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Appendix

A Strong convexity

As we discussed, the posterior from Bayes’s rule could be viewed as the optimal of an optimization problem in Eq (1). We
will show that the objective function is strongly convex w.r.t KL-divergence.

Proof for Lemma 1. The lemma directly results from the generalized Pythagaras theorem for Bregman divergence.
Particularly, for KL-divergence, we have

KL(q
1

||q) = KL(q
1

||q
2

) +KL(q
2

||q)� hq
1

� q
2

,r�(q)�r�(q
2

)i
2

where �(q) is the entropy of q.

Notice that L(q) = KL(q||q⇤)� logZ, where q⇤ =

p(✓)⇧

N
i p(xi|✓)
Z

, Z =

R
p(✓)⇧N

i

p(x
i

|✓), we have

KL(q
1

||q⇤)�KL(q
2

||q⇤)� hq
1

� q
2

,r�(q
2

)�r�(q⇤)i
2

= KL(q
1

||q
2

)

) KL(q
1

||q⇤)�KL(q
2

||q⇤)� hq
1

� q
2

, log q
2

� log q⇤i
2

= KL(q
1

||q
2

)

) KL(q
1

||q⇤)�KL(q
2

||q⇤)� hq
1

� q
2

, log q
2

� log

�
p(✓)⇧N

i

p(x
i

|✓)
�
i
2

+ hq
1

� q
2

, logZi
2| {z }

0

= KL(q
1

||q
2

)

) L(q
1

)� L(q
2

)� hq
1

� q
2

,rL(q
2

)i
2

= KL(q
1

||q
2

)

⌅

B Finite Convergence of Stochastic Mirror Descent with Inexact Prox-Mapping in Density
Space

Since the prox-mapping of stochastic mirror descent is intractable when directly being applied to the optimization prob-
lem (1), we propose the ✏-inexact prox-mapping within the stochastic mirror descent framework in Section 3. Instead of
solving the prox-mapping exactly, we approximate the solution with ✏ error. In this section, we will show as long as the
approximation error is tolerate, the stochastic mirror descent algorithm still converges.

Theorem 2 Denote q⇤ = argmin

q2P L(q), the stochastic mirror descent with inexact prox-mapping after T steps gives
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Also, from Pinsker’s inequality, we have
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Because the objective function is 1-strongly convex w.r.t. KL-divergence,
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E
x

[KL(q̄
T

||q⇤)] 6 E
x

[L(q̄
T

)� L(q⇤)] 6
1

2

P
T

t=1

�2

t

M2

+

P
T

t=1

✏
t

+D
1

P
T

t=1

�
t

.

⌅

C Convergence Analysis for Integral Approximation

In this section, we provide the details of the convergence analysis of the proposed algorithm in terms of integral approxi-
mation w.r.t. the true posterior using a good initialization.

Assume that the prior p(✓) has support ⌦ cover true posterior distribution q⇤(✓), then, we could represent
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Then, we have achieve our conclusion that
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With the knowledge of p(✓) and q(✓), we set q
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where ↵
t+1

(✓) = ↵t(✓) exp(��tgt(✓))

Z

. Since Z is constant, ignoring it will not effect the multiplicative update.

Given the fact that the objective function, L(q), is 1-strongly convex w.r.t. the KL-divergence, we can immediately arrive
at the following convergence results as appeared in Nemirovski et al. (2009), if we are able to compute the prox-mapping
in Eq.(2) exactly.

Lemma 8 One prox-mapping step Eq.(2) reduces the error by
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Proof We could obtain the recursion directly from Theorem 2 by setting ✏ = 0, which means solving the prox-mapping
exactly, and the rate of convergence rate could be obtained by solving the recursion as stated in (Nemirovski et al., 2009).
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The second last inequality comes from Pinsker’s inequality.

