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Appendix

A Strong convexity

As we discussed, the posterior from BayesÕs rule could be viewed as the optimal of an optimization problem in Eq (1). We
will show that the objective function is strongly convex w.r.tKL-divergence.

Proof for Lemma 1. The lemma directly results from the generalized Pythagaras theorem for Bregman divergence.
Particularly, forKL-divergence, we have

KL(q1||q) = KL(q1||q2) + KL(q2||q) � hq1 � q2,r�(q) �r�(q2)i2

where�(q) is the entropy ofq.

Notice thatL(q) = KL(q||q! ) � logZ, whereq! = p( ! )! N
i p(x i |! )
Z , Z =

!
p(✓)! N

i p(xi |✓), we have

KL(q1||q! ) �KL(q2||q! ) � hq1 � q2,r�(q2) �r�(q! )i2 = KL(q1||q2)

) KL(q1||q! ) �KL(q2||q! ) � hq1 � q2, logq2 � logq! i2 = KL(q1||q2)

) KL(q1||q! ) �KL(q2||q! ) � hq1 � q2, logq2 � log
"
p(✓)! N

i p(xi |✓)
#
i2 + hq1 � q2, logZi2$ %& '

0

= KL(q1||q2)

) L(q1) � L(q2) � hq1 � q2,rL(q2)i2 = KL(q1||q2)

!

B Finite Convergence of Stochastic Mirror Descent with Inexact Prox-Mapping in Density
Space

Since the prox-mapping of stochastic mirror descent is intractable when directly being applied to the optimization prob-
lem (1), we propose the✏-inexact prox-mappingwithin the stochastic mirror descent framework in Section 3. Instead of
solving the prox-mapping exactly, we approximate the solution with✏ error. In this section, we will show as long as the
approximation error is tolerate, the stochastic mirror descent algorithm still converges.

Theorem 2 Denoteq! = argmin q"P L(q), the stochastic mirror descent with inexact prox-mapping afterT steps gives

(a) the recurrence:8t " T , E[KL(q! ||÷qt +1 )] " ✏t + (1 � �t )E[KL(q! ||÷qt )] + " 2
t E#gt #2

!
2

(b) the sub-optimality: E[KL(øqT ||q! )] " E[L(øqT ) � L(q! )] " M2· 12
! T

t =1 " 2
t +

! T
t =1 #t + D 1! T

t =1 " t
where øqT =

( T
t =1 �t ÷qt /

( T
t =1 �t andD1 = KL(q! ||÷q1) andM2 := max 1! t ! T Ekgt k2

$ .

Remark. Based on (Nemirovski et al., 2009), one can immediately see that, to guarantee the usual rate of convergence, the
error✏t can be of orderO(�2

t ). The Þrst recurrence implies an overallO(1/T ) rate of convergence for theKL-divergence
when the stepsize�t is as small asO(1/t) and error✏t is as small asO(1/t2). The second result implies an overall
O(1/

p
T ) rate of convergence for objective function when larger stepsize�t = O(1/

p
T ) and larger error✏t = O(1/t)

are adopted.

Proof for Theorem 2.(a) By Þrst-order optimality condition,÷qt +1 2 P #t
÷qt

(�t gt ) is equivalent as

h�t gt + log(÷qt +1 ) � log(÷qt ), ÷qt +1 � qiL 2 " ✏t , 8q 2 P,

which implies that

h�t gt , ÷qt +1 � qi2 " hlog(÷qt ) � log(÷qt +1 ), ÷qt +1 � qi2 + ✏t = KL(q||÷qt ) �KL(q||÷qt +1 ) �KL(÷qt +1 ||÷qt ) + ✏t

Hence,

h�t gt , ÷qt � qi2 " KL(q||÷qt ) �KL(q||÷qt +1 ) �KL(÷qt +1 ||÷qt ) + h�t gt , ÷qt � ÷qt +1 i2 + ✏t . (8)

By YoungÕs inequality, we have

h�t gt , ÷qt � ÷qt +1 i2 "
1
2
k÷qt � ÷qt +1 k2

1 +
�2

t

2
kgt k2

$ . (9)
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Also, from PinskerÕs inequality, we have

KL(÷qt +1 ||÷qt ) #
1
2
k÷qt � ÷qt +1 k2

1. (10)

Therefore, combining (8), (9), and (10), we have8q 2 P

h�t gt , ÷qt � qi2 " ✏t + KL(q||÷qt ) �KL(q||÷qt +1 ) +
�2

t

2
kgt k2

$

Pluggingq! and taking expectation on both sides, the LHS becomes

Ex

)
h÷qt � q! , �t gt i

*
= Ex

)
h÷qt � q! , �tE[gt ]i

+
+
+
+x[t %1]

*
= Ex

)
h÷qt � q! , �trL(÷qt )i

*
,

Therefore, we have

Ex

)
h÷qt � q! , �trL(÷qt )i

*
" ✏t + Ex

,
KL(q! ||÷qt )

-
� Ex

,
KL(q! ||÷qt +1 )

-
+

�2
t

2
Ex kgt k2

$ (11)

Because the objective function is1-strongly convex w.r.t.KL-divergence,

hq&� q,rL(q&) �rL(q)i = KL(q&||q) + KL(q||q&),

and the optimality condition, we have

h÷qt � q! ,rL(÷qt )i # KL(q! ||÷qt )

we obtain the recursion with inexact prox-mapping,

Ex [KL(q! ||÷qt +1 )] " ✏t + (1 � �t )Ex [KL(q! ||÷qt )] +
�2

t

2
M2

(b) Summing overt = 1 , . . . , T of equation (11), we get
T.

t =1

Ex [h÷qt � q! , �trL(÷qt )i] "
T.

t =1

✏t + KL(q! ||÷q1) +
T.

t =1

�2
t

2
M2

By convexity and optimality condition, this leads to
/

T.

t =1

�t

0

Ex [L(øqT ) � L(q! )] " Ex

1
T.

t =1

�t (L(÷qt ) � L(q! ))

2

"
T.

t =1

✏t + KL(q! ||÷q1) +
T.

t =1

�2
t

2
M2

Furthermore, combined with the1-strongly-convexity, it immediately follows that

Ex [KL(øqT ||q! )] " Ex [L(øqT ) � L(q! )] "
1
2

( T
t =1 �2

t M2 +
( T

t =1 ✏t + D1
( T

t =1 �t

.

!

C Convergence Analysis for Integral Approximation

In this section, we provide the details of the convergence analysis of the proposed algorithm in terms of integral approxi-
mation w.r.t. the true posterior using a good initialization.

Assume that the priorp(✓) has support" cover true posterior distributionq! (✓), then, we could represent

q! (✓) 2 F =
3
q(✓) = ↵(✓)p(✓),

4
↵(✓)p(✓)d✓ = 1 , 0 " ↵(✓) " C

5
.

Therefore, one can show

Lemma 7 8q 2 F , let {✓i }m
i =1 is i.i.d. sampled fromp(✓), we could constructöq(✓) =

( m
i =1

$ ( ! i )%( ! i )! m
i $ ( ! i ) , such that8f (✓) :

Rd ! R bounded and integrable,

E
) +
+
+
+

4
öq(✓)f (✓)d✓ �

4
q(✓)f (✓)d✓

+
+
+
+

*
"

2
p
Ckfk$p
m

.

Proof



Bo Dai, Niao He, Hanjun Dai, Le Song

Givenq(✓), we samplei.i.d.{✓i }m
i =1 from p(✓), and construct a function

öq(✓) =
1
m

m.

i =1

↵(✓i )�(✓i , ✓).

It is obviously that

E! [öq(✓)] = E!

)
1
m

m.

i =1

↵(✓i )�(✓i , ✓)
*

=
1
m

m.

i =1

E!

)
↵(✓i )�(✓i , ✓)

*
= q(✓)

and

E!

) 4
öq(✓)f (✓)d✓

*
= E!

)
1
m

m.

i =1

↵(✓i )f (✓i )
*

=
1
m

m.

i =1

E!

)
↵(✓i )f (✓i )

*
=

4
q(✓)f (✓)d✓

Then,

E!

) +
+
+
+

4
öq(✓)f (✓)d✓ �

4
q(✓)f (✓)d✓

+
+
+
+

2*
= E!

) +
+
+
+

4
öq(✓)f (✓)d✓ � E!

) 4
öq(✓)f (✓)d✓

*+
+
+
+

2*

=
1
m

6
E! k↵(✓i )f (✓i )k2

2 � kE! [↵(✓i )f (✓i )]k2
2

7
"

1
m
E! k↵(✓i )f (✓i )k2

2 =
1
m

4
↵(✓)2f (✓)2⇡(✓)d✓

=
1
m

4
↵(✓)f (✓)2q(✓)d✓ "

C

m
kf (✓)k2

$

4
↵(✓)q(✓)d✓ "

C

m
kf (✓)k2

$ k↵(✓)k$

By JensenÕs inequality, we have

E!

