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Appendix

A Strong convexity

As we discussed, the posterior from BayesOs rule could be viewed as the optimal of an optimization problem in Eq (1). We
will show that the objective function is strongly convex wk f.-divergence.

Proof for Lemma 1. The lemma directly results from the generalized Pythagaras theorem for Bregman divergence.
Particularly, forK L-divergence, we have

KL(aillg) = KL(q1llg2) + KL(q2llq) — (a1 — g2, Vé(q) — Vé(gz))2
whereg(q) is the entropy of;.

Notice thatL(q) = KL(qll¢') — log Z, whereq' = PLLIPOGID 7 - | p(6)! N p(z;|6), we have

KL(qi|lg") — KL(q2|lq') — (01 — a2, V(a2) — V(d' )2 = K L(q1||q2)

KL(qllg") = KL(q2llq") — (@1 — 2,109 2 — l0gg' )2 = KL(QlH%g)

KL(qllg") — KL(q2l|q") — (@1 — 2,109 2 — log p(6)! | p(i|0) )2 + ém;q%%)g_@z = KL(q1]|2)

0

U

= L(q1) — L(q2) — (¢1 — q2, VL(q2))2 = KL(q1|]q2)

B Finite Convergence of Stochastic Mirror Descent with Inexact Prox-Mapping in Density
Space

Since the prox-mapping of stochastic mirror descent is intractable when directly being applied to the optimization prob-
lem (1), we propose theinexact prox-mappingvithin the stochastic mirror descent framework in Section 3. Instead of
solving the prox-mapping exactly, we approximate the solution withror. In this section, we will show as long as the
approximation error is tolerate, the stochastic mirror descent algorithm still converges.

Theorem 2 Denoteg' = argmin qp L(q), the stochastic mirror descent with inexact prox-mapping aftsteps gives

(a) the recurrencevt " T, E[KL(q' ||gi+1)] " & + (1 — w)E[KL(q ||a)] + '
(b) the sub-optimality: E[KL(gr|l¢)] " ElL(gr) — L(¢')] " ™MiE fa'f i#*Di \here g =

(
1T=1 M Gt thl v andDy = KL(q' ||¢1) and M? := maxy o 1 El[g: 3 -

" ZEHg #]
1 2

Remark. Based on (Nemirovski et al., 2009), one can immediately see that, to guarantee the usual rate of convergence, the
errore; can be of orde©(~?2). The prst recurrence implies an over@(L/T) rate of convergence for thi L-divergence

when the stepsize; is as small ag)(1/t) and errore; is as small ag)(1/t?). The second result implies an overall
O(1/+/T) rate of convergence for objective function when larger stepgize O(1/+/T) and larger erroe, = O(1/t)

are adopted.

Proof for Theorem 2.(a) By brst-order optimality conditiom+; € P;‘ (7gt) is equivalent as

(mgt +10g(#t+1) —109(dt), qiv1 — @)L, " €, Vg € P,
which implies that

(g, ier — @2 " (l0g(ct) —109(di+1 ), Givr — @)2 + & = KL(q||dt) — K L(q||dt+1) — K L(g+1 ||6t) + €
Hence,

(nge @ — 2" KL(gl|lq) — KL(gl|g+1) — KL(gr+a [[d) + (vgr,dt — dier )2 + € 8
By YoungOs inequality, we have

o W1l 0
(ge b = dinn )2 " Slde — e |3+ 5 el - ©)
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Also, from PinskerOs inequality, we have
1
K L(¢t+1 ||dr) # 5”% — g+ |12 (10)
Therefore, combining (8), (9), and (10), we hakec P

2
. " . . Y
(nged—a)2" @+ KL(glla) = KL(alldqs) + = o3
Pluggingg' and tak)ing expectation on both s)ides, the LHS begromes*

) *
+
Ex (& — ¢ ng) = Ex (& — ¢ nElo]) ey = Ex (& — ¢ . wVL(&)) ,
Therefore, we t‘Bave .
2
. . " ) N ) . - Y
Ex (6 —¢ ,%VL(&)) " e+ Ed KL(q'||&t) —Ex KL(¢' ||grs1) + éEngtH% (11)

Because the objective functionisstrongly convex w.r.tK L-divergence,

(0"~ a0, VL(¢Y — VI(9)) = KL(¢%]a) + KL(dlla9,
and the optimality condition, we have

(@ — 4", VL(@)) # KL(d'||ax)
we obtain the recursion with inexact prox-mapping,

2
Ex[KL(q |dea)] " e+ (1 = WE[KL(' [l)] + & M?

(b) Summing over = 1,...,T of equation (11), we get

T T T2
Eld — ¢ wVL@)]" e+ KL [lp)+ M2
t=1 t=1 t=1
By convexity and optimality condition, this leads to
/ 0 2
T T T T2
M Ex[L(ar) — L(¢)] " Ex (L) — L(g')) " e+ KL(q ||q) + %MZ
t=1 t=1 t=1 t=1

Furthermore, combined with tHestrongly-convexity, it immediately follows that

1\ T 2 A 42 (r

. vz =m WA et D

BRI 0] " Bl — L) e -
t=1 It

C Convergence Analysis for Integral Approximation

In this section, we provide the details of the convergence analysis of the proposed algorithm in terms of integral approxi-
mation w.r.t. the true posterior using a good initialization.

Assume that the prigs(#) has supporé cover true postejrior distributiogl (), then, we cousld represent
g () eF= q0)= (0)pd), B)p(6)dd=1,0" ()" C .
Therefore, one can show
Lemma7 Vg € F, let{6;}", isii.d. sampled fronp(¢), we could construa§(d) = = ., % such thatv f(6) :

RY — R bounded and integrable,

)14 4 .|+*
E T @0)f(0)do— q(6)f(0)dot " m\)gh

Proof
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Giveng(6), we sample.i.d.{6; }2; from p(f), and construct a function

()= = a0)5(6:,0).
i=1
It is obviously that
) ) *
E@0]=E =  a(6)s6.0) == E a6)56,6) = q(6)
mi:l miZl
d
- )4 ) ) <4
E «0)f(0)d0 =B — o) fO) = — B o)) = q6)f(O)d0
i=1 i=1
Then,
) 4 4 B )4 ) 4 *p*
E I @0)f(0)do— @) f(0)do: =E I «0)f(0)do —E  &0)f(0)do I
6 7 4
= 2 B a@) @8 - [E @ SENE " B a@)f@)E= > a7 n(6)as