Theorem 5 Assume the particle proposal prior p(✓) has the same support as the true posterior q⇤(✓), i.e., 0 6
q⇤(✓)/p(✓) 6 C. With further condition about the model kp(x|✓)Nk1 6 ⇢, 8x, then 8f(✓) : Rd ! R bounded and
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Proof for Theorem 5.

We first decompose the error into optimization error and finite approximation error.
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Recall that
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simpler and more generalized condition on the model, i.e., kp(x|✓)Nk1 6 ⇢, we also achieve the uniform convergence
rate for static model. There are plenties of models satisfying such condition. We list several such models below.
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D Error Bound of Weighted Kernel Density Estimator

Before we start to prove the finite convergence in general case, we need to characterize the error induced by weighted kernel
density estimator. In this section, we analyze the error in terms of both L

1

and L
2

norm, which are used for convergence
analysis measured by KL-divergence in Appendix E .
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D.1 L
1

-Error Bound of Weighted Kernel Density Estimator

We approximate the density function q(✓) using the weighted kernel density estimator q̃(✓) and would like to bound the
L
1

error, i.e. kq̃(✓) � q(✓)k
1

both in expectation and with high probability. We consider an unnormalized kernel density
estimator as the intermediate quantity

%
m

(✓) =
1

m

mX

i=1

!(✓
i

)K
h

(✓, ✓
i

)

Note that E[%
m

(✓)] = E
✓i [!(✓i)Kh

(✓, ✓
i

)] = q ?K
h

. Then the error can be decomposed into three terms as

✏ := E kq̃(✓)� q(✓)k
1

6 E kq̃(✓)� %
m

(✓)k
1| {z }

normalization error

+E k%
m

(✓)� E %
m

(✓)k
1| {z }

sampling error (variance)

+ kE %
m

(✓)� q(✓)k
1| {z }

approximation error (bias)

We now present the proof for each of these error bounds.

To formally show that, we begin by giving the definition of a special class of kernels and Hölder classes of densities that
we consider.

Definition 10 ((�;µ, ⌫, �)-valid density kernel) We say a kernel function K(·) is a (�;µ, ⌫)-valid density kernel, if
K(✓, ✓) = K(✓ � ✓) is a bounded kernel such that

(i)
R
K(z)dz = 1

(ii)
R
|K(z)|rdz 6 1 for any r > 1, particularly,

R
K(z)2 dz 6 µ2 for some µ > 0.

(iii)
R
zsK(z)dz = 0, for any s = (s

1

, . . . , s
d

) 2 Nd such that 1 6 |s| 6 b�c. In addition,
R
kzk� |K(z)|dz 6 ⌫ for

some ⌫ > 0.

For simplicity, we sometimes call K(·) as a �-valid density kernel if the constants µ and ⌫ are not specifically given. Notice
that all spherically symmetric probability density and product kernels based on symmetric univariate densities satisfy the
conditions. For instance, the kernel K(✓) = (2⇡)�d/2

exp(�k✓k2 /2) satisfies the conditions with � = 1, and it is used
through out our experiments. Furthermore, we will focus on a class of smooth densities

Definition 11 ((�;L)-Hölder density function) We say a density function q(·) is a (�;L)-Hölder density function if func-
tion q(·) is b�c-times continuously differentiable on its support ⌦ and satisfies

(i) for any z
0

, there exists L(z
0

) > 0 such that

|q(z)� q(�)
z0

(z)| 6 L(z
0

)kz � z
0

k� , 8z 2 ⌦

where q
(�)

z0 is the b�c-order Taylor approximation, i.e.

q(�)
z0

(z) :=
X

s=(s1,...,sd):|s|6b�c

(z � z
0

)

s

s!
Dsq(z

0

);

(ii) in addition, the integral
R
L(z)dz 6 L.

f 2 C�

L(⌦) means f is (�;L)-Hölder density function.

Then given the above setting for the kernel function and the smooth densities, we can characterize the error of the weighted
kernel density estimator as follows.