) +
+
+
+

4
öq(✓)f (✓)d✓ �

4
q(✓)f (✓)d✓

+
+
+
+

*
"

8

E!

) +
+
+
+

4
öq(✓)f (✓)d✓ �

4
q(✓)f (✓)d✓

+
+
+
+

2*
"

p
Ckf (✓)k$p

m

Apply the above conclusion tof (✓) = 1 , we have

E
) +
+
+
+

1
m

m.

i

↵i � 1

+
+
+
+

*
"

p
Cp
m

Let ÷q(✓) =
! m

i $ ( ! i )%( ! i ,·)! m
i $ ( ! i ) , then

( m
i

$ i! m
i $ i

= 1 , and

E!

) +
+
+
+

4
÷q(✓)f (✓)d✓ �

4
öq(✓)f (✓)d✓

+
+
+
+

*
= E!

) +
+
+
+

1
( m

i ↵(✓i )

m.

i

↵(✓i )f (✓i ) �
1
m

m.

i

↵(✓i )f (✓i )

+
+
+
+

*

= E!

) +
+
+
+1�

( m
i ↵(✓i )
m

+
+
+
+

9
9
9
9

1
( m

i ↵(✓i )

m.

i

↵(✓i )f (✓i )

9
9
9
9

*

= E!

) +
+
+
+1�

( m
i ↵(✓i )
m

+
+
+
+

1
( m

i ↵(✓i )

m.

i

↵(✓i )|f (✓i )|
*

" E
) +
+
+
+1�

( m
i ↵i

m
kf (✓)k$

+
+
+
+

*
"

p
Ckf (✓)k$p

m

Then, we have achieve our conclusion that

E!

) +
+
+
+

4
÷q(✓)f (✓)d✓ �

4
q(✓)f (✓)d✓

+
+
+
+

*

" E!

) +
+
+
+

4
öq(✓)f (✓)d✓ �

4
q(✓)f (✓)d✓

+
+
+
+

*
+ E!

) +
+
+
+

4
÷q(✓)f (✓)d✓ �

4
öq(✓)f (✓)d✓

+
+
+
+

*

"
2
p
Ckf (✓)k$p

m

With the knowledge ofp(✓) andq(✓), we setqt (✓) = ↵t (✓)p(✓), the PMD algorithm will reduce to adjust↵(✓i ) for samples
{✓i }m

i =1 ⇠ ⇡(✓) according to the stochastic gradient. Plug the gradient formula into the exact update rule, we have

qt +1 (✓) =
qt (✓) exp(��t gt (✓))

Z
=

↵t (✓) exp(��t gt (✓))p(✓)
Z

= ↵t +1 (✓)p(✓)
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where↵t +1 (✓) = $ t ( ! ) exp( %" t gt ( ! ))
Z . SinceZ is constant, ignoring it will not effect the multiplicative update.

Given the fact that the objective function,L(q), is 1-strongly convexw.r.t. theKL-divergence, we can immediately arrive
at the following convergence results as appeared in Nemirovski et al. (2009), if we are able to compute the prox-mapping
in Eq.(2) exactly.

Lemma 8 One prox-mapping step Eq.(2) reduces the error by

E[KL(q! ||qt +1 )] " (1 � �t )E[KL(q! ||qt )] +
�2

t Ekgt k2
$

2
.

With stepsize�t = &
t , it implies

E[KL(q! ||qT )] " max
3
KL(q! ||q1),

⌘2Ekgk2
$

2⌘ � 1

5
1
T

Proof We could obtain the recursion directly from Theorem 2 by setting✏ = 0 , which means solving the prox-mapping
exactly, and the rate of convergence rate could be obtained by solving the recursion as stated in (Nemirovski et al., 2009).

Lemma 9 Let qt is the exact solution of the prox-mapping att-step, then8f (✓) : Rd ! R, which is bounded and
integrable, we have

E
) +
+
+
+

4
qt (✓)f (✓)d✓ �

4
q(✓)f (✓)d✓

+
+
+
+

*
" max

3 :
KL(q! ||q1),

⌘Ekgk$p
2⌘ � 1

5
kfk$p

t
.

Proof

E
) +
+
+
+

4
qt (✓)f (✓)d✓ �

4
q! (✓)f (✓)d✓

+
+
+
+

*
= Ekhqt (✓) � q! (✓) , f (✓)iL 2k2

" E[kqt (✓) � q! (✓)k1kfk$ ] " kfk$ E[kqt (✓) � q! (✓)k1] " kfk$ E
) ;

1
2
KL(q! ||qt )

*

" max
3 :

KL(q! ||q1),
⌘Ekgk$p

2⌘ � 1

5
kfk$p

t

The second last inequality comes from PinskerÕs inequality.

Theorem 5 Assume the particle proposal priorp(✓) has the same support as the true posteriorq! (✓), i.e., 0 "
q! (✓)/p(✓) " C. With further condition about the modelkp(x|✓)N k$ " ⇢, 8x, then8f (✓) : Rd ! R bounded and
integrable, with stepsize�t = &

t , the PMD algorithm returnm weighted particles afterT iteration such that

E
) +
+
+
+

4
÷qt (✓)f (✓)d✓ �

4
q! (✓)f (✓)d✓

+
+
+
+

*

"
2
:

max{C, ⇢exp(kg(✓)k$ )}kfk$p
m

+ max
3 :

KL(q! ||⇡),
⌘Ekgk$p

2⌘ � 1

5
kfk$p

T
.

Proof for Theorem 5.

We Þrst decompose the error into optimization error and Þnite approximation error.

E
) +
+
+
+

4
÷qt (✓)f (✓)d✓ �

4
q! (✓)f (✓)d✓

+
+
+
+

*

" E
) +
+
+
+

4
÷qt (✓)f (✓)d✓ �

4
qt (✓)f (✓)d✓

+
+
+
+

*

$ %& '
Þnite approximation error#1

+ E
) +
+
+
+

4
qt (✓)f (✓)d✓ �

4
q! (✓)f (✓)d✓

+
+
+
+

*

$ %& '
optimization error#2

For the optimization error, by lemma 9, we have

✏2 " max
3 :

KL(q! ||q1),
⌘Ekgk$p

2⌘ � 1

5
kfk$p

t
.
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Recall that

qt (✓) =
qt %1(✓) exp(��t %1gt %1(✓))

Z

=
↵t %1(✓)p(✓)(↵%" t " 1

t %1 (✓)p(x|✓)N" t " 1 )
Z

= ↵
1%" t " 1

t %1 (✓)p(✓)
p(x|✓)N" t " 1

Z

which results the update↵t (✓) =
$

1" ! t " 1
t " 1 ( ! )p(x |! )N! t " 1

Z . Notice Z =
!
qt (✓) exp(��t gt (✓))d✓, we have

exp(��t kgt (✓)k$ ) " Z " exp(�t kgt (✓)k$ ). By induction, it can be show thatk↵t k$ " max{C, ⇢exp(kgt (✓)k$ )} "
max{C, ⇢exp(kg(✓)k$ )}. Therefore, by lemma 7, we have

✏1 "
2
:

max{C, ⇢exp(kg(✓)k$ )}kfk$p
m

.

Combine✏1 and✏2, we achieve the conclusion. !

Remark: Simply induction without the assumption from the update of↵t (✓) will result the upper bound of sequence
k↵t k$ growing. The growth of sequencek↵t k$ is also observed in the proof (Crisan and Doucet, 2002) for sequential
Monte Carlo on dynamic models. To achieve the uniform convergence rate for SMC of inference on dynamic system,
Crisan and Doucet (2002); Gland and Oudjane (2004) require the models should satisfy i),✏⌫(✓i ) " p(xi |✓i )p(✓i |✓i %1) "
✏%1⌫(✓i ), 8x where⌫(✓) is a positive measure, and ii), sup" p(x |! )

inf µ #P ' µ ( ! )p( ·|! )p(x |·) ( " ⇢. Such rate is only for SMC on dynamic
system. For static model, the transition distribution is unknown, and therefore, no guarantee is provided yet. With much
simpler and more generalized condition on the model,i.e., kp(x|✓)N k$ " ⇢, we also achieve the uniform convergence
rate for static model. There are plenties of models satisfying such condition. We list several such models below.

1. logistic regression,p(y|x,w) = 1
1+exp( %yw $ x ) , andkp(y|x,w)k$ " 1.

2. probit regression,p(y = 1 |x,w) = #( w) x) where#( ·) is the cumulative distribution function of normal distribution.
kp(y|x,w)k$ " 1.

3. multi-category logistic regression,p(y = k|x,W ) = exp( w $
k x )

! K
i =1 exp( w $

k x )
, andkp(y|x,W )k$ " 1.