14 C 4 c
= — a(O)f(0)*a0)ds " —|fO)ls  0)a@®)dd " —|FO)lI5 la®)]s

By JensenOs inequality, we have

8 _ -
)4 4 iy b 4 B
B a0s0w - «0/@dt BT a0s@d - (ot \Fc\%e)m
Apply the above conclusion t6(f) = 1, we have
)il .m + VC
E iﬁ o — 1% " NG
Letgs) = —H500%0 penl ™% =1 and
)14 4 f )i 1 .m 1.M f
E I #0)f(0)dd— &0)f(0)doT = E ] o) a(9i)f(9i)—a ' a(6) f(6)%
= E)iil—( ‘ma(ei)%‘ L a(9-)f(9-)g*
! m T ima(‘gi) | i i
)I ( M (6, T 1 .m : )I ( M T Cll f(o
= B - 'fj( i oy | (OO T E - —SrO)s T f”j(m)'“‘
Then, we have achieve S)leconclusion that4 "
+ +
E I #0)f(0)dd —  q(6) f(0)doT
) +4 4 # ) +4 4 *#
E I @&0)f(0)dd — q(0)f(0)doF + Er T &(0)f(0)d0 —  &0)f(0)dof
2VC||£(0)]ls
vm

With the knowledge op(0) andq(6), we sety (0) = a1 (0)p(6), the PMD algorithm will reduce to adjus{(6;) for samples
{6 1%, ~ m(#) according to the stochastic gradient. Plug the gradient formula into the exact update rule, we have
0) exp(— 0 ot (0) exp(— 0))p(0
g1 (6) = at(0) p(Z 1.9t (0)) — 1(0) exp( Z%gt( ) p(0) = asa (0)p(0)
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whereai+1 (0) = w SinceZ is constant, ignoring it will not effect the multiplicative update.

Given the fact that the objective functioh(q), is 1-strongly convexv.r.t. the K L-divergence, we can immediately arrive
at the following convergence results as appeared in Nemirovski et al. (2009), if we are able to compute the prox-mapping
in Eq.(2) exactly.

Lemma 8 One prox-mapping step Eq.(2) reduces the error by

2]E 2
" 91
BUKL( [l (L~ 20BIKL [lg)] + Tl
With stepsize; = £, itimplies
° E|lg)3 ° 1
EIK L ! n KL ! n g $ =
[KL(q |[gr)] " max (¢ lla), -1 T

Proof We could obtain the recursion directly from Theorem 2 by settirg0, which means solving the prox-mapping
exactly, and the rate of convergence rate could be obtained by solving the recursion as stated in (Nemirovski et 8., 2009).

Lemma 9 Let ¢, is the exact solution of the prox-mapping tastep, thenvf(6) : RY — R, which is bounded and

integrable, we hav% w 4 " 3 5
BT a@fOd— o0 Ot " max K o), tadls s
+ + "V2n—=1 Vit
Proof
)14 4 | f ]
E I «(0)f(0)dd— ¢ (0)f(0)ddf = El(a(8) —q (6),f(0)L.]2
): ——
1
" Elllg(0) — ' @Ol flls 1" 1 flls ELlg(0) — ¢ (0)1" [If]ls E SELG ||ar)
3. 5
" C oy "Elgls  [1f]ls
max KL(¢ ,
(¢' llq2) 21 i
The second last inequality comes from PinskerQOs inequality. |

Theorem 5 Assume the particle proposal prigr(d) has the same support as the true posterjb(d), i.e, 0 "
¢ (0)/p(#) " C. With further condition about the modéb(z|O)N ||ls " p, Yz, thenVf() : RY — R bounded and
integrable, with stepsiz&s = %, the PMD algorithm returnn);/kveighted particles aftef iteration such that

4 4

+

E Y a@fod— o050t

: 5
w2 max{C,pexp(|lg(6)ls ) }|fls C ey MElglls 1 lls

Proof for Theorem 5.

We prst decompose the Elrror into optimizztion error and#bnite approximation error.

+ +
E I a(0)f(0)d0— ¢ (0)f(0)dof

) 4 oy 4 i

" E T a@)f0)d0—  a(0)f(0)ddf +E T a(0)f(0)dd— g (6)f(6)do}

& %& ' & %& !
Pnite approximation errat; optimization errowt

For the optimization error, by lemma 9, we h%ve

5
Elals ° Iflls
Ven=1 i

e " max . KL(¢ ||q1),
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Recall that
_ Go61(0) exp(—to19t%1(0))
a(0) = 7
oo (O)P(O) (et O)p(lO)N" 1) _ e, P 9>N -
= il = ol (o)
Ml NE ¢ g !
which results the updateyt(e) S (‘)p(xl') . Notice Z = q:(0) exp(—t gt (6))df, we have

exp(—tllg(0)[|s ) " exp(1t[lg:(0) s ). By induction, it can be show thijtv [|s
max{C, pexp(||lg(d)|ls )} Therefore, by lemma 7, we have

. 2 max{C, pexp(lg(®][s )} flls
i .

Combinee; andes, we achieve the conclusion. !

max{C, pexp([lg:(0)[ls )} "

€1

Remark: Simply induction without the assumption from the updatexgff)) will result the upper bound of sequence

|t |ls growing. The growth of sequendey||s is also observed in the proof (Crisan and Doucet, 2002) for sequential
Monte Carlo on dynamic models. To achieve the uniform convergence rate for SMC of inference on dynamic system,
Crisan and Doucet (2002); Gland and Oudjane (2004) require the models should satigf$ )), p(zi|6;)p(6;|6ioe1) "

€*11(6;), Yz wherev(6) is a positive measure, and i pore T )prfz(lll' sec P Such rate is only for SMC on dynamic
system. For static model, the transition distribution is unknown, and therefore, no guarantee is provided yet. With much
simpler and more generalized condition on the mouel, ||p(z|)N |s " p, we also achieve the uniform convergence

rate for static model. There are plenties of models satisfying such condition. We list several such models below.

1. logistic regressiony(y|z, w) = famrimwss» andllp(yle, w)lls " 1.

2. probit regressiomy(y = 1|z, w) = #( v’ z) where#( -) is the cumulative distribution function of normal distribution.
[p(ylz, w)lls " 1.

3. multi-category logistic regressiop(y = k|z, W) = % and||p(y|z, W)|ls "
4, latent Dirichlet allocation,
p(xd‘ed,#) = Ezd* p(Zd|!d)[p(xd|Zd7#)]
da W K
p(xalza,#) = # conke X
n=1 w=1 k=1
da K
p(zd|0a) = e
n=1 k=1

and|[p(zq|0q,#) [|s " maXy, ||p(zdlzd,#) [ls " 1.