D.1.1 KDE error due to bias

Lemma 12 (Bias) If q(·) 2 C�

L(⌦) and K is a (�;µ, ⌫)-valid density kernel, then

kq(✓)� E[%
m

(✓)]k
1

6 ⌫Lh� .
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Proof The proof of this lemma follows directly from Chapter 4.3 in (Wand and Jones, 1995).

|E[%
m

(✓)]� q(✓)| = |q ?K
h

(✓)� q(✓)|

=

Z
1

hd

K(

z � ✓

h
)q(z)dz � q(✓)

=

Z
1

hd

K(

z

h
)[q(✓ + z)� q(✓)]dz

=

Z
K(z)[q(✓ + hz)� q(✓)]dz

6
����
Z

K(z)[q(✓ + hz)� q
(�)

✓

(✓ + hz)]dz

����+
Z ���K(z)[q

(�)

✓

(✓ + hz)� q(✓)]dz
���

6 L(✓)

Z
|K(z)khzk�dz +

����
Z

K(z)[q
(�)

✓

(✓ + hz)� q(✓)]dz

����

Note that q(�)
✓

(✓ + hz) � q(✓) is a polynomial of degree at most b�c with no constant, by the definition of (�;µ, ⌫)-valid
density kernel, the second term is zero. Hence, we have |E[%

m

(✓)]� q(✓)| 6 ⌫L(✓)h� , and therefore

kE[%
m

(✓)]� q(✓)k
1

6 ⌫h�

Z
L(✓)d✓ 6 ⌫Lh� .

⌅

D.1.2 KDE error due to variance

The variance term can be bounded using similar techniques as in (Devroye and Györfi, 1985).

Lemma 13 (Variance) Assume !
p
p 2 L

1

with bounded support, then

E k%
m

(✓)� E[%
m

(✓)]k
1

6 µ
p
mh

d
2

Z
!
p
p d✓ + o((mhd

)

� 1
2
).

Proof For any ✓, we have

�2

(✓) : = E
⇥
(%

m

(✓)� E[%
m

(✓)])2
⇤

=

1

m

mX

i=1

E[!2

(✓
i

)K2

h

(✓, ✓
i

)]� (q ?K
h

)

2 6 (!2q) ?K2

h

m

Denote µ(K) :=

qR
K(✓)2 d✓ and kernel K+

(✓) = K

2
(✓)

µ(K)

2 , then µ(K) 6 µ,
R
K+d✓ = 1 and

K+

h

(✓) =
1

hd

K+

(✓/d) =
1

hd

K(✓/h)K(✓/h)

µ2

(K)

=

hd

µ2

(K)

K2

h

(✓)

Hence,

�2

(✓) 6 µ2

(K)(!2p) ?K+

h

mhd

6 µ2

[(!2p) ?K+

h

� !2p]

mhd

+

µ2

(!2p)

mhd

.

Note that �(✓) =
p

E [(%
m

(✓)� E[%
m

(✓)])2] > E|%
m

(✓)� E[%
m

(✓)]|, hence

E k%
m

(✓)� E[%
m

(✓)]k
1

=

Z
E|%

m

(✓)� E[%
m

(✓)]| d✓ 6
Z

�(✓) d✓

6
Z s

µ2

(!2p) ?K+

h

� !2p]

mhd

+

r
µ2

(!2p)

mhd

d✓

6 µp
mhd/2

Z p
!2p d✓ +

Z q
(!2p) ?K+

h

� !2p d✓

�

6 µp
mhd/2

 Z
!
p
p d✓ +

p
|⌦| ·

sZ ��
(!2p) ?K+

h

� !2p
�� d✓

�

From Theorem 2.1 in (Devroye and Györfi, 1985), we have
R ��

(!2p) ?K+

h

� !2p
�� d✓ = o(1). Therefore, we conclude
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that
E k%

m

(✓)� E[%
m

(✓)]k
1

6 µp
mhd/2

k!ppk
1

+ o((mhd

)

� 1
2
).