4. latent Dirichlet allocation,

p(xd|✓d, #) = Ezd * p(zd |! d ) [p(xd|zd, #)]

p(xd|zd, #) =
N d<

n =1

W<

w=1

K<

k=1

# zdnk x dnw
kw

p(zd|✓d) =
N d<

n =1

K<

k=1

✓zdnk
dk

andkp(xd|✓d, #) k$ " maxzd kp(xd|zd, #) k$ " 1.

5. linear regression,p(y|w, x) = 1
'

+
2(

exp(�(y � w) x)2/2�2), andkp(y|w, x)k$ " 1
'

+
2(

.

6. Gaussian model and PCA,p(x|µ, $) = (2 ⇡ det($)) % 1
d exp

6
� 1

2 (x � µ)) $( x � µ)
7

, and kp(x|µ, $) k$ "

(2⇡ det($)) % 1
d .

D Error Bound of Weighted Kernel Density Estimator

Before we start to prove the Þnite convergence in general case, we need to characterize the error induced by weighted kernel
density estimator. In this section, we analyze the error in terms of bothL1 andL2 norm, which are used for convergence
analysis measured byKL-divergence in Appendix E .
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D.1 L1-Error Bound of Weighted Kernel Density Estimator

We approximate the density functionq(✓) using the weighted kernel density estimator÷q(✓) and would like to bound the
L1 error, i.e.k÷q(✓) � q(✓)k1 both in expectation and with high probability. We consider an unnormalized kernel density
estimator as the intermediate quantity

%m (✓) =
1
m

m.

i =1

!(✓i )Kh (✓, ✓i )

Note thatE[%m (✓)] = E! i [!(✓i )Kh (✓, ✓i )] = q ?Kh . Then the error can be decomposed into three terms as

✏ := E k÷q(✓) � q(✓)k1 " E k÷q(✓) � %m (✓)k1$ %& '
normalization error

+ E k%m (✓) � E %m (✓)k1$ %& '
sampling error (variance)

+ kE %m (✓) � q(✓)k1$ %& '
approximation error (bias)

We now present the proof for each of these error bounds.

To formally show that, we begin by giving the deÞnition of a special class of kernels and H¬older classes of densities that
we consider.

Definition 10 ((�;µ, ⌫, �)-valid density kernel) We say a kernel functionK(·) is a (�;µ, ⌫)-valid density kernel, if
K(✓, ✓) = K(✓ � ✓) is a bounded kernel such that

(i)
!
K(z)dz = 1

(ii)
!
|K(z)|r dz " 1 for anyr # 1, particularly,

!
K(z)2 dz " µ2 for someµ > 0.

(iii)
!
zsK(z)dz = 0 , for anys = ( s1, . . . , sd) 2 Nd such that1 " |s| " b�c. In addition,

!
kzk) |K(z)|dz " ⌫ for

some⌫ > 0.

For simplicity, we sometimes callK(·) as a�-valid density kernel if the constantsµ and⌫ are not speciÞcally given. Notice
that all spherically symmetric probability density and product kernels based on symmetric univariate densities satisfy the
conditions. For instance, the kernelK(✓) = (2 ⇡)%d/ 2 exp(�k✓k2

/2) satisÞes the conditions with� = 1 , and it is used
through out our experiments. Furthermore, we will focus on a class of smooth densities

Definition 11 ((�;L)-Hölder density function) We say a density functionq(·) is a(�;L)-H¬older density function if func-
tion q(·) is b�c-times continuously differentiable on its support" and satisÞes

(i) for anyz0, there existsL(z0) > 0 such that

|q(z) � q( ) )
z0

(z)| " L(z0)kz � z0k) , 8z 2 "

whereq( ) )
z0 is theb�c-order Taylor approximation, i.e.

q( ) )
z0

(z) :=
.

s=( s1,...,s d ): |s|! , ) -

(z � z0)s

s!
Dsq(z0);

(ii) in addition, the integral
!
L(z)dz " L.

f 2 C )
L(") meansf is (�;L)-H¬older density function.

Then given the above setting for the kernel function and the smooth densities, we can characterize the error of the weighted
kernel density estimator as follows.

D.1.1 KDE error due to bias

Lemma 12 (Bias) If q(·) 2 C )
L(") andK is a (�;µ, ⌫)-valid density kernel, then

kq(✓) � E[%m (✓)]k1 " ⌫Lh) .
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Proof The proof of this lemma follows directly from Chapter 4.3 in (Wand and Jones, 1995).

|E[%m (✓)] � q(✓)| = |q ?Kh (✓) � q(✓)|

=
4

1
hd K(

z � ✓

h
)q(z)dz � q(✓)

=
4

1
hd K(

z

h
)[q(✓ + z) � q(✓)]dz

=
4

K(z)[q(✓ + hz) � q(✓)]dz

"

+
+
+
+

4
K(z)[q(✓ + hz) � q

( ) )
! (✓ + hz)]dz

+
+
+
++

4 +
+
+K(z)[q( ) )

! (✓ + hz) � q(✓)]dz
+
+
+

" L(✓)
4

|K(z)khzk) dz +

+
+
+
+

4
K(z)[q( ) )

! (✓ + hz) � q(✓)]dz

+
+
+
+

Note thatq( ) )
! (✓ + hz) � q(✓) is a polynomial of degree at mostb�c with no constant, by the deÞnition of(�;µ, ⌫)-valid

density kernel, the second term is zero. Hence, we have|E[%m (✓)] � q(✓)| " ⌫L(✓)h) , and therefore

kE[%m (✓)] � q(✓)k1 " ⌫h)
4

L(✓)d✓ " ⌫Lh) .

!

D.1.2 KDE error due to variance

The variance term can be bounded using similar techniques as in (Devroye and Gy¬orÞ, 1985).

Lemma 13 (Variance) Assume!
p
p 2 L1 with bounded support, then

E k%m (✓) � E[%m (✓)]k1 "
µ

p
mh

d
2

4
!
p
p d✓ + o((mhd)% 1

2 ).

Proof For any✓, we have

�2(✓) : = E
,
(%m (✓) � E[%m (✓)]) 2-

=
1
m

m.

i =1

E[!2(✓i )K2
h (✓, ✓i )] � (q ?Kh )2 "

(!2q) ?K2
h

m

Denoteµ(K) :=
= !

K(✓)2 d✓ and kernelK+ (✓) = K 2( ! )
µ (K )2 , thenµ(K) " µ,

!
K+ d✓ = 1 and

K+
h (✓) =

1
hd K

+ (✓/d) =
1
hd

K(✓/h)K(✓/h)
µ2(K)

=
hd

µ2(K)
K2

h (✓)

Hence,

�2(✓) "
µ2(K)(!2p) ?K+

h

mhd "
µ2[(!2p) ?K+

h � !2p]
mhd +

µ2(!2p)
mhd .

Note that�(✓) =
:

E [(%m (✓) � E[%m (✓)]) 2] # E|%m (✓) � E[%m (✓)]|, hence

E k%m (✓) � E[%m (✓)]k1

=
4

E|%m (✓) � E[%m (✓)]| d✓ "
4

�(✓) d✓

"
4

8
µ2(!2p) ?K+

h � !2p]
mhd +

;
µ2(!2p)
mhd d✓

"
µp

mhd/ 2

) 4 :
!2p d✓ +

4 =
(!2p) ?K+

h � !2p d✓

*

"
µp

mhd/ 2

) 4
!
p
p d✓ +

:
|" | ·

8 4 +
+(!2p) ?K+

h � !2p
+
+d✓

*

From Theorem 2.1 in (Devroye and Gy¬orÞ, 1985), we have
! +

+(!2p) ?K+
h � !2p

+
+d✓ = o(1). Therefore, we conclude
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that
E k%m (✓) � E[%m (✓)]k1 "

µp
mhd/ 2

k!ppk1 + o((mhd)% 1
2 ).

!

D.1.3 KDE error due to normalization

The normalization error term can be easily derived based on the variance.

Lemma 14 (Normalization error) Assume!
p
p 2 L2

E k÷q(✓) � %m (✓)k1 "
1p
m

6 4
!2(✓)p(✓) d✓

7 1/ 2

.

Proof Denote!i := !(✓i ), thenE[!i ] =
!
!(✓)p(✓) d✓ = 1 andE[!2

i ] =
!
!2(✓)p(✓) d✓, for anyi = 1 , . . . ,m. Hence,

E| 1
m

m.

i =1

!i � 1|2 =
1
m

4
!2(✓)p(✓) d✓.

Recall that÷q(✓) = 1! m
i =1 * i

( m
i =1 !i Kh (✓, ✓i ) and%m (✓) = 1

m

( m
i =1 !i Kh (✓, ✓i ).