5. linear regressiom(y|w, z) = ,JlTTexp(—(y—w) x)?/20?), and||p(y|w, )||s " 412—7
6 7

6. Gaussian model and PCA(z|1,$) = (2 wdet($)) ®Texp — 3(z — p) $(z — p) , and |p(z|w, $) |s "
(2r det($)) %3 .

D Error Bound of Weighted Kernel Density Estimator

Before we start to prove the Pnite convergence in general case, we need to characterize the error induced by weighted kernel
density estimator. In this section, we analyze the error in terms of bp#imd L., norm, which are used for convergence
analysis measured by L-divergence in Appendix E .
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D.1 Lji-Error Bound of Weighted Kernel Density Estimator

We approximate the density functigif) using the weighted kernel density estimag¢#) and would like to bound the
L error, i.e.||¢(#) — q(#) |1 both in expectation and with high probability. We consider an unnormalized kernel density
estimator as the intermediate quantity

m

1 .
om(0)= —  w(6i)Kn(0,0;)
Mg
Note thatE[om (6)] = Ei, [w(i) Kn(6,6)] = ¢ Kn. Then the error can be decomposed into three terms as

e:= E[d(6) — a®)ly " E140) 5.gm O+ Ellom (6) 5. E om (O + [ om (8) = a(O),

%0&
normalization error sampling error (variance) approximation error (bias)

We now present the proof for each of these error bounds.

To formally show that, we begin by giving the debnition of a special class of kernels aldéri-tlasses of densities that
we consider.

Definition 10 ((3; i, v, §)-valid density kernel) We say a kernel functio(-) is a (5; u, v)-valid density kernel, if
K(6, 9) = K(0 — 0) is a bounded kernel such that

() | K(2)dz=1

(i) | |[K(2)|"dz" ooforanyr# 1, partlcularly, K(2)?dz" p? for somey > 0. |

(iiy = 2K(z)dz = 0, foranys = (sg,...,sq) € N9 such thatL " |s| " |3]. Inaddition, ||z|) |K(2)|dz" v for
somev > 0.

For simplicity, we sometimes call () as ag-valid density kernel if the constantsandv are not specibcally given. Notice

that all spherically symmetric probability density and product kernels based on symmetric univariate densities satisfy the
conditions. For instance, the kern&l(6) = (2 7)%% 2 exp(— |\9|| /2) satisbes the conditions with= 1, and it is used
through out our experiments. Furthermore, we will focus on a class of smooth densities

Definition 11 ((3; £)-Holder density function) We say a density functiosf-) is a(3; £)-Helder density function if func-
tion ¢(+) is | 3]-times continuously differentiable on its suppbrand satisbes

(i) for anyzo, there existd.(zp) > 0 such that
la(2) — ) ()" L(z0)l|z — 20| ,Vz € "

whereq() ) is the | 3]-order Taylor approximation, i.e.

- (2 = 20)°
@) (2) = ==

s=(s1,..8d):Isl! ,) -

Dq(20);

I
(ii) in addition, the integral L(z)dz" L

fe C)l_(") meansf is (3; £)-Helder density function.

Then given the above setting for the kernel function and the smooth densities, we can characterize the error of the weighted
kernel density estimator as follows.
D.1.1 KDE error due to bias

Lemma 12 (Bias) If ¢(-) € C).(") andK is a(; u, v)-valid density kernel, then
lq(8) — E[om (][, " vCh .



Bo Dai, Niao He, Hanjun Dai, Le Song

Proof The proof of this lemma follows directly from Chapter 4.3 in (Wand and Jones, 1995).

Elom (0]~ a®)] = Jg* Kn(®) — a(9)]
= KDz - g0)
4
- KO0+ )~ a(0)ld:
= K8+ h2) — q(6)]d=
# r o4 ;
"t K@U+ h) — )0+ h)der K () (0 + he) — q(O)]de
4 9 +

+ +

L)  |K(2)helP dz+ § K(2)[g) (0 + he) — q(0))d=t
Note thatq!() )(9 + hz) — q(6) is a polynomial of degree at most | with no constant, by the debnition ©8; x, v)-valid
density kernel, the second term is zero. Hence, we &y, (H)A —q(0)] " vL(0) B, and therefore

|Elom ()] — q(®)[1" vh  L(0)do" vLR .

D.1.2 KDE error due to variance

The variance term can be bounded using similar techniques as in (Devroye eariel G985).
Lemma 13 (Variance) Assumev,/p € Ly with bounded supp%rt, then

E[|om (0) — Elom (]I, " wy/pd+ o((mhd)%H).

B
Vmh%

Proof For anyf, we have

02(6) 1 = E' (om(6) — Elom (9D
= L B 0001 - (gu syt L0
i=1
B — ) !
Denoteu(K) := K(0)2 df and kernelK™ (0) = % thenu(K) " u, K*df=1and
o1, 1 K(0/h)K(0/h) _ e
Hence,
2y ENLD) A Ky Rl D) < Ky — W] ()
: mhd mhd mhd
Note thatr () = E[(om (0) — Elom (0)])2] # E|om (6) — E[om (6)]|, hence

Igllgm(w — E[om (9)]]], 4

= Elom () —Elem (][ d6 " o(0) do

8 .
4 N
" 12 (w?p) x Ky — w?p] 112 (w?p)
+ df
mhd mhd
)4 . 4 = *
S A w?pdf + (w?p) x K — w?pdh
/mhd/ 2 h
m
Rk o -
ot evBd T ) Ky - uptds

|+ +
From Theorem 2.1 in (Devroye and &, 1985), we have {w?p) x K, — w?ptdf = o(1). Therefore, we conclude



Provable Bayesian Inference via Particle Mirror Descent

that

E llom (6) — Elom (O]l " g7z o/l + of(mii) %),

Jm

D.1.3 KDE error due to normalization

The normalization error term can be easily derived based on the variance.

Lemma 14 (Normalization error) Assumev,/p € L,

E[|H6) — om (O], " NG w?(0)p(0) df

! !
Proof Denotew; := w(6;), thenElwi]= w(f)p(d) dd =1 andE[w?] =  w?(#)p(0) db, foranyi=1,...,m. Hence,
4

m

1E|i w12 = 1 200 .
m i=1 m
Recall thatg(#) = ! e % ( ir’r;l wi Kn(60,6;) andon, (0) = %( ir’r;l wi Kn (6, 6;).

E||¢(0) — 9m(9)||1
" rrl WiKh(aaei)_%i CdiKh(‘9,9i)§

I I

n ': Wi

E 11— 'ni -1
t o t
" ]Eﬂ—il”' [ Kn(0) ]2
! !
Since||Kn|1=  &HK(0/h)do =" K(0)do=1, w% have
%

E66) — om (@), " —=  w?(O)p(6)db = ——||w/p]
Om L Um w4(0)p —\/mw\/ﬁz

D.1.4 KDE error in expectation and with high probability

Based on the above there lemmas, namely, Lemma 12 - 14, we can immediately arrive at the bourid artbein
expectation as stated in Theorem 4. We now provide the proof for the high probability bound as stated below.

Corollary 15 (Overall error in high probability) Besides the above assumption, let us also assume (fpis bounded,
i.e. there exist® < By " B, < cosuchthatB; " w(f) " By, V6. Then, with probability at least — 9,

I40) = @)l " vER + ——rs /Bl + \/1%||W\/Z72+ jm 8B B, 100(1/8) + of(mh%)*%).