⌅

D.1.3 KDE error due to normalization

The normalization error term can be easily derived based on the variance.

Lemma 14 (Normalization error) Assume !
p
p 2 L

2

E kq̃(✓)� %
m

(✓)k
1

6 1p
m

✓Z
!2

(✓)p(✓) d✓

◆
1/2

.

Proof Denote !
i

:= !(✓
i

), then E[!
i

] =

R
!(✓)p(✓) d✓ = 1 and E[!2

i

] =

R
!2

(✓)p(✓) d✓, for any i = 1, . . . ,m. Hence,

E| 1
m

mX

i=1

!
i

� 1|2 =

1

m

Z
!2

(✓)p(✓) d✓.

Recall that q̃(✓) = 1Pm
i=1 !i

P
m

i=1

!
i

K
h

(✓, ✓
i

) and %
m

(✓) = 1

m

P
m

i=1

!
i

K
h

(✓, ✓
i

).

E kq̃(✓)� %
m

(✓)k
1

6 E
�����

1P
m

i=1

!
i

mX

i=1

!
i

K
h

(✓, ✓
i

)� 1

m

mX

i=1

!
i

K
h

(✓, ✓
i

)

�����
1

6 E
�����

����1�
P

m

i=1

!
i

m

����
1P

m

i=1

!
i

mX

i=1

!
i

K
h

(✓, ✓
i

)

�����
1

6 E
����1�

P
m

i=1

!
i

m

���� · kKh

(✓)k
1

Since kK
h

k
1

=

R
1

h

dK(✓/h) d✓ =

R
K(✓) d✓ = 1, we have

E kq̃(✓)� %
m

(✓)k
1

6 1p
m

sZ
!2

(✓)p(✓) d✓ =

1p
m
kwppk

2

⌅

D.1.4 KDE error in expectation and with high probability

Based on the above there lemmas, namely, Lemma 12 - 14, we can immediately arrive at the bound of the L
1

error in
expectation as stated in Theorem 4. We now provide the proof for the high probability bound as stated below.

Corollary 15 (Overall error in high probability) Besides the above assumption, let us also assume that !(✓) is bounded,
i.e. there exists 0 < B

1

6 B
2

< 1 such that B
1

6 !(✓) 6 B
2

, 8✓. Then, with probability at least 1� �,

kq̃(✓)� q(✓)k
1

6 ⌫Lh�

+

µp
mhd/2

k!ppk
1

+

1p
m
k!ppk

2

+

1p
m

p
8B

1

B
2

log(1/�) + o((mhd

)

� 1
2
).

Proof We use McDiarmid’s inequality to show that the function f(⇥) = kq̃(✓)� q(✓)k
1

, defined on the ran-
dom data ⇥ = (✓

1

, . . . , ✓
m

), is concentrated on the mean. Let ˜

⇥ = (✓
1

, . . . , ˜✓
j

, . . . , ✓
m

). We denote ! =

(!(✓
1

), . . . ,!(✓
m

)) and !̃ = (!(✓
1

), . . . ,!(˜✓
j

), . . . ,!(✓
m

)). Denote k = (K
h

(✓, ✓
1

), . . . ,K
h

(✓, ✓
m

)) and ˜k =
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(K
h

(✓, ✓
1

), . . . ,K
h

(✓, ✓0
j

), . . . ,K
h

(✓, ✓
m

)). We first show that |f(⇥)� f(⇥0
)| is bounded.

|f(⇥)� f(⇥0
)

=

�� kq̃
⇥

(✓)� q(✓)k
1

� kq̃
˜

⇥

(✓)� q(✓)k
1

��

6 kq̃
⇥

(✓)� q̃
˜

⇥

(✓)k
1

=

�����

P
m

i=1

!
i

k
iP

m

i=1

!
i

�
P

m

i=1

!̃
i

˜k
iP

m

i=1

!̃
i

�����
1

6
�����
(!̃

j

� !
j

) · (
P

m

i=1

!
i

k
i

)� (

P
m

i=1

!
i

)(!̃
i

˜k
i

� !
j

k
j

)