E k÷q(✓) � %m (✓)k1

" E
9
9
9
9
9

1
( m

i =1 !i

m.

i =1

!i Kh (✓, ✓i ) �
1
m

m.

i =1

!i Kh (✓, ✓i )

9
9
9
9
9

1

" E
9
9
9
9
9

+
+
+
+1�

( m
i =1 !i

m

+
+
+
+

1
( m

i =1 !i

m.

i =1

!i Kh (✓, ✓i )

9
9
9
9
9

1

" E
+
+
+
+1�

( m
i =1 !i

m

+
+
+
+· kKh (✓)k1

SincekKhk1 =
!

1
hd K(✓/h) d✓ =

!
K(✓) d✓ = 1 , we have

E k÷q(✓) � %m (✓)k1 "
1p
m

8 4
!2(✓)p(✓) d✓ =

1p
m
kwppk2

!

D.1.4 KDE error in expectation and with high probability

Based on the above there lemmas, namely, Lemma 12 - 14, we can immediately arrive at the bound of theL1 error in
expectation as stated in Theorem 4. We now provide the proof for the high probability bound as stated below.

Corollary 15 (Overall error in high probability) Besides the above assumption, let us also assume that!(✓) is bounded,
i.e. there exists0 < B1 " B2 < 1 such thatB1 " !(✓) " B2, 8✓. Then, with probability at least1� �,

k÷q(✓) � q(✓)k1 " ⌫Lh) +
µp

mhd/ 2
k!ppk1 +

1p
m
k!ppk2 +

1p
m

:
8B1B2 log(1/�) + o((mhd)% 1

2 ).

Proof We use McDiarmidÕs inequality to show that the functionf (%) = k÷q(✓) � q(✓)k1, deÞned on the ran-
dom data% = (✓1, . . . , ✓m ), is concentrated on the mean. Let÷% = (✓1, . . . , ÷✓j , . . . , ✓m ). We denote! =
(!(✓1), . . . ,!(✓m )) and ÷! = ( !(✓1), . . . ,!( ÷✓j ), . . . ,!(✓m )) . Denotek = ( Kh (✓, ✓1), . . . ,Kh (✓, ✓m )) and ÷k =
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(Kh (✓, ✓1), . . . ,Kh (✓, ✓&
j ), . . . ,Kh (✓, ✓m )) . We Þrst show that|f (%) � f (%&)| is bounded.

|f (%) � f (%&)

=
+
+k÷q" (✓) � q(✓)k1 � k÷q÷" (✓) � q(✓)k1

+
+

" k÷q" (✓) � ÷q÷" (✓)k1

=

9
9
9
9
9

( m
i =1 !i ki( m

i =1 !i
�

( m
i =1 ÷!i

÷ki( m
i =1 ÷!i

9
9
9
9
9

1

"

9
9
9
9
9

(÷!j � !j ) · (
( m

i =1 !i ki ) � (
( m

i =1 !i )(÷!i
÷ki � !j kj )

(
( m

i =1 !i ) · (
( m

i =1 ÷!i )

9
9
9
9
9

1

"

9
9
9
9

÷!j � !j

(
( m

i =1 ÷!i )

9
9
9
9

$

+

9
9
9
9
9

÷!i
÷ki � !j kj( m

i =1 ÷!i

9
9
9
9
9

1

"
2B1B2

m
+

2B1B2

m
"

4B1B2

m
Invoking the McDiamidÕs inequality, we have

Pr(f (%) � E" [f (%)] # ✏) " exp
3
� m✏2

8B2
1B

2
2

5
, 8✏ > 0

which implies the corollary.

!

D.2 L2-Error Bound of Weighted Kernel Density Estimator

Following same argument yields also similarL2-error bound of the weighted kernel density estimator, i.e.k÷q(✓) � q(✓)k2.
For completeness and also for future reference, we provide the exact statement of the bound below in line with Theorem 4
and Corollary 15.

Theorem 16 (L2-error in expectation) Let q = !p 2 C )
L(") andK be a(�;µ, ⌫)-valid density kernel. Assume that

!2p 2 L2 and has bounded support. Then

E k÷q(✓) � q(✓)k2
2 " 2(⌫h) L)2 +

8µ2

mhd k!
p
pk2

2 + o((mhd)%1).

Proof for Theorem 16.The squareL2-error can also be decomposed into three terms.

E k÷q(✓) � q(✓)k2
2 " 4E k÷q(✓) � %m (✓)k2$ %& '

normalization error

+4 E k%m (✓) � E %m (✓)k2
2$ %& '

sampling error (variance)

+2 kE %m (✓) � q(✓)k2
2$ %& '

approximation error (bias)

This uses the inequality(a+ b+ c)2 " 2a2+4 b2+4 c2 for anya, b, c. From Lemma 12, we already have|E[%m (✓)]�q(✓)| "
L(✓)

!
|K(z)khzk) dz, 8✓. Hence,

kE[%m (✓)] � q(✓)k2
2 " ⌫2h2)

4
L2(✓)d✓ " (⌫h) L)2. (12)

From proof for Lemma 13, we have

E k%m (✓) � E[%m (✓)]k2
2 =

!
E|%m (✓) � E[%m (✓)]|2 d✓ "

!
�2(✓) d✓ (13)

"
! µ2[( * 2p)+K +

h %* 2p]
mh d + µ2( * 2p)

mh d d✓ " µ2

mh d k!
p
pk2

2 + o((mhd)%1) (14)

In addition, we have for the normalization error term,

E k÷q(✓) � %m (✓)k2
2 " E

9
9
9
>

1�
! m

i =1 * i

m

? ! m
i =1 * i K h ( !,! i )! m

i =1 * i

9
9
9

2

2
(15)

" E
+
+
+1�

! m
i =1 * i

m

+
+
+
2
· kKhk2

2 " µ2

mh d k!
p
pk2

2

Combining equation (12) , (13) and (15), it follows that

E k÷q(✓) � q(✓)k2
2 " 2(⌫h) L)2 +

8µ2

mhd k!
p
pk2

2 + o((mhd)%1).
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!

Corollary 17 (L2-error in high probability) Besides the above assumption, let us also assume that!(✓) is bounded, i.e.
there exists0 < B1 " B2 < 1 such thatB1 " !(✓) " B2, 8✓. Then, with probability at least1� �,

k÷q(✓) � q(✓)k2
2 " 2(⌫h) L)2 +

8µ2

mhd k!
p
pk2

2 + o((mhd)%1) +
16B1B2µ

2

m

:
log(1/�).

Proof for Theorem 17.Use McDiarmidÕs inequality similar as proof for Corollary 15. !

E Convergence Analysis for Density Approximation

In this section, we consider the rate of convergence for the entire density measured byKL-divergence. We start with the
following lemma that show the renormalization does not effect the optimization in the sense of optimal, and we show the
importance weight!t (✓) = exp( %" t gt ( ! ))

Z at each step are bounded under proper assumptions. Moreover, the error of the
prox-mapping at each step incurred by the weighted density kernel density estimation is bounded.

Lemma 18 Let ⇣ =
!

\# ÷qt d✓, @qt = ÷qt
1%, is a valid density on" , then,÷q+

t = @q+
t , where÷q+

t := argmin q"P (#) Ft (q; ÷qt ),

@q+
t := argmin q"P (#) Ft (q; @qt ), andFt (q; q&) := hq, �t giL 2

+ KL(qkq&).

Proof for Lemma 18.The minima of prox-mapping is not effected by the renormalization. Indeed, such fact can be veriÞed
by comparing to÷q+

t = argmin Ft (q; ÷qt ) and@q+
t = argmin Ft (q; @qt ), respectively.

@q+
t =

( 1
1%, ÷qt )1%" t p(✓)"

t p(xt |✓)N" t

!
( 1

1%, ÷qt )1%" t p(✓)"
t p(xt |✓)N" t d✓

=
÷q1%" t
t p(✓)"

t p(xt |✓)N" t

!
÷q1%" t
t p(✓)"

t p(xt |✓)N" t d✓
= ÷q+

t

!

Due to the fact, we use÷q+
t following for consistency. Although the algorithm updates based on÷qt , it is implicitly doing

renoramlization after each update. We will show that@qt +1 is an✏-inexact prox-mapping.

Lemma 19 Assume for all mini-batch of exampleskgt (✓)k2
$ " M2, then we have

(a) exp(�2�tM ) " !t (✓) = ÷q+
t ( ! )

"qt ( ! ) " exp(2�tM ),

(b) krFt (÷q+
t ; @qt )k$ " 3�tM.

Proof for Lemma 19.LetZ :=
!
qt (✓) exp(��t gt (✓))d✓. We haveexp(��tM ) " Z " exp(�tM ).

(a) Sincekgt (✓)k2
$ " M2, we have

exp(�2�tM ) " !t (✓) =
÷q+
t (✓)
@qt (✓)

=
exp(��t gt (✓))

Z
" exp(2�tM ).