Proof We use McDiarmidOs inequality to show that the functft@%)
dom data% = (0y,...,6n), is concentrated on the mean. =
(w(b1),...,w(0m)) andw = (w(b),...,w(F),...,w(bm)). Denot k

= ||¢(6) —q(9) |;, debned on the ran-
(61 ...,0m). We denotew =
= (Kh(9 91) . Kn(,6m)) and &
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(Kn(0,61),..., Kn(0,09),...,Kn(6,0m)). We prst show thatf(%) — f(%9| is bounded.
/(%) — FOH +
e (0) —a(O)lly — llg=(0) — a(O)l, *

& (0) — = (9)]],

(m

i 1
" g(@j - j)'(( e wiki) —( iny Wi)(&’ikiwiki)g

(\ inll Wi) '(\ |m§ Ubi)

é-jm_w.j g + giyi .im_wj b
1

1

( i=1 wi) $ iz1 @i
. 2B1B; . 2B1B, , 4B1B;
5 m m m
Invoking the McDiamidOs inequality, we have 3 5
2
" me

which implies the corollary.

D.2 L,-Error Bound of Weighted Kernel Density Estimator

Following same argument yields also similar-error bound of the weighted kernel density estimator,/ig€6) — ¢(6)||2.
For completeness and also for future reference, we provide the exact statement of the bound below in line with Theorem 4
and Corollary 15.

Theorem 16 (L,-error in expectation) Letq = wp € C,)_(") and K be a(g; u, v)-valid density kernel. Assume that
w?p € L, and has bounded support. Then

8,2 .
E [ (6) — a(0)|2" 20k £) + #IIWEII%+ o((mh%)*L).

Proof for Theorem 16.The squard.,-error can also be decomposed into three terms.

E[(6) — a(@)ll " 4B 14(6) 5.gm ()llo+4 Ellom (0) 5. om (D)2 +2 YE om (6) = a(0) o
normalization error sampling error (variance) approximation error (bias)

This yses the inequalify+ b+ ¢)? " 2a?+4b?+4 ? foranya, b, c. From Lemma 12, we already hal#& o (6)] —q(6)| "
L(0) |K(2)|hz|) dz,V6. Hence,

4
IELom ()] = a(@) (13" v2h?  L2(0)do " (vh) L)%, (12)
From proof for Lemma 13, we have | |
E |lom () — Elom (D]lI5 = Elom (6) — Elom (012 d6 "~ o2(6) do 13)
o IR L W g B + of(mh)*) (14)
In addition, we have for the normalization error term,> | ’, )
E[(60) - om(0)[5 " EY 1 it Ll Ol "§2 (15)

Lok
CER - g

ane loy/pll3
Combining equation (12) , (13) and (15), it follows that

2
Ell#0) — q(0)[3 " 2(wh) £)?+ %Hw\/ﬁng + o((mh%)%Y).
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!

Corollary 17 (L,-error in high probability) Besides the above assumption, let us also assume(fais bounded, i.e.
there exist® < B1 " By < cosuchthatB; " w(f) " B, V6. Then, with probability at least — §,

log(1/9).

82 wrs . 16B1Boy?:
le(6) — a(O)|5 " 2(wh) £)* + #Hw\/ﬁ”g + o((mh9)%?) + 1TZN

Proof for Theorem 17.Use McDiarmidOs inequality similar as proof for Corollary 15. !

E Convergence Analysis for Density Approximation

In this section, we consider the rate of convergence for the entire density measuked-thyergence. We start with the
following lemma that show the renormalization does not effect the optimization in the sense of optimal, and we show the
importance weighi (6) = exr’(%zi’gt('” at each step are bounded under proper assumptions. Moreover, the error of the
prox-mapping at each step incurred by the weighted density kernel density estimation is bounded.

]
Lemma 18 Let( = , qtdf, @= 13- is a valid density orf , then,&f = @, whereq{ := argmin qp ) Fi(g; ¢t),

@ =argmin gp o Fi(¢: @, andF(q; 68 = (g, %9), + KL(qllgY.

Proof for Lemma 18.The minima of prox-mapping is not effected by the renormalization. Indeed, such fact can be veribed
by comparing toz” = argmin Fi(q; &) and@ = argmin Fi(q; @), respectively.
oy G @)™ @) pad N @ () pla )N

@=1= t

(e @) p(O) p(a )N dO T G p(0), pla |V dO

!

Due to the fact, we usg following for consistency. Although the algorithm updates baseé; pit is implicitly doing
renoramlization after each update. We will show @t is ane-inexact prox-mapping.

Lemma 19 Assume for all mini-batch of examplg (0) |3 " M?, then we have

.
(@) exp(—2y M) " w(0)= LH " expyM),

) [VE(g ;@ |s " 3nM.

I
Proof for Lemma 19.Let Z := ¢ (0) exp(—1g:(0)) db. We haveexp(—y M) " Z " exp(y M).

(a) Sincel|gi(0)[|3 " M2, we have
& (0) _ exp(=ng () .,

exp(—=2nM) " w(0) = @b - 7 exp(2y; M).
(b) Also, becaus& Fi (¢, ) = gt +log Z‘—j = gt +log(w), itimmediately follows
IVER(g :@lls = [ng +log(wi)lls ™ llgells + [loglw)lls " M+ @2y M)=3vM.

Lemma 20 Lete ;= Fi(@1;@® — Fi(¢ ; @), which implies@; ¢ P;‘ (1t gt). Let the bandwidth at stepsatisPes

he = O@)m; Y (@2,
one can guarantee that

0p 2 o H
Ei [et|zpoen: O] © OQ)(p2 + v2L?) p&my 7 + O(Q)M(p+ vL)yemy *

In addition, with probability at least — 26 in 6; |z(to61], Ojt%1], We have

" 012 Tog(L/0) + 2L2)uP&m &% + OW)M(u+ vL+  Tog(L/8)ym, =
where(O(1) is some constant.
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Proof for Lemma 20.