(

P
m

i=1

!
i

) · (
P

m

i=1

!̃
i

)

�����
1

6
����

!̃
j

� !
j

(

P
m

i=1

!̃
i

)

����
1

+

�����
!̃
i

˜k
i

� !
j

k
jP

m

i=1

!̃
i

�����
1

6 2B
1

B
2

m
+

2B
1

B
2

m
6 4B

1

B
2

m
Invoking the McDiamid’s inequality, we have

Pr (f(⇥)� E
⇥

[f(⇥)] > ✏) 6 exp

⇢
� m✏2

8B2

1

B2

2

�
, 8✏ > 0

which implies the corollary.

⌅

D.2 L
2

-Error Bound of Weighted Kernel Density Estimator

Following same argument yields also similar L
2

-error bound of the weighted kernel density estimator, i.e. kq̃(✓)� q(✓)k
2

.
For completeness and also for future reference, we provide the exact statement of the bound below in line with Theorem 4
and Corollary 15.

Theorem 16 (L
2

-error in expectation) Let q = !p 2 C�

L(⌦) and K be a (�;µ, ⌫)-valid density kernel. Assume that
!2p 2 L

2

and has bounded support. Then

E kq̃(✓)� q(✓)k2
2

6 2(⌫h�L)2 + 8µ2

mhd

k!ppk2
2

+ o((mhd

)

�1

).

Proof for Theorem 16. The square L
2

-error can also be decomposed into three terms.

E kq̃(✓)� q(✓)k2
2

6 4E kq̃(✓)� %
m

(✓)k
2| {z }

normalization error

+4E k%
m

(✓)� E %
m

(✓)k2
2| {z }

sampling error (variance)

+2 kE %
m

(✓)� q(✓)k2
2| {z }

approximation error (bias)

This uses the inequality (a+b+c)2 6 2a2+4b2+4c2 for any a, b, c. From Lemma 12, we already have |E[%
m

(✓)]�q(✓)| 6
L(✓)

R
|K(z)khzk�dz, 8✓. Hence,

kE[%
m

(✓)]� q(✓)k2
2

6 ⌫2h2�

Z
L2

(✓)d✓ 6 (⌫h�L)2. (12)

From proof for Lemma 13, we have

E k%
m

(✓)� E[%
m

(✓)]k2
2

=

R
E|%

m

(✓)� E[%
m

(✓)]|2 d✓ 6
R
�2

(✓) d✓ (13)

6
R

µ

2
[(!

2
p)?K

+
h �!

2
p]

mh

d +

µ

2
(!

2
p)

mh

d d✓ 6 µ

2

mh

d k!
p
pk2

2

+ o((mhd

)

�1

) (14)

In addition, we have for the normalization error term,

E kq̃(✓)� %
m

(✓)k2
2

6 E
���
⇣
1�

Pm
i=1 !i

m

⌘ Pm
i=1 !iKh(✓,✓i)Pm

i=1 !i

���
2

2

(15)

6 E
���1�

Pm
i=1 !i

m

���
2

· kK
h

k2
2

6 µ

2

mh

d k!
p
pk2

2

Combining equation (12) , (13) and (15), it follows that

E kq̃(✓)� q(✓)k2
2

6 2(⌫h�L)2 + 8µ2

mhd

k!ppk2
2

+ o((mhd

)

�1

).
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⌅

Corollary 17 (L
2

-error in high probability) Besides the above assumption, let us also assume that !(✓) is bounded, i.e.
there exists 0 < B

1

6 B
2

< 1 such that B
1

6 !(✓) 6 B
2

, 8✓. Then, with probability at least 1� �,

kq̃(✓)� q(✓)k2
2

6 2(⌫h�L)2 + 8µ2

mhd

k!ppk2
2

+ o((mhd

)

�1

) +

16B
1

B
2

µ2

m

p
log(1/�).