(b) Also, becauserFt (q+
t ) = �t gt + log ÷q+

t
"qt

= �t gt + log( !t ), it immediately follows

krFt (÷q+
t ; @qt )k$ = k�t gt + log( !t )k$ " �t kgt k$ + k log(!t )k$ " �tM + (2 �tM ) = 3 �tM.

!

Lemma 20 Let ✏t := Ft (@qt +1 ; @qt ) � Ft (÷q+
t ; @qt ), which implies@qt +1 2 P #t

÷qt
(�t gt ). Let the bandwidth at stept satisÞes

ht = O(1)m%1/ (d+2 ) )
t ,

one can guarantee that

E! [✏t |x[t %1] , ✓[t %1] ] " O(1)(µ2 + ⌫2L2)µ2&m
% 2#

d+2#
t + O(1)M (µ + ⌫L)�tm

% #
d+2#

t

In addition, with probability at least1� 2� in ✓t |x[t %1] , ✓[t %1] , we have

✏t " O(1)(µ2
:

log(1/�) + ⌫2L2)µ2&m
% 2#

d+2#
t + O(1)M (µ + ⌫L +

:
log(1/�))�tm

% #
d+2#

t

whereO(1) is some constant.
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Proof for Lemma 20.

Note that since÷q+
t (✓) = ÷qt (✓) exp(��t gt (✓))/Z, where÷qt (✓) =

( m t
i =1 ↵i Kht (✓ � ✓i ), andgt (✓) = log(÷qt ) � log(p) �

N log(p(xt |✓)) . By our assumption, we have÷qt 2 C )
L(") andexp(��t gt ) 2 C )

L(") ; hence,÷q+
t 2 C )

L(") . Invoking the
deÞnition of functionFt (·; @qt ), we have

Ft (@qt +1 ; @qt ) � Ft (÷q+
t ; @qt ) = KL(@qt +1 ||÷q+

t ) + hrFt (÷q+
t ; @qt ), @qt +1 � ÷q+

t iL 2

" KL(@qt +1 ||÷q+
t ) + 3 �tMk÷q+

t � @qt +1 k1

"
4

(@qt +1 � ÷q+
t )2

÷q+
t

d✓ + 3�tMk÷q+
t � @qt +1 k1

" & k@qt +1 � ÷q+
t k2

2 + 3�tMk÷q+
t � @qt +1 k1

Based on the deÞnition of@qt +1 , we have

k÷q+
t � @qt +1 k1 =

9
9
9
9

1
1� ⇣

÷qt +1 � ÷q+
t

9
9
9
9

1
=

1
1� ⇣

k÷qt +1 � ÷q+
t + ⇣÷q+

t k1 "
1

1� ⇣
k÷qt +1 � ÷q+

t k1 +
⇣

1� ⇣

= k÷qt +1 � ÷q+
t k1 + ⇣ + o(⇣ + k÷qt +1 � ÷q+

t k1).

Similarly,

k÷q+
t � @qt +1 k2

2 =

9
9
9
9

1
1� ⇣

(÷qt +1 � ÷q+
t ) +

⇣

1� ⇣
÷q+
t

9
9
9
9

2

2

"
2

(1 � ⇣)2 k÷qt +1 � ÷q+
t k2

2 +
2⇣2

(1 � ⇣)2 k÷q+
t k2

2

" 2(1 + ⇣)2k÷qt +1 � ÷q+
t k2

2 + 2 ⇣2k÷q+
t k2

2 + o(⇣2k÷q+
t k2

2 + ⇣2k÷qt +1 � ÷q+
t k2

2)

Recall⇣ = 1 �
!

# ÷qt +1 = h1, ÷q+
t � ÷qt +1 i " k÷qt +1 � ÷q+

t k1, we can simplify theL1 andL2 error as

k@qt +1 � ÷q+
t k1 = 2k÷qt +1 � ÷q+

t k1 + o(k÷qt +1 � ÷q+
t k1),

k÷q+
t � @qt +1 k2

2 " 2k÷qt +1 � ÷q+
t k2

2 + 2k÷q+
t k2

2k÷qt +1 � ÷q+
t k2

1 + o(k÷qt +1 � ÷q+
t k2

2 + k÷q+
t k2

2k÷qt +1 � ÷q+
t k2

1)

" (2 + 2k÷q+
t k2

2)k÷qt +1 � ÷q+
t k2

2 + o(k÷qt +1 � ÷q+
t k2

2).

The last inequality forL2 error comes from JensenÕs inequality. We argue thatk÷q+
t k2

2 is Þnite. Indeed,

k÷q+
t k2

2 =
4

(÷q+
t )2d✓ =

4
÷q2
t exp(�2�t gt )

Z2 d✓ "

9
9
9
9

exp(�2�t gt )
Z2

9
9
9
9

$

4
÷q2
t d✓

" exp(4�tM )
6 .

i,j

↵t
i ↵

t
j

4
Kh (✓ � ✓i )Kh (✓ � ✓j )d✓

7

" exp(4�tM )
6 .

i,j

↵t
i ↵

t
j kKh (✓ � ✓i )k2kKh (✓ � ✓j )k2

7
" exp(4�tM )µ2k↵t k1k↵t k$ " exp(4�tM )µ2

Therefore, we have

✏t " (2& + 2& µ2 exp(4�tM ))k÷qt +1 � ÷q+
t k2

2 + 6�tMk÷qt +1 � ÷q+
t k1

+ o(k÷qt +1 � ÷q+
t k2

2 + �t k÷qt +1 � ÷q+
t k1)

Applying the result of Theorem 4 and 16 for@qt +1 and÷q+
t we have

E! [✏t |x[t %1] , ✓[t %1] ] " (2& + 2& µ2 exp(4�tM ))
)
2(⌫h)

t L)2 +
8µ2

mthd
t
k!t

:
÷qt k2

2 + o((mth
d
t )%1)

*

+6�tM

1

⌫Lh)
t +

µ
p
mth

d/ 2
t

k!t

:
÷qt k1 +

1
p
mt

k!t

:
÷qt k2 + o((mth

d
t )% 1

2 )

2

+ o

6
2(⌫h)

t L)2 +
8µ2

mthd
t
k!t

:
÷qt k2

2 + �t [⌫Lh)
t +

µ
p
mth

d/ 2
t

k!t

:
÷qt k1 +

1
p
mt

k!t

:
÷qt k2]

7

Under the Assumption C, we already proved that|!t |$ " exp(2�tM ), hence,k!t
p

÷qt k2
2 " exp(4�tM ). Without loss of

generality, we can assume
! :

÷qt (✓)d✓ " O(1) and�tM " O(1) for all t, then we can simply writek!t
p

÷qt k1 " O(1)
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andk!t
p

÷qt k2
2 " O(1). Whenht = O(1)m%1/ (d+2 ) )

t , the above result can be simpliÞed as

E! [✏t |x[t %1] , ✓[t %1] ] " O(1)(µ2 + ⌫2L2)µ2&m
% 2#

d+2#
t + O(1)M (µ + ⌫L)�tm

% #
d+2#

t

Similarly, combining the results of Corollary 15 and 17, we have with probability at least1� 2�,

✏t " (2& + 2& µ2 exp(4�tM ))
)
2(⌫h)

t L)2 +
8µ2

mthd
t
k!t

:
÷qt k2

2 + o((mth
d
t )%1) +

16B1B2µ
2

mt

:
log(1/�)

*

+6�tM

1

⌫Lh) +
µ

p
mth

d/ 2
t

k!t

:
÷qt k1 +

1
p
mt

k!t

:
÷qt k2 +

1
p
mt

:
8B1B2 log(1/�) + o((mth

d
t )% 1

2 )

2

+ o

6
2(⌫h)

t L)2 +
8µ2

mthd
t
k!t

:
÷qt k2

2 + �t [⌫Lh)
t +

µ
p
mth

d/ 2
t

k!t

:
÷qt k1 +

1
p
mt

k!t

:
÷qt k2]

7

which leads to the lemma.

!

Our main Theorem 6 follows immediately by applying the results in the above lemma to Theorem 2.

Proof of Theorem 6.We Þrst notice that

E[KL(q! ||÷qT )] = E
) 4

q! log
q!

÷qT
d✓

*
= E

) 4
q! log

q!

@qT
d✓ +

4
q! log

@qT

÷qT
d✓

*

= E[KL(q! ||@qT )] + E
) 4

q! log
@qT

÷qT
d✓

*
.