Note that sincef (0) = # (0) exp(—g:(6)) /Z, whereg; (0) = ( iy @i Kn (0 — 6;), andg: (6) = log(zt) — log(p) —

N log(p(xt]0)). By our assumption, we hawg € Ol)_(") andexp(—igt) € C),_(") ; henceg € O|)_(") . Invoking the

debnition of functionf; (-; @), we have
R@1; @ - R (g @ KL(@1l6)+ (VR @, @1 — & )L,

" KL(@a lld )+ 3uMd — @1

— )2
o BT s - @l

.+
t

"&|@1 33 Md — @il

Based on the debnition @§ we have

. 1 . 1 . Fw L . ¢
ld — @1 [l2 Gr+1 —Q‘+§ =1z C||Q‘t+1 —d *(d [l ?C||Qt+1 — o+ 1-¢

1-¢ 1
ldies — i fla+ ¢+ o(CH fldtsn —df [la)-

Similarly,

+ 1 + + 2
ll g _@1‘@ gl C('3‘t+1 G )+ Cctg

2 £ 2 2¢? £ 2
TP 1P SN ST
(1 _€)2||qt+l Gt ||2 (1 _C)ZHqi ||2
" 201+ OPlldeer — o 113+ 2% 11E + o( Pl 13+ Pl — o 112)
!
Recall( =1 — , dis1 = (Lgf —d+1) " |ldier — & ||1, We can simplify thel; and L, error as

@1 —d 1 = 2llda —d lla+ o(llder — ' [2),
i — @115 " 2lds — i 15+ 206 Glldea — & 15+ o(lldier — & 15+ I 5lldess — & 113
"@*2lld D) lder — 115+ ollldier — a [13)-
The last inequillity fo, error comes from JensenQs inequality. We arguéd¢hdit is Pnite. Indeed,

||q'i+ ||§ - (Q"t+ )2d9= qizeXp(Z—zz%gt)de " eXp(;thgt) q‘-tzdﬁ
6 4 7 °
" oexp(dyM)  alal  Kn(0—6)Kn(0 — 6)do
6 " 7

Coexp(@y M) alad [ Kn(0— )2l En(0 —6)ll2 " exp(yM)pPllat1llat s " exp(dy M) u?

Therefore, we have

@ " (28+28 pPexp(dyM))ld — & |5 +6vMllda — & 1
+o([ldsr — 6 13+ lldesa — & [l1)
Applying the result of Theorem 4 and 16 f@ 1 and%J' we have .
1] 8 2 = %
E [et|2poen, Opoeny] * (2& +2& pi? exp(dy M) 2(vh) £)? + mﬂhd e a3+ o((mehf)™)
1 _ e 2
#6900 L)+ — o dlt =l @+ o(me)*)
\/mtht mt
6 8,2 . . 1 i 7
vo 2w 02+ — e alf+ wlLh + —E sl @l =l @l
mi Iy iy my

Under the Assumption C; we already proved thats " exp(2y M), hence/lwi/dt|[5 " exp(4y M). Without loss of
generality, we can assume g (0)dd " O(1) andv M " O(1) for all ¢, then we can simply writdw, /g [l2 * O(1)
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and||w Va2 " O(1). Whenh, = O1)m{®" (**?)) the above result can be simpliped as

 [efoosny O] * O + v2L2)2&my ™% + O@)M(p+ vL)ym; ™™

Similarly, combining the results of Corollary 15 and 17, we have with probability at leas?s,
) 812 1681 Bopi? -

myhd my

*

log(1/3)

2
S 1 o I — %l
#69M vLh + —Lglen allat e aller o BBLBIog(L/d) + of(mh)")
A/t t

6 . . 7

82 o
+o 2(vh) £)?+ mf‘hd ot @ll3 + wlvch +
1

" (2&+2& pPexp(dy M) 20l £)F + e alz+ o((mihf)™) +

1

\ﬁMhd,ZHWt- dtlls + \/%wt. dt|2]
my Ny

which leads to the lemma.

Our main Theorem 6 follows immediately by applying the results in the above lemma to Theorem 2.

Proof of Theorem 6.We brst notice that

E[K L(q' ||47)]

" )4 | 4 *

! q _ ! q ! @

E q¢log>-dd =E ¢ log—=di+ ¢ log=—do
ar @ ar

)4 @
E[KL(¢ [|@)]+E ¢ log gda :

For the second term,
)4 * 1 2

1
E (¢,log ) =E[{¢',—log(1—¢r)]

1%, 7 4T

E ¢ log @da Lor ©
qr

= E[-log(1—¢r)" ¢r+o(¢r) " Elldr — droplls + o(Elldr — droelle)

By Theorem 4 and settinly = O(l)m;m’ (d+2) ), we achievg the error bound

0t
E ¢ Ioggdﬂ " Cym, T

whereCy := O(L)M(u+ vL).
When settingy; = min {Z-, W} invoking the above lemma, we have
t
Ey [et|2[t91]5 Oproony] " Camy®? (4200,
whereC; := O(1)(p + vL)?u?& . Expanding the result from Theorem 2, it follows that
2
Exi [KL(q' |@1)]" (1= 20)Exs [KL(q' |@]+ Comy™ )+ Toas?

The above recursion leads to the convergence result for the second term,

‘ 2maxAD1,MZB ( T tzm;%“i%
E[KL(¢ ||@)] 0 o
Combine these two results, we achieve the desired result
ZmaxADl MZB Cr tzm%% ot
EIKL(q [lr)] O Cam T

T T2

!

Remark. The convergence in terms &f L-divergence is measuring the entire density and much more stringent compared
to integral approximation. For the last iterate, an ovefglt) convergence rate can be achieved when= O(t2* 9 ).

Similar to Lemma 9, with PinskerOs inequality, we could easily obtain the the rate of convergence in terms of integral
approximation from Theorem 6. Aftdr steps, in general cases, the PMD algorithm converges in terms of integral approx-
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imation in rateO(1/+/T) by choosingD(1/t)-decaying stepsizes a@(t?*  )-growing samples.

F Derivation Details for Sparse Gaussian Processes and Latent Dirichlet Allocation

We apply the Particle Mirror Descent algorithm to sparse Gaussian processes and latent Dirichlet allocation. For these two
models, we decompose the latent variables and incorporate the structure of posterior into the algorithm. The derivation
details are presented below.

F.1 Sparse Gaussian Processes

Given dataX = {zj}\;, i € R L andy = {y }L, . The sparse GP introduce a set of inducing variabfes;
{z}M,, 2z €R* andthe modelis specibed as
P(n |u7 Z) N (yn |Knm K:f#] u, K)
p(u|Z) N(u|07 Knm ).
where Kmm = [Kk(2i,%)]lij =1,..m » Kaom = [k(zi,2)]i=1,..n;j=1,..m . FOr different K, there are different sparse
approximations for GPs. Please refer (Banero-Candela and Rasmussen, 2005) for details. We test algorithms on the
sparse GP model with = 5%11. We modify the stochastic variational inference for Gaussian processes (Hensman et al.,

2013) for this model. We also apply our algorithm on the same model. However, it should be noticed that our algorithm
could be easily extended to other sparse approximationg{@aro-Candela and Rasmussen, 2005).