Proof for Theorem 17. Use McDiarmid’s inequality similar as proof for Corollary 15. ⌅

E Convergence Analysis for Density Approximation

In this section, we consider the rate of convergence for the entire density measured by KL-divergence. We start with the
following lemma that show the renormalization does not effect the optimization in the sense of optimal, and we show the
importance weight !

t

(✓) = exp(��tgt(✓))

Z

at each step are bounded under proper assumptions. Moreover, the error of the
prox-mapping at each step incurred by the weighted density kernel density estimation is bounded.

Lemma 18 Let ⇣ =

R
\⌦ q̃

t

d✓, bq
t

=

q̃t

1�⇣

is a valid density on ⌦, then, q̃+
t

= bq+
t

, where q̃+
t

:= argmin

q2P(⌦)

F
t

(q; q̃
t

),
bq+
t

:= argmin

q2P(⌦)

F
t

(q; bq
t

), and F
t

(q; q0) := hq, �
t

gi
L2

+KL(qkq0).

Proof for Lemma 18. The minima of prox-mapping is not effected by the renormalization. Indeed, such fact can be verified
by comparing to q̃+

t

= argminF
t

(q; q̃
t

) and bq+
t

= argminF
t

(q; bq
t

), respectively.

bq+
t

=

(

1

1�⇣

q̃
t

)

1��tp(✓)�
t

p(x
t

|✓)N�t

R
(

1

1�⇣

q̃
t

)

1��tp(✓)�
t

p(x
t

|✓)N�td✓
=

q̃1��t
t

p(✓)�
t

p(x
t

|✓)N�t

R
q̃1��t
t

p(✓)�
t

p(x
t

|✓)N�td✓
= q̃+

t

⌅
Due to the fact, we use q̃+

t

following for consistency. Although the algorithm updates based on q̃
t

, it is implicitly doing
renoramlization after each update. We will show that bq

t+1

is an ✏-inexact prox-mapping.

Lemma 19 Assume for all mini-batch of examples kg
t

(✓)k21 6 M2, then we have

(a) exp(�2�
t

M) 6 !
t

(✓) =
q̃

+
t (✓)

bqt(✓) 6 exp(2�
t

M),

(b) krF
t

(q̃+
t

; bq
t

)k1 6 3�
t

M.

Proof for Lemma 19. Let Z :=

R
q
t

(✓) exp(��
t

g
t

(✓))d✓. We have exp(��
t

M) 6 Z 6 exp(�
t

M).
(a) Since kg

t

(✓)k21 6 M2, we have

exp(�2�
t

M) 6 !
t

(✓) =
q̃+
t

(✓)

bq
t

(✓)
=

exp(��
t

g
t

(✓))

Z
6 exp(2�

t

M).

(b) Also, because rF
t

(q+
t

) = �
t

g
t

+ log

q̃

+
t
bqt = �

t

g
t

+ log(!
t

), it immediately follows

krF
t

(q̃+
t

; bq
t

)k1 = k�
t

g
t

+ log(!
t

)k1 6 �
t

kg
t

k1 + k log(!
t

)k1 6 �
t

M + (2�
t

M) = 3�
t

M.

⌅

Lemma 20 Let ✏
t

:= F
t

(bq
t+1

; bq
t

)� F
t

(q̃+
t

; bq
t

), which implies bq
t+1

2 P ✏t
q̃t
(�

t

g
t

). Let the bandwidth at step t satisfies

h
t

= O(1)m
�1/(d+2�)

t

,

one can guarantee that

E
✓

[✏
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[t�1]

, ✓
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)µ2

�m
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t
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p
log(1/�))�

t

m
� �
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t

where O(1) is some constant.
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Proof for Lemma 20.