For the second term,

E
) 4

q! log
@qT

÷qT
d✓

*
= E

1

hq! , log
1

1%, T
÷qT

÷qT
i
2

= E [hq! ,� log(1� ⇣T )]

= E[� log(1� ⇣T )] " ⇣T + o(⇣T ) " Ek÷qT � ÷q+
T %1k1 + o(Ek÷qT � ÷q+

T %1k1)

By Theorem 4 and settinght = O(1)m%1/ (d+2 ) )
t , we achieve the error bound

E
) 4

q! log
@qT

÷qT
d✓

*
" C2m

% #
d+2#

t ,

whereC2 := O(1)M (µ + ⌫L).

When setting�t = min { 2
t +1 , $

Mm #/ (d+2# )
t

} invoking the above lemma, we have

E! [✏t |x[t %1] , ✓[t %1] ] " C1m
%2)/ (d+2 ) )
t ,

whereC1 := O(1)(µ + ⌫L)2µ2& . Expanding the result from Theorem 2, it follows that

Ex,! [KL(q! ||@qt +1 )] " (1 � �t )Ex,! [KL(q! ||@qt )] + C1m
%2)/ (d+2 ) )
t +

�2
t

2
M2

The above recursion leads to the convergence result for the second term,

E[KL(q! ||@qT )] "
2 max

A
D1,M

2
B

T
+ C1

( T
t =1 t2m

% 2#
d+2#

t

T 2 .

Combine these two results, we achieve the desired result

E[KL(q! ||÷qT )] "
2 max

A
D1,M

2
B

T
+ C1

( T
t =1 t2m

% 2#
d+2#

t

T 2 + C2m
% #

d+2#
t .

!

Remark. The convergence in terms ofKL-divergence is measuring the entire density and much more stringent compared
to integral approximation. For the last iterate, an overallO( 1

T ) convergence rate can be achieved whenmt = O(t2+ d/) ).
Similar to Lemma 9, with PinskerÕs inequality, we could easily obtain the the rate of convergence in terms of integral
approximation from Theorem 6. AfterT steps, in general cases, the PMD algorithm converges in terms of integral approx-
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imation in rateO(1/
p
T ) by choosingO(1/t)-decaying stepsizes andO(t2+ d

2# )-growing samples.

F Derivation Details for Sparse Gaussian Processes and Latent Dirichlet Allocation

We apply the Particle Mirror Descent algorithm to sparse Gaussian processes and latent Dirichlet allocation. For these two
models, we decompose the latent variables and incorporate the structure of posterior into the algorithm. The derivation
details are presented below.

F.1 Sparse Gaussian Processes

Given dataX = {xi }n
i =1 , xi 2 Rd. 1 andy = {yi }n

i =1 . The sparse GP introduce a set of inducing variables,Z =
{zi }m

i =1 , zi 2 Rd. 1 and the model is speciÞed as

p(yn |u, Z) = N (yn |Knm K%1
mm u, ÷K)

p(u|Z) = N (u|0,Kmm ).

whereKmm = [ k(zi , zj )]i,j =1 ,...,m , Knm = [ k(xi , zj )]i =1 ,...,n ;j =1 ,...,m . For different ÷K, there are different sparse
approximations for GPs. Please refer (Qui÷nonero-Candela and Rasmussen, 2005) for details. We test algorithms on the
sparse GP model with÷K = �%1I. We modify the stochastic variational inference for Gaussian processes (Hensman et al.,
2013) for this model. We also apply our algorithm on the same model. However, it should be noticed that our algorithm
could be easily extended to other sparse approximations (Qui÷nonero-Candela and Rasmussen, 2005).

We treat the inducing variables as the latent variables with uniform prior in sparse Gaussian processes. Then, the posterior
of Z,u could be thought as the solution to the optimization problem

min
q(Z, u)

4
q(Z,u) log

q(Z,u)
p(Z)p(u)

udZ �
n.

i =1

4
q(Z,u) log p(yi |xi ,u, Z)dudZ (16)

The stochastic gradient of Eq.(16) w.r.t.q(Z,u) will be

g(q(Z,u)) =
1
n

logq(Z,u) � 1
n

logp(Z)p(u) � logp(yi |xi ,u, Z)

and therefore, the prox-mapping int-step is

min
q(Z, u)

4
q(Z,u) log

q(Z,u)
qt (Z,u)1%" t /n p(Z,u)" t /n

udZ � �t

4
q(Z,u) log p(yi |xi ,u, Z)dudZ

which could be re-written as

min
q(Z )q(u|Z )

4
q(Z)

3
log

q(Z)
qt (Z)1%" t /n p(Z)" t /n

+
4

q(u|Z)
)

log
q(u|Z)

qt (u|Z)1%" t /n p(u|Z)" t /n
� �t logp(yi |xi ,u, Z)

*
du

$ %& '
L (q(u|Z ))

5
dZ

We updateqt +1 (u|Z) to be the optimal ofL(q(u|Z)) as

qt +1 (u|Z) / qt (u|Z)1%" t /n p(u|Z)" t /n p(yi |xi ,u, Z)" t

= N (u|mt , �
%1
t )1%" t /n N (u|0,Kmm )" t /n N (yi |Kim K%1

mm u, ') " t

= N (u|mt +1 , �
%1
t +1 )

where' = diag( ÷Kii �Qii ) + �%1I, Qii = Kim K%1
mm Kmi ,

�t +1 = (1 � �t /n)�t + �t /nK
%1
mm + �tKim K%1

mm ' %1K%1
mm Kmi

mt +1 = �%1
t +1

6
(1 � �t /n)�%1

t mt + �t /nK
%1
mm m0 + �tK

%1
mm Kmi ' %1y

7

Plug this into theL(q(u|Z)) , we have

L(q(u|Z)) =
4

q(u|Z)
)

log
q(u|Z)

qt (u|Z)1%" t /n p(u|Z)" t /n
� �t logp(yi |xi ,u, Z)

*
du = � log ÷p(yi |xi , Z)
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where

÷p(yi |xi , Z) =
4

qt (u|Z)1%" t /n p(u|Z)" t /n p(yi |xi ,u, Z)" t du

=
4

N (u|mt , �
%1
t )1%" t /n N (u|0,Kmm )" t /n N (yi |Kim K%1

mm u, ') " t du

= N (yi |Kim K%1
mm c, $)

where
ø�t +1 = (1 � �t /n)�t + �t /nK

%1
mm

c = ø�%1
t +1

6
(1 � �t /n)�tmt + �t /nK

%1
mm m0

7

$ = Kim K%1
mm

ø�%1
t +1 K

%1
mm Kmi +

1
�t

'

Solve

min
q(Z )

4
q(Z) log

q(Z)
qt (Z)1%" t /n p(Z)" t /n

dZ �
4

q(Z) log ÷p(yi |xi , Z)dZ

will result the update rule forq(Z),

qt +1 (Z) / qt (Z)1%" t /n p(Z)" t /n ÷p(yi |xi , Z)

We approximate theq(Z) with particles, i.e.,q(Z) =
( l

j =1 wj �(Z j ). The update rule forwj is

wj
t +1 =

wj
t exp(��t /n log(wj

t ) + �t /n logp(Z j ) + log ÷p(yi |xi , Z
j ))

( l
j w

j
t exp(��t /n log(wj

t ) + �t /n logp(Z j ) + log ÷p(yi |xi , Z j ))

F.2 Latent Dirichlet Allocations

In LDA, the topics# 2 RK . W areK distributions on the wordsW in the text corpora. The text corpora containsD
documents, the length of thed-th document isNd. The document is modeled by a mixture of topics, with the mixing
proportion✓d 2 R1. K . The words generating process forXd is following: Þrst drawing a topic assignmentzdn , which is
1-by-K indicator vector,i.i.d.from ✓d for wordxdn which is1-by-W indicator vector, and then drawing the wordxdn from
the corresponding topic# zdn . We denotezd = {zdn }N d

n =1 2 RN d . K , xd = {xdn }N d
n =1 2 RN d . W andX = {xd}D

d=1 ,Z =
{Zd}D

d=1 . SpeciÞcally, the joint probability is

p(xd, zd, ✓d, #) = p(xd|zd, #) p(zd|✓d)p(✓d)p(#) (17)

p(xd|zd, #) =
N d<

n =1

W<

w=1

K<

k=1

# zdnk x dnw
kw

p(zd|✓d) =
N d<

n =1

K<

k=1

✓zdnk
dk

The p(#) andp(✓) are the priors for parameters,p(✓d|↵) = %(K$ )
%($ )K

C K
k ✓$ %1

dk andp(# |�0) =
C K

k
%(W ) 0)
%() 0)W

C W
w # ) 0%1

wk ,
both are Dirichlet distributions.

We incorporate the special structure into the proposed algorithm. Instead of modeling thep(#) solely, we model the
Z = {Z}D

d=1 and# together asq(Z, #) . Based on the model, givenZ, theq(# |Z) will be Dirichlet distribution and could
be obtained in closed-form.