We treat the inducing variables as the latent variables with uniform prior in sparse Gaussian processes. Then, the posterior

of Z,u could be thought as the solution to the optimization problem
n

min gz wlog 2ZY iz — T (7 u)log p(yi |, v, Z)dudZ (16)
a(Z,w) p(Z)p(u) i1

The stochastic gradient of Eq.(16) w.g{Z, u) will be
1 1
9(q(Z,w) = —logq(Z,u) — —logp(2)p(u) —logp(yi|zi, u, Z)
and therefore, thg prox-mappingistep is
min  ¢(Z,u)log a(Z )

AZ, v) @(Z,0)%" N p(Z, u)"n
which could be re-written as

4
udZ — v q(Z,u)log p(yi|zi,u, Z)dudZ

4 3
. a(2)
min Z) lo e 0
§oaiz) g 2) 9 4@y i p(Z)" «
+ gu2) log d(u|2)
1%"¢/n "¢/n
@ ¢ (u|2)7 N py) )
L (a(ulz))
We updatey;+1 (u|Z) to be the optimal of.(¢(u|Z2)) as
o1 (u|2) o< qe(u|2) M p(u|2) " plyi|zi,w, 2)"
= N(ulm, 6™ N (|0, Knm )™ N (4| Kim Kyom w,")
= N(ujms1,6t51)
where' = diag(Kii — Qi)+ 8%, Qi = Kim Kjih Kmi,
Ot 5 (1 = 2/m)d+ ve/nKmm + Kim K" " K Koy

5
— i logp(yi|zi,u, Z) du dZ

—_ %1 %1 %1 %1 v %1
merr = 641 (L —n/n)6 me + w/nKgy mo+ nKgyn Kmi' ™y

Plug this into theL(Z(ulZ)), we have

*

7
a(ulZ) e logp(yi 21,1, Z) du = —logp(yai, Z)

@t (a|Z)1%" " p(u] Z)"

L(qg(ul2)) = q(u|Z) log
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where 4
plyilzi, 2) = qt(u|2)™" " p(u] Z) " p(yi|zi, v, 2)" du
4
= N(almy, 68PN N ()0, Knm )™ N (i | Kim Kpem w,) " du
= Ny |Kim KX% ¢, $)
where
8. = (1 —67t/n)5t + o /nKE: 7
c = 81 (1—n/n)bsm+ n/nKfmmo
% ) %. 1-
$ =  KimEKnpn t/+]i Koo Kmi + %
Solve 4 4

(%)
@t (Z)1%" < p(Z)"n

n?;r; q(Z)log dZ —  q(Z)log p(yi|zi, Z)dZ
g
will result the update rule fog(2),
qt+1 (Z) Qt(Z)l%"‘/n P(Z)"I/n pyilzi, 2)
We approximate the(Z) with particles, i.e.q(Z) = ( }:1 w! §(Z1). The update rule fow! is

W = o W eXP(/nlog(ut) + v /nlogp(Z)) +1og p(yilai, Z)))
T Tl exp(— /nlog(ul) + v /nlogp(2) +log plyilai, Z1)

F.2 Latent Dirichlet Allocations

In LDA, the topics# € R¥- W are K distributions on the word$l’ in the text corpora. The text corpora contaiils
documents, the length of thith document isVy. The document is modeled by a mixture of topics, with the mixing
proportiondy € R K. The words generating process i is following: brst drawing a topic assignmest, , which is
1-by-K indicator vectorj.i.d.from 64 for word x4, which is1-by-1¥ indicator vector, and then drawing the warg, from

the corresponding topi¢,,, . We denotezg = {zan Jng; € RN X 2y = {2ga Jng € RN W andX = {z4}}.,,Z =
{Z4}5-, . Specibcally, the joint probability is

p(zd, 2d,00,#) = p(xg|zq, #) p(2q|04)p(0a) p(#) (17)
Ho N K
p(zg|za,#) = #is\r;k X dnw
n=1 w=1 k=1
g K
p(za[0d) = 2
n=1 k=1

0, C 0, C 0, C 0,
The p(#) andp(6) are the priors for parameters(fa|a) = ey 05" andp(#80) = & 70w He '
both are Dirichlet distributions.

We incorporate the special structure into the proposed algorithm. Instead of modelip@theolely, we model the
Z = {Z}§., and# together ag(Z, #) . Based on the model, given, theq(# | Z) will be Dirichlet distribution and could
be obtained in closed-form.

The posterior ofZ, # is the solution to
4 p 4

o(Z,#)log W2H  raw L o(Z,#)10g p(zq|zq, #) dZd#

min — — Ty
az.&) D p(Z|e)p(# |9) D

We approximate the bzite summation by expectation, then thez?bjective function becomes
a(Z, #)

. 1
oo AERe S D)

min dzZa# —Ey  q(Z,#)log p(zq|zq, #) dZd# (18)
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m

We approximate the(Z) ~ ( . w 6(Z') by particles, and therefore(Z,#) ~ ( . w P#|Z") where P(# |Z')

is the Dirichlet distribution as we discussed. It should be noticed that from the objective function, we do not need to
instantiate the;y until we visit thexq. By this property, we could Prst construct the partide&s}™, OconceptuallyO and
assign the value ¢z}, }™, when we need it. The gradient of Eq.(18) w.qt# , Z) is

o2 #) = loga(Z,#) — = 10gp(#) p(2) ~ Exllogp(ral#, =)

Then, the486D prox-mapping is
a(Z, #)
qt (Z7 #)

We rearrange the prox-mapping,

) *
+n (Z,#) logq(Z,#) /D —logp#) p(Z2)/D —logp(xql#, z4) dZd#

min Z,#) 1o
Jmin, q(Z,#)log

i 9(Z)q(#|2)
min Z)q# |Z)lo : —
a(Z)a(& 12) Z( Ja#12) ?Qt(Z)l%!/D i (# | Z)1%" D

— n  q(2)q#|2) logp#) p(Z)/D +log p(zy|#,2q) dZd#

*

4 3
. q(2)
min Z) lo o 0
a2)q&12) 4 a(2) )ngt(Z)“’ D p(Z)"/P x5
q#12)
+ q#|2) log — - — i logp(aqgl#, zq) d#t dZ
« q(#|2)1%" /P pfgﬁg /D .
L(a(&12))

The stochastic functional gradient update§¢# | Z') is
g1 (#|2') oc qu(#|2') P p(#) P paal#, 2a) "
Letq (#|Z') = Dir(B}), then, they.1 (#]Z') is also Dirichlet distribution
) ) . . < < "Ny _ _ 7D"*t
Quea (#|2') o Dir(8)) " Dir(fo) ™ il o T =

kw

Dir(ﬁtiﬂ )

k w
where<; = ~ /D and
.Nd
Biaalow =@ —5)Bihw +:Bo+ Dt 0(zank =1, Zanw

n

1).
In mini-batch setting, the updating will be
B .Nd

. . D -
[Bres Iw = (@ —5)[BiIkw + o + Bh 0(zank =1, xgnw =1).
d=1 n

*

— D4t logp(ag|#, 2q) d#

Plug theg+1 (#|Z') into prox-mappiEg, we have
a(#|2)
qe (# | Z) 5 p(#) =
, = —logp(ralz, 2)
wherep(zgl|zq, Z1) = qi(# \Zi)l"/;:*t p(#) " p(xq|#, 29)P " d# which have closed-form