Note that since q̃+
t

(✓) = q̃
t

(✓) exp(��
t

g
t

(✓))/Z, where q̃
t

(✓) =
P

mt

i=1

↵
i

K
ht(✓ � ✓

i

), and g
t

(✓) = log(q̃
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) � log(p) �
N log(p(x
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|✓)). By our assumption, we have q̃
t
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L(⌦) and exp(��
t

g
t

) 2 C�

L(⌦); hence, q̃+
t

2 C�

L(⌦). Invoking the
definition of function F

t
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t

), we have

F
t
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Based on the definition of bq
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Recall ⇣ = 1�
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error as
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The last inequality for L
2

error comes from Jensen’s inequality. We argue that kq̃+
t

k2
2

is finite. Indeed,
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Therefore, we have

✏
t

6 (2�+ 2�µ2

exp(4�
t

M))kq̃
t+1

� q̃+
t

k2
2

+ 6�
t

Mkq̃
t+1

� q̃+
t

k
1

+o(kq̃
t+1

� q̃+
t

k2
2

+ �
t

kq̃
t+1

� q̃+
t

k
1

)

Applying the result of Theorem 4 and 16 for bq
t+1

and q̃+
t

we have
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◆

Under the Assumption C, we already proved that |!
t

|1 6 exp(2�
t

M), hence, k!
t

p
q̃
t

k2
2

6 exp(4�
t

M). Without loss of
generality, we can assume

R p
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t

(✓)d✓ 6 O(1) and �
t

M 6 O(1) for all t, then we can simply write k!
t

p
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t

k
1

6 O(1)
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and k!
t

p
q̃
t

k2
2

6 O(1). When h
t

= O(1)m
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, the above result can be simplified as
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which leads to the lemma.

⌅
Our main Theorem 6 follows immediately by applying the results in the above lemma to Theorem 2.

Proof of Theorem 6. We first notice that
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For the second term,
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By Theorem 4 and setting h
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, we achieve the error bound
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} invoking the above lemma, we have
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�. Expanding the result from Theorem 2, it follows that
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The above recursion leads to the convergence result for the second term,
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Combine these two results, we achieve the desired result
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⌅
Remark. The convergence in terms of KL-divergence is measuring the entire density and much more stringent compared
to integral approximation. For the last iterate, an overall O(

1

T

) convergence rate can be achieved when m
t

= O(t2+d/�

).
Similar to Lemma 9, with Pinsker’s inequality, we could easily obtain the the rate of convergence in terms of integral
approximation from Theorem 6. After T steps, in general cases, the PMD algorithm converges in terms of integral approx-



Bo Dai, Niao He, Hanjun Dai, Le Song

imation in rate O(1/
p
T ) by choosing O(1/t)-decaying stepsizes and O(t2+

d
2�
)-growing samples.

F Derivation Details for Sparse Gaussian Processes and Latent Dirichlet Allocation

We apply the Particle Mirror Descent algorithm to sparse Gaussian processes and latent Dirichlet allocation. For these two
models, we decompose the latent variables and incorporate the structure of posterior into the algorithm. The derivation
details are presented below.

F.1 Sparse Gaussian Processes

Given data X = {x
i

}n
i=1

, x
i

2 Rd⇥1 and y = {y
i

}n
i=1

. The sparse GP introduce a set of inducing variables, Z =

{z
i

}m
i=1

, z
i

2 Rd⇥1 and the model is specified as

p(y
n

|u, Z) = N (y
n

|K
nm

K�1

mm

u, ˜K)

p(u|Z) = N (u|0,K
mm

).

where K
mm

= [k(z
i

, z
j

)]

i,j=1,...,m

, K
nm

= [k(x
i

, z
j

)]

i=1,...,n;j=1,...,m

. For different ˜K, there are different sparse
approximations for GPs. Please refer (Quiñonero-Candela and Rasmussen, 2005) for details. We test algorithms on the
sparse GP model with ˜K = ��1I . We modify the stochastic variational inference for Gaussian processes (Hensman et al.,
2013) for this model. We also apply our algorithm on the same model. However, it should be noticed that our algorithm
could be easily extended to other sparse approximations (Quiñonero-Candela and Rasmussen, 2005).