The posterior ofZ, # is the solution to

min
q(Z, &)

1
D

4
q(Z, #) log

q(Z, #)
p(Z|↵)p(# |�)

dZd# � 1
D

D.

d=1

4
q(Z, #) log p(xd|zd, #) dZd#

We approximate the Þnite summation by expectation, then the objective function becomes

min
q(Z, &)

1
D

4
q(Z, #) log

q(Z, #)
p(Z|↵)p(# |�)

dZd# � Ex

) 4
q(Z, #) log p(xd|zd, #) dZd#

*
(18)
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We approximate theq(Z) ⇡
( m

i =1 wi �(Z i ) by particles, and therefore,q(Z, #) ⇡
( m

i =1 wi P (# |Z i ) whereP (# |Z i )
is the Dirichlet distribution as we discussed. It should be noticed that from the objective function, we do not need to
instantiate thezd until we visit thexd. By this property, we could Þrst construct the particles{Z i }m

i =1 ÔconceptuallyÕ and
assign the value to{zi

d}m
i =1 when we need it. The gradient of Eq.(18) w.r.t.q(# , Z) is

g(q(Z, #)) =
1
D

logq(Z, #) � 1
D

logp(#) p(Z) � Ex [logp(xd|# , zd)]

Then, the SGD prox-mapping is

min
q(Z, &)

4
q(Z, #) log

q(Z, #)
qt (Z, #)

+ �t

4
q(Z, #)

)
logqt (Z, #) /D � logp(#) p(Z)/D � logp(xd|# , zd)

*
dZd#

We rearrange the prox-mapping,

min
q(Z )q(& |Z )

4
q(Z)q(# |Z) log

q(Z)q(# |Z)
qt (Z)1%" t /D qt (# |Z)1%" t /D

� �t

4
q(Z)q(# |Z)

)
logp(#) p(Z)/D + log p(xd|# , zd)

*
dZd#

min
q(Z )q(& |Z )

4
q(Z)

3
log

q(Z)
qt (Z)1%" t /D p(Z)" t /D

+
4

q(# |Z)
)

log
q(# |Z)

qt (# |Z)1%" t /D p(#) " t /D
� �t logp(xd|# , zd)

*
d#

$ %& '
L (q(& |Z ))

5
dZ

The stochastic functional gradient update forq(# |Z i ) is

qt +1 (# |Z i ) / qt (# |Z i )1%" t /D p(#) " t /D p(xd|# , zd)" t

Let qt (# |Z i ) = Dir(� i
t ), then, theqt +1 (# |Z i ) is also Dirichlet distribution

qt +1 (# |Z i ) / Dir(� i
t )

1%÷" t Dir(�0)÷" t

6 <

k

<

w

#
! N d

n %(zdnk =1 ,x dnw =1)
kw

7 D ÷" t

= Dir(� i
t +1 )

where÷�t = �t /D and

[� i
t +1 ]kw = (1 � ÷�t )[� i

t ]kw + ÷�t�0 + D÷�t

N d.

n

�(zdnk = 1 , xdnw = 1) .

In mini-batch setting, the updating will be

[� i
t +1 ]kw = (1 � ÷�t )[� i

t ]kw + ÷�t�0 +
D

B
÷�t

B.

d=1

N d.

n

�(zdnk = 1 , xdnw = 1) .

Plug theqt +1 (# |Z i ) into prox-mapping, we have

L(q(# |Z)) =
4

q(# |Z)
)

log
q(# |Z)

qt (# |Z)1%÷" t p(#) ÷" t
�D÷�t logp(xd|# , zd)

*
d#

= � log ÷p(xd|zd, Z)

where÷p(xd|zd, Z
i ) =

!
& qt (# |Z i )1%÷" t p(#) ÷" t p(xd|# , zd)D ÷" t d# which have closed-form

÷p(xd|zd, Z
i ) =

4

&
qt (# |Z i )1%÷" t p(#) ÷" t p(xd|# , zd)D ÷" t d#

=
4

Dir(� i
t )

1%÷" t Dir(� i
0)÷" t

6 <

k

<

w

#
! N d

n %(zdnk =1 ,x dnw =1)
kw

7 D ÷" t

d#

=
<

k

6
'(

( W
w [� i

t ]kw )
C

w '([ � i
t ]kw )

7 1%÷" t
6

'( W�0)
'( �0)W

7 ÷" t
C

w '([ � i
t +1 ]kw )

'(
(

w [� i
t +1 ]kw )
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and

log ÷p(xd|zd, Z
i ) /

.

k

6
(1 � ÷�t ) log '(

W.

w

[� i
t ]kw ) +

.

w

log '([ � i
t +1 ]kw )

� log '(
.

w

[� i
t +1 ]kw ) � (1 � ÷�t )

.

w

log '([ � i
t ]kw )

7

Then, we could updateqt (Z) =
( m

i wi �(Z i ) by

qt +1 (Z i ) / qt (Z i ) exp
6
� �t

D
logqt (Z i ) +

�t

D
logp(Z i |↵) + log ÷p(xd|zd, Z

i )
7

If we set↵ = 1 , p(Z i ) will be uniformly distributed which has no effect to the update. For general setting, to compute
logp(Z i |↵), we need preÞx all the{zi

d}D
d=1 . However, whenD is huge, the second term will be small and we could ignore

it approximately.

Till now, we almost complete the algorithm except the how to assignzd when we visitxd. We could assign thezd randomly.
However, considering the requirement for thezi

d assignment that theq(zi
d|Z i

\d) > 0, which means the assignment should be
consistent, an better way is using the average or sampling proportional to

!
p(xd|# , zd)qt (# |Z i )p(zd|Z i

1...,d %1)d# where
p(zd|Z i

1...,d %1) =
!
p(zd|↵)p(↵|Z i

1...,d %1)d↵, or
!
p(xd|# , zd)qt (# |Z i )p(zd|↵)d# .

G More Related Work

Besides the most related two inference algorithms we discussed in Section (5),i.e., stochastic variational inference (Hoff-
man et al., 2013) and static sequential Monte Carlo (Chopin, 2002; Balakrishnan and Madigan, 2006), there are several
other inference algorithms connect to the PMD from algorithm, stochastic approximation, or representation aspects, re-
spectively.

From algorithmic aspect, our algorithm scheme shares some similarities to annealed importance sampling (AIS) (Neal,
2001) in the sense that both algorithms are sampling from a series of densities and reweighting the samples to approximate
the target distribution. The most important difference is the way to construct the intermediate densities. In AIS, the density
at each iteration is a weighted product of the joint distribution ofall the dataand aÞxedproposal distribution, while the
densities in PMD are a weighted product ofprevious step solutionand the stochastic functional gradient onpartial data.
Moreover, the choice of the temperature parameter (fractional power) in AIS is heuristic, while in our algorithm, we have a
principle way to select the stepsize with quantitative analysis. The difference in intermediate densities results the sampling
step in these two algorithms is also different: the AIS might need MCMC to generate samples from the intermediate
densities, while we only samples from a KDE which is more efÞcient. These differences make our method could handle
large-scale dataset while AIS cannot.

Sequential Monte-Carlo sampler (Del Moral et al., 2006) provides a uniÞed view of SMC in Bayesian inference by adopting
different forward/backward kernels, including the variants proposed in (Chopin, 2002; Balakrishnan and Madigan, 2006) as
special cases. There are subtle and important differences between the PMD and the SMC samplers. In the SMC samplers,
the introduced Þnite forward/backward Markov kernels are used to construct a distribution over the auxiliary variables. To
make the SMC samplers valid, it is required that the marginal distribution of the constructed density by integrating out the
auxiliary variables must be theexactposterior. However, there is no such requirement in PMD. In fact, the PMD algorithm
only approachesthe posterior with controllable error by iterating the datasetmany times. Therefore, although the proposed
PMD and the SMC sampler bare some similarities operationally, they are essentially different algorithms.

Stochastic approximation becomes a popular trick in extending the classic Bayesian inference methods to large-scale
datasets recently. Besides stochastic variational inference, which incorporates stochastic gradient descent into variational
inference, the stochastic gradient Langevin dynamics (SGLD) Welling and Teh (2011), and its derivatives (Ahn et al., 2012;
Chen et al., 2014; Ding et al., 2014) combine ideas from stochastic optimization and Hamiltonian Monte Carlo sampling.
Although both PMD and the SGLD use the stochastic gradient information to guide next step sampling, the optimization
variable in these two algorithms are different which results the completely different updates and properties. In PMD, we
directly update the density utilizingfunctional gradient in density space, while the SGLD perturbs thestochastic gradient
in parameter space. Because of the difference in optimization variables, the mechanism of these algorithms are totally
different. The SGLD generates a trajectory ofdependentsamples whose stationary distribution approximates the posterior,
the PMD keeps an approximation of the posterior represented byindependentparticles or their weighted kernel density
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estimator. In fact, their different properties we discussed in Table 1 solely due to this essential difference.