#(xa|2d, Z')

L(q(#12)) = q(#12) log

a(# ] Z) " p#) " p(zal#, 2a)° " d#
&
4 6. < 1, Tpx
Dir(ﬂti)l%"*t DZT(/BB)ILI #kwn d l)/(Zdnk =1 Xdnw =l) d#
k w
6 . 7 104e. 6 7. C .
R £ L G Ko (B P
« w ([ Bihw) B W [B Tw)
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and
log(zql2d, Z') o (1—5)log'( [Bilw)+ log'([ Bier Jkw)
k w w 7
— log'( [Baalw)—@—%) log'( Alw)
Then, we could updatg (Z) = ( Mt 6%Zi) by .

a1 (Z) xq(Z)exp  — L logai(Z) + F10gp(Z'[a) +10g p(ag|ze, Z')

If we seta = 1, p(Z") will be uniformly distributed which has no effect to the update. For general setting, to compute
logp(Z'|a), we need prebx all the!, 1B, . However, wherD is huge, the second term will be small and we could ignore
it approximately.

Till now, we almost complete the algorithm except the how to assigvhen we visitz4. We could assign they randomly.
However, considering the requirement for theassignment that thg{z4[ 4, 4) > 0, which means the assignment should be

consistent, an better way is using the average or sampling proportionaktey |[# , zq) g (# | Z' )p(zd|Zi1_“‘d w1)d# Where
P(2d| 21 qo) = P(zal)p(@| 2] gopr)dar, OF  p(aal#, za) gt (# | Z')p(za| ) d#

G More Related Work

Besides the most related two inference algorithms we discussed in Sectioa.(S)pchastic variational inference (Hoff-

man et al., 2013) and static sequential Monte Carlo (Chopin, 2002; Balakrishnan and Madigan, 2006), there are several
other inference algorithms connect to the PMD from algorithm, stochastic approximation, or representation aspects, re-
spectively.

From algorithmic aspect, our algorithm scheme shares some similarities to annealed importance sampling (AIS) (Neal,
2001) in the sense that both algorithms are sampling from a series of densities and reweighting the samples to approximate
the target distribution. The most important difference is the way to construct the intermediate densities. In AlS, the density
at each iteration is a weighted product of the joint distributiomlbthe dataand abxedproposal distribution, while the
densities in PMD are a weighted productprévious step solutioand the stochastic functional gradient jpartial data

Moreover, the choice of the temperature parameter (fractional power) in AlS is heuristic, while in our algorithm, we have a
principle way to select the stepsize with quantitative analysis. The difference in intermediate densities results the sampling
step in these two algorithms is also different: the AIS might need MCMC to generate samples from the intermediate
densities, while we only samples from a KDE which is more efpbcient. These differences make our method could handle
large-scale dataset while AIS cannot.

Sequential Monte-Carlo sampler (Del Moral et al., 2006) provides a unibed view of SMC in Bayesian inference by adopting
different forward/backward kernels, including the variants proposed in (Chopin, 2002; Balakrishnan and Madigan, 2006) as
special cases. There are subtle and important differences between the PMD and the SMC samplers. In the SMC samplers,
the introduced Pnite forward/backward Markov kernels are used to construct a distribution over the auxiliary variables. To
make the SMC samplers valid, it is required that the marginal distribution of the constructed density by integrating out the
auxiliary variables must be thexactposterior. However, there is no such requirement in PMD. In fact, the PMD algorithm

only approacheshe posterior with controllable error by iterating the datasaty timesTherefore, although the proposed

PMD and the SMC sampler bare some similarities operationally, they are essentially different algorithms.

Stochastic approximation becomes a popular trick in extending the classic Bayesian inference methods to large-scale
datasets recently. Besides stochastic variational inference, which incorporates stochastic gradient descent into variational
inference, the stochastic gradient Langevin dynamics (SGLD) Welling and Teh (2011), and its derivatives (Ahn et al., 2012;
Chen et al., 2014; Ding et al., 2014) combine ideas from stochastic optimization and Hamiltonian Monte Carlo sampling.
Although both PMD and the SGLD use the stochastic gradient information to guide next step sampling, the optimization
variable in these two algorithms are different which results the completely different updates and properties. In PMD, we
directly update the density utilizinfginctional gradient in density spacehile the SGLD perturbs thetochastic gradient

in parameter spaceBecause of the difference in optimization variables, the mechanism of these algorithms are totally
different. The SGLD generates a trajectorydependensamples whose stationary distribution approximates the posterior,

the PMD keeps an approximation of the posterior representédd®pendenparticles or their weighted kernel density
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estimator. In fact, their different properties we discussed in Table 1 solely due to this essential difference.

A number of generalized variational inference approaches are proposed trying to relax the constraints on the density space
with Rexible densities. Nonparametric density family is a natural cRoig®ong et al., 2011) and (Ihler and McAllester,

2009; Lienart et al., 2015) extend the belief propagation algorithm with nonparametric models by kernel embedding and
particle approximation, respectively. The most important difference between these algorithms and PMD is that they orig-
inate from different sources and are designed for different settings. Both the kernel BP Song et al. (2011) and particle
BP lhler and McAllester (2009); Lienart et al. (2015) are based on belief propagation optinuzaigbjectiveand de-

signed for the problem witbne sampleX in which observations are highly dependent, while the PMD is optimizing the
global objectivetherefore, more similar to mean-peld inference, for the inference problemmaith i.i.d. samples.

After the comprehensive review about the similarities and differences between PMD and the existing related approximate
Bayesian inference methods from algorithm, stochastic approximation and representation perspectives, we can see the
position of the proposed PMD clearly. The PMD connects variation inference and Monte Carlo approximation, which
seem two orthogonal paradigms in approximate Bayesian inference, and achieves a balance in trade-off between efpciency,
Rexibility and provability.

H Experiments Details

H.1 Mixture Models
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Figure 3: Visualization of posteriors of mixture model on synthetic dataset obtained by several inference methods.

We use the normalized Gaussian kernel in this experiment. For one-pass SMC, we use the suggested kernel bandwidth
in (Balakrishnan and Madigan, 2006). For our method, since we increase the samples, the kernel bandwidth is shrunk
as the theorem suggested. The batch size for stochastic algorithms and one-pass SMC is et ilhvédotal number

of particles for the Monte Carlo based competitoms, SMC, SGD Langevin, Gibbs sampling, and our methol580

in total. We also keefd500 Gaussian components in SGD NPV. The burn-in period for Gibbs sampling and stochastic
Langevin dynamics arg0 and1000respectively.