We treat the inducing variables as the latent variables with uniform prior in sparse Gaussian processes. Then, the posterior
of Z,u could be thought as the solution to the optimization problem

min

q(Z,u)

Z
q(Z,u) log

q(Z,u)

p(Z)p(u)
udZ �
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The stochastic gradient of Eq.(16) w.r.t. q(Z,u) will be

g(q(Z,u)) =
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n
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and therefore, the prox-mapping in t-step is
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We update q
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Plug this into the L(q(u|Z)), we have

L(q(u|Z)) =

Z
q(u|Z)
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where
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i
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q
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will result the update rule for q(Z),

q
t+1

(Z) / q
t

(Z)

1��t/np(Z)

�t/np̃(y
i

|x
i

, Z)

We approximate the q(Z) with particles, i.e., q(Z) =

P
l

j=1

wj�(Zj

). The update rule for wj is

wj
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=

wj

t

exp(��
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/n log(wj

t

) + �
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/n log p(Zj
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P
l

j

wj

t
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t

/n log(wj

t

) + �
t

/n log p(Zj

) + log p̃(y
i

|x
i

, Zj

))

F.2 Latent Dirichlet Allocations

In LDA, the topics � 2 RK⇥W are K distributions on the words W in the text corpora. The text corpora contains D
documents, the length of the d-th document is N

d

. The document is modeled by a mixture of topics, with the mixing
proportion ✓

d

2 R1⇥K . The words generating process for X
d

is following: first drawing a topic assignment z
dn

, which is
1-by-K indicator vector, i.i.d.from ✓

d

for word x
dn

which is 1-by-W indicator vector, and then drawing the word x
dn

from
the corresponding topic �

zdn . We denote z
d

= {z
dn

}Nd
n=1

2 RNd⇥K , x
d

= {x
dn

}Nd
n=1

2 RNd⇥W and X = {x
d

}D
d=1

,Z =

{Z
d

}D
d=1

. Specifically, the joint probability is

p(x
d

, z
d

, ✓
d

,�) = p(x
d

|z
d

,�)p(z
d

|✓
d

)p(✓
d

)p(�) (17)
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,�) =

NdY
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�

zdnkxdnw
kw

p(z
d

|✓
d

) =
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✓zdnk
dk

The p(�) and p(✓) are the priors for parameters, p(✓
d

|↵) =

�(K↵)

�(↵)

K

Q
K

k

✓↵�1

dk

and p(�|�
0

) =

Q
K

k

�(W�0)

�(�0)
W

Q
W

w

�

�0�1

wk

,
both are Dirichlet distributions.

We incorporate the special structure into the proposed algorithm. Instead of modeling the p(�) solely, we model the
Z = {Z}D

d=1

and � together as q(Z,�). Based on the model, given Z, the q(�|Z) will be Dirichlet distribution and could
be obtained in closed-form.

The posterior of Z,� is the solution to

min

q(Z,�)

1

D

Z
q(Z,�) log

q(Z,�)

p(Z|↵)p(�|�)dZd�� 1

D
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We approximate the finite summation by expectation, then the objective function becomes

min

q(Z,�)

1

D

Z
q(Z,�) log

q(Z,�)

p(Z|↵)p(�|�)dZd�� E
x

 Z
q(Z,�) log p(x

d
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d

,�)dZd�

�
(18)
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We approximate the q(Z) ⇡
P

m

i=1

wi�(Zi

) by particles, and therefore, q(Z,�) ⇡
P

m

i=1

wiP (�|Zi

) where P (�|Zi

)

is the Dirichlet distribution as we discussed. It should be noticed that from the objective function, we do not need to
instantiate the z

d

until we visit the x
d

. By this property, we could first construct the particles {Zi}m
i=1

‘conceptually’ and
assign the value to {zi

d

}m
i=1

when we need it. The gradient of Eq.(18) w.r.t. q(�, Z