A number of generalized variational inference approaches are proposed trying to relax the constraints on the density space
with ßexible densities. Nonparametric density family is a natural choice2. (Song et al., 2011) and (Ihler and McAllester,
2009; Lienart et al., 2015) extend the belief propagation algorithm with nonparametric models by kernel embedding and
particle approximation, respectively. The most important difference between these algorithms and PMD is that they orig-
inate from different sources and are designed for different settings. Both the kernel BP Song et al. (2011) and particle
BP Ihler and McAllester (2009); Lienart et al. (2015) are based on belief propagation optimizinglocal objectiveand de-
signed for the problem withone sampleX in which observations are highly dependent, while the PMD is optimizing the
global objective, therefore, more similar to mean-Þeld inference, for the inference problems withmany i.i.d. samples.

After the comprehensive review about the similarities and differences between PMD and the existing related approximate
Bayesian inference methods from algorithm, stochastic approximation and representation perspectives, we can see the
position of the proposed PMD clearly. The PMD connects variation inference and Monte Carlo approximation, which
seem two orthogonal paradigms in approximate Bayesian inference, and achieves a balance in trade-off between efÞciency,
ßexibility and provability.

H Experiments Details

H.1 Mixture Models
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Figure 3: Visualization of posteriors of mixture model on synthetic dataset obtained by several inference methods.

We use the normalized Gaussian kernel in this experiment. For one-pass SMC, we use the suggested kernel bandwidth
in (Balakrishnan and Madigan, 2006). For our method, since we increase the samples, the kernel bandwidth is shrunk
as the theorem suggested. The batch size for stochastic algorithms and one-pass SMC is set to be10. The total number
of particles for the Monte Carlo based competitors,i.e., SMC, SGD Langevin, Gibbs sampling, and our method is1500
in total. We also keep1500Gaussian components in SGD NPV. The burn-in period for Gibbs sampling and stochastic
Langevin dynamics are50and1000respectively.

2Although (Sudderth et al., 2003; Gershman et al., 2012) named their methods as ÒnonparametricÓ belief propagation and Ònonpara-
metricÓ variational inference, they indeed use mixture of Gaussians, which is still a parametric model.
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The visualization of10 runs average posteriors obtained by the alternative methods are plotted in Figure 3. From these
Þgures, we could have a direct understand about the behaviors for each competitors. The Gibbs sampling and stochastic
gradient Langevin dynamics sampling stuck in one local mode in each run. Gibbs sampler could Þt one of the contour quite
well, better than the stochastic Langevin dynamics. It should be noticed that this is the average solution, the two contours
in the result of stochastic gradient Langevin dynamics did not mean it Þnds both modes simultaneously. The one-pass
sequential Monte Carlo and stochastic nonparametric variational inference are able to location multiple modes. However,
their shapes are not as good as ours. Because of the multiple modes and the highly dependent variables in posterior, the
stochastic variational inference fails to converge to the correct modes.

To compare these different kinds of algorithms in a fair way, we evaluate their performances using total variation and cross
entropy of the solution against the true potential functions versus the number of observations visited. In order to evaluate
the total variation and the cross entropy between the true posterior and the estimated one, we use both kernel density
estimation and Gaussian estimation to approximate the posterior density and report the better one for Gibbs sampling and
stochastic Langevin dynamics. The kernel bandwidth is set to be0.1 times the median of pairwise distances between data
points (median trick).

In Figure 1(3)(4), the one-pass SMC performs similar to our algorithm at beginning. However, it cannot utilize the dataset
effectively, therefore, it stopped with high error. It should be noticed that the one-pass SMC starts with more particles
while our algorithm only requires the same number of particles at Þnal stage. The reason that Gibbs sampling and the
stochastic gradient Langevin dynamics perform worse is that they stuck in one mode. It is reasonable that Gibbs sampling
Þts the single mode better than stochastic gradient Langevin dynamics since it generates one new sample by scanning the
whole dataset. For the stochastic nonparametric variational inference, it could locate both modes, however, it optimizes a
non-convex objective which makes its variance much larger than our algorithm. The stochastic variational inference fails
because of the highly dependent variables and multimodality in posterior.

H.2 Bayesian Logistic Regression

The likelihood function is

p(y|x,w) =
1

1 + exp(�yw) x)
with w as the latent variables. We use Gaussian prior forw with identity covariance matrix.

We Þrst reduce the dimension to50 by PCA. The batch size is set to be100and the step size is set to be 1
100+

+
t
. We stop

the stochastic algorithms after they pass through the whole dataset5 times. The burn-in period for stochastic Langevin
dynamic is set to be1000. We rerun the experiments10 times.

Although the stochastic variant of nonparametric variational inference performs comparable to our algorithm with fewer
components, its speed is bottleneck when applied to large-scale problems. The gain from using stochastic gradient is
dragged down by using L-BFGS to optimize the second-order approximation of the evidence lower bound.

H.3 Sparse Gaussian Processes

H.3.1 1D Synthetic Dataset

We test the proposed algorithm on 1D synthetic data. The data are generated by

y = 3x2 + (sin(3 .53⇡x) + cos(7.7⇡x)) exp(�1.6⇡|x|) + 0 .1e

wherex 2 [�0.5, 0.5] ande ⇠ N (0, 1). The dataset contains2048observations which is small enough to run the exact GP
regression. We use Gaussian RBF kernel in Gaussian processes and sparse Gaussian processes. Since we are comparing
different inference algorithms on the same model, we use the same hyperparameters for all the inference algorithms. We
set the kernel bandwidth� to be 0.1 times the median of pairwise distances between data points (median trick), and
�%1 = 0 .001. We set the stepsize in the form of &

n 0+
+

t
for both PMD and SVI and the batch size to be128. Figure. 4

illustrates the evolving of the posterior provided by PMD with16particles and128inducing variables when the algorithms
visit more and more data. To illustrate the convergence of the posterior provided by PMD, we initialize theu = 0 in PMD.
Later, we will see we could make the samples in PMD more efÞcient.
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Figure 4: Visualization of posterior prediction distribution. The red curve is the mean function and the pale red region is
the variance of the posterior. The cyan curve the ground truth. The last one shows convergence of the posterior mean to
the ground truth.

H.3.2 Music Year Prediction

We randomly selected463, 715songs to train the model and test on5, 163songs. As in (Bertin-Mahieux et al., 2011), the
year values are linearly mapped into[0, 1]. The data is standardized before regression. Gaussian RBF kernel is used in the
model. Since we are comparing the inference algorithms, for fairness, we Þxed the model parameters for all the inference
algorithms,i.e., the kernel bandwidth is set to be the median of pairwise distances between data points and the observations
precision�%1 = 0 .01. We set the number of inducing inputs to be210 and batch size to be512. The stepsize for both
PMD and SVI are in the form of &

n 0+
+

t
. To demonstrate the advantages of PMD comparing to SMC, we initialize PMD

with prior while SMC with the SoD solution. We rerun the experiments10 times. We use both16 particles in SMC and
PMD. We stop the stochastic algorithms after they pass through the whole dataset2 times.

H.4 Latent Dirichlet Allocation

Figure 5: Several topics learnd by LDA with PMD
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We Þx the hyper-parameter↵ = 0 .1, � = 0 .01, andK = 100. The batchsize is set to be100. We use stepsize &
n 0+ t $ for

PMD, stochastic variational inference and stochastic Riemannian Langevin dynamic. For each algorithm a grid-search was
run on step-size parameters and the best performance is reported. We stop the stochastic algorithms after they pass through
the whole dataset5 times.

The log-perplexity was estimated using the methods discussed in (Patterson and Teh, 2013) on a separate holdout set with
1000documents. For a documentxd in holdout set, the perplexity is computed by

perp(xd|X,↵,�) = exp
6
�

( N d
n =1 logp(xdn |X,↵,�)

Nd

7

where

p(xdn |X,↵,�) = E! d ,&

)
✓)

d # ·,x dn

*
. (19)

We separate the documents in testing set into two non-overlapped parts,xestimation
d andxevaluation

d . We Þrst evaluate the✓d

based on thexestimation
d . For different inference methods, we use the corresponding strategies in learning algorithm to obtain

the distribution of✓d based onxestimation
d . We evaluatep(xdn |X,↵,�) on xevaluation

d with the obtained distribution of✓d.
SpeciÞcally,

p(xevaluation
dn |X,↵,�) = E& |X,) E! evaluation

d |& ,$,x estimation
d

)
✓)

d # ·,x dn

*

For PMD, SMC and stochastic Langevin dynamics,

✓evaluation
dk =

( N estimation
d

n =1 �(zestimation
dnk = 1) + ↵

Nestimation
d + K↵

For stochastic variational inference,q(✓d) is updated as in the learning procedure.

We illustrate several topics learned by LDA with our algorithm in Figure.5.
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