2Although (Sudderth et al., 2003; Gershman et al., 2012) named their methods as OnonparametricO belief propagation and Ononpare
metricO variational inference, they indeed use mixture of Gaussians, which is still a parametric model.
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The visualization ofL0 runs average posteriors obtained by the alternative methods are plotted in Figure 3. From these
Pgures, we could have a direct understand about the behaviors for each competitors. The Gibbs sampling and stochastic
gradient Langevin dynamics sampling stuck in one local mode in each run. Gibbs sampler could bt one of the contour quite
well, better than the stochastic Langevin dynamics. It should be noticed that this is the average solution, the two contours
in the result of stochastic gradient Langevin dynamics did not mean it Pnds both modes simultaneously. The one-pass
sequential Monte Carlo and stochastic nonparametric variational inference are able to location multiple modes. However,
their shapes are not as good as ours. Because of the multiple modes and the highly dependent variables in posterior, the
stochastic variational inference fails to converge to the correct modes.

To compare these different kinds of algorithms in a fair way, we evaluate their performances using total variation and cross
entropy of the solution against the true potential functions versus the number of observations visited. In order to evaluate
the total variation and the cross entropy between the true posterior and the estimated one, we use both kernel density
estimation and Gaussian estimation to approximate the posterior density and report the better one for Gibbs sampling and
stochastic Langevin dynamics. The kernel bandwidth is set tblbémes the median of pairwise distances between data
points (median trick).

In Figure 1(3)(4), the one-pass SMC performs similar to our algorithm at beginning. However, it cannot utilize the dataset
effectively, therefore, it stopped with high error. It should be noticed that the one-pass SMC starts with more particles
while our algorithm only requires the same number of particles at bnal stage. The reason that Gibbs sampling and the
stochastic gradient Langevin dynamics perform worse is that they stuck in one mode. It is reasonable that Gibbs sampling
bts the single mode better than stochastic gradient Langevin dynamics since it generates one new sample by scanning the
whole dataset. For the stochastic nonparametric variational inference, it could locate both modes, however, it optimizes a
non-convex objective which makes its variance much larger than our algorithm. The stochastic variational inference fails
because of the highly dependent variables and multimodality in posterior.

H.2 Bayesian Logistic Regression

The likelihood function is 1

p(y|wi) - 1+ exp(—yw) .13)
with w as the latent variables. We use Gaussian priotifarith identity covariance matrix.
We brst reduce the dimensiond0 by PCA. The batch size is set to h80and the step size is set to I%%%Lf We stop

the stochastic algorithms after they pass through the whole d&aisees. The burn-in period for stochastic Langevin
dynamic is set to b&00Q We rerun the experimeni®times.

Although the stochastic variant of nhonparametric variational inference performs comparable to our algorithm with fewer
components, its speed is bottleneck when applied to large-scale problems. The gain from using stochastic gradient is
dragged down by using L-BFGS to optimize the second-order approximation of the evidence lower bound.

H.3 Sparse Gaussian Processes

H.3.1 1D Synthetic Dataset

We test the proposed algorithm on 1D synthetic data. The data are generated by
y = 322 + (sin(3 .53rz) + cos(7.7nz)) exp(—1.6x|x|) + 0 .1e

wherezx € [-0.5,0.5] ande ~ N(0, 1). The dataset contairi2)48observations which is small enough to run the exact GP
regression. We use Gaussian RBF kernel in Gaussian processes and sparse Gaussian processes. Since we are compari
different inference algorithms on the same model, we use the same hyperparameters for all the inference algorithms. We
set the kernel bandwidth to be 0.1 times the median of pairwise distances between data points (median trick), and
£%1 = 0.001 We set the stepsize in the form eﬁpp for both PMD and SVI and the batch size to h28 Figure. 4

illustrates the evolving of the posterior prowded by PMD withparticles and.28inducing variables when the algorithms

visit more and more data. To illustrate the convergence of the posterior provided by PMD, we initialize thén PMD.

Later, we will see we could make the samples in PMD more efpbcient.



Bo Dai, Niao He, Hanjun Dai, Le Song

ns 5
05 105 05 05

(1) Iteration O (2) Iteration 1 (3) Itération 5 (4) Iteration 10

L2 Distance

i
S}

10°

) 1

ns ns 2
05 .5 [ 05 10

0 . 05 10
(7) Iteration 80 number of data points
(8)Posterior Convergence

(5) Iteration 20 (6) Iteration 50

Figure 4: Visualization of posterior prediction distribution. The red curve is the mean function and the pale red region is
the variance of the posterior. The cyan curve the ground truth. The last one shows convergence of the posterior mean to
the ground truth.

H.3.2 Music Year Prediction

We randomly selected63 715songs to train the model and test®ri63songs. As in (Bertin-Mahieux et al., 2011), the

year values are linearly mapped if@ 1]. The data is standardized before regression. Gaussian RBF kernel is used in the
model. Since we are comparing the inference algorithms, for fairness, we bxed the model parameters for all the inference
algorithmsj.e., the kernel bandwidth is set to be the median of pairwise distances between data points and the observations
precisions®! = 0.01. We set the number of inducing inputs to »€ and batch size to b&12 The stepsize for both

PMD and SVI are in the form of—# To demonstrate the advantages of PMD comparing to SMC, we initialize PMD
with prior while SMC with the SoD solutlon We rerun the experimeligimes. We use botti6 particles in SMC and

PMD. We stop the stochastic algorithms after they pass through the whole datiases.

H.4 Latent Dirichlet Allocation
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Figure 5: Several topics learnd by LDA with PMD



Provable Bayesian Inference via Particle Mirror Descent

We bx the hyper-parameter= 0.1, 8 = 0.01, and K = 100. The batchsize is set to 490 We use stepsizgoj%g for

PMD, stochastic variational inference and stochastic Riemannian Langevin dynamic. For each algorithm a grid-search was
run on step-size parameters and the best performance is reported. We stop the stochastic algorithms after they pass throug!
the whole datasdi times.

The log-perplexity was estimated using the methods discussed in (Patterson and Teh, 2013) on a separate holdout set with
1000documents. For a documeny in holdout set, the perplexity is computed by

7
N2 logp(zan | X, o, B)
Ny
) *
p(zan | X,0,8) = Eiy e O3 #.xg - (19)

perp(zq| X, o, B) = exp

where

We separate the documents in testing set into two non-overlapped #aH&""and z§*@1a%" We brst evaluate they

based on the§>'™"*" For different inference methods, we use the corresponding strategies in learning algorithm to obtain
the distribution offy based onz&simation We evaluatep(zan | X, o, 8) on z§vauationwith the obtained distribution ofy.
Specibcally, ) .

luati -
p(xg\r/]a ual IOqX, a, /6) - ]E&|X,) ]E! gvaluatiorl&’ax gstimation 921 # - Xdn

For PMD, SMC and stochastic Langevin dynamics,

( N gstimaton §( zestimation— 1
(Zgnk =)+ a

Ngsumauon_,_ KOé

For stochastic variational inferenegfy) is updated as in the learning procedure.

ggxaluation: n=1

We illustrate several topics learned by LDA with our algorithm in Figure.5.
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