni-
formly ordered in case they are evaluated at the true pa-
rameter θ∗. The other intuition behind this construction
is, similarly to SPS, that as we get farther away from the
“true” parameter, θ∗, our reference element ‖B(θ, π0)‖2

should dominate the ordering of {‖B(θ, πi)‖2}: for i 6= 0,
‖B(θ, π0)‖2 �ν ‖B(θ, πi)‖2, with “high probability” as θ
gets “sufficiently far away” from θ∗, for example, ‖θ− θ∗‖
is “large enough”. However, this property is hard to formu-
late and prove rigorously, therefore, in Section 7 we con-
tinue with investigating ScoPe experimentally.

7 EXPERIMENTAL RESULTS

Now, we evaluate ScoPe through numerical experiments on
simulated data as well as on major stock market indices.
ScoPe is compared with standard asymptotic ellipsoids,
residual- and likelihood ratio bootstrap constructions.

Here we focus on GARCH(1, 1) processes that constitute
a very important special case, as they are by far the most
widely used GARCH models in industry (Ruppert, 2011)
as well as typical reference models in empirical compar-
isons (Francq and Zakoian, 2011). An explanation of this
was given by Hansen and Lunde (2005), who compared the
forecasting potential of 330 volatility models on historical
exchange rates and found no statistical evidence that more
sophisticated models could outperform GARCH(1, 1).

In our first simulated experiment the driving noise {εt} of
the GARCH(1, 1) model had logistic distribution with zero
mean and scale

√
3/π, to ensure unit variance. Thus,

Xt , σt εt,

σ2
t , ω∗ + α∗X2

t−1 + β∗σ2
t−1,

where the true parameter vector was θ∗ = [α∗, β∗, ω∗],
where α∗ = 0.44, β∗ = 0.33 and, since we assumed a
system with unit variance, i.e., weak white noise, ω∗ =
1− α∗ − β∗ = 0.23. Because of this, it is enough to build
a confidence region for (α∗, β∗), as they determine ω∗.

In order to test the method, 100 observations were gener-
ated. The rank of ‖B0(θ)‖2, Rm(θ), was then calculated
for parameters in [0, 1] × [0, 1]. The resulting “rank field”
is shown in Figure 1 with its 90 % confidence region, in
which parameters leading to only non-stationary processes
were also eliminated, namely, the ones with α + β ≥ 1.
Note that this region has two connected components.

In our next simulated experiment, illustrated in Figure 2,
the process was generated using Laplacian innovations.
Now, the ω parameter was also estimated (90 % confi-
dence was targeted), and the true parameter was θ∗ =
[0.44, 0.33, 0.22]. As we can observe from the image, the
QMLE and the true parameter are situated in different rank-
valleys, which explains disconnected confidence regions.

Table 1 compares 90 % confidence sets of the asymptotic
approach (4), the residual (Pascual et al., 2006) and (Gaus-
sian) likelihood ratio (Luger, 2012a) bootstraps and ScoPe.
In this experiment Gaussian and Logistic driving noises
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Figure 1: Logistic noise, n = 100, m = 100, r = 10; Ex-
act 90% ScoPe confidence set for a GARCH(1, 1) process
and its rank field. Darker color indicates smaller rank.

were applied. Both the empirical coverage of the true pa-
rameter and the relative size of the confidence sets com-
pared to the whole class of allowed models (weak white
noise assumption) were evaluated by 1000 Monte Carlo
trials. Random noises were generated and it was tested
whether θ∗ is in the confidence set (empirical coverage).
Next several random parameter values were selected and
the relative size of the confidence regions were estimated as
the ratio of those parameters which were fallen into the set
(relative area). A 1000 long “burn in” simulation was used
for initialization, thus assumption P2 was violated. Never-
theless, ScoPe provided close to exact coverage probabili-
ties combined with relatively small confidence regions.

In our last experiment we evaluated the methods on ma-
jor stock market indices. More precisely, the daily clos-
ing prices of Nasdaq 100, S&P 500 and FTSE 100 were
used from the entire period of 2014 (which means 252 ob-
servations for each dataset). First, the compound returns

Table 1: Empirical Coverages and Areas on Simulated Data

Gaussian Noise Logistic Noise
Method Emp. Cov. Rel. Area Emp. Cov. Rel. Area

Asym.Ell. 0.8656 0.4715 0.8264 0.5446
Res.Boots. 0.8567 0.7051 0.8152 0.6139
LR.Boots. 0.9655 0.6623 0.9762 0.7681
ScoPe 0.8961 0.5324 0.9147 0.6727

Table 2: Relative Areas on Stock Market Indices (2014)

Method Nasdaq 100 S&P 500 FTSE 100

Asym.Ell. 0.3426 0.1679 0.1535
Res.Boots. 0.3791 0.2549 0.2850
LR.Boots. 0.8150 0.7919 0.8326
ScoPe 0.3801 0.2862 0.2412
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Figure 2: Laplacian noise, n = 1000, m = 100, r = 10;
The rank of ‖B((θ), π0)‖2 is shown as a function of (β, ω);
α is fixed at its QMLE. Darker color indicates smaller rank.

(Francq and Zakoian, 2011) were calculated from the data,
i.e., for each sequence {Pt}, the data were transformed by
Rt = log(Pt/Pt−1). They were then standardized, after
which GARCH(1, 1) models were estimated using QML.

Only the relative areas of 90 % confidence regions, approx-
imated using 1000 Monte Carlo trials, are shown in Table 2
as “true” parameters were not available. The size (but not
the shape) of ScoPe confidence sets were about the same
as the ones obtained by residual bootstrap, indicating the
promising practical applicability of ScoPe, especially, since
it has stronger theoretical guarantees than bootstrap.

8 CONCLUSIONS

GARCH processes are widespread models of (conditional)
heteroscedasticity, and are archetypically estimated by the
QML mehtod, which provides point estimates. Often con-
fidence regions are also needed, but unfortunately the stan-
dard approach (based on limiting distributions) fails in case
the driving noise is heavy-tailed. Alternative approaches,
such as bootstrap methods, may also fail for skewed distri-
butions or require knowledge about the noise terms.

In this paper the ScoPe method was proposed which is
based on permuting the score function. At the best of our
knowledge, it is the first approach that can construct (i) ex-
act, (ii) non-asymptotic, (iii) distribution-free confidence
regions (iv) around the QMLE, (v) without additional as-
sumptions about moments or stationarity. Its exact cover-
age probability was proved and numerical experiments on
simulated as well as stock market data were also presented.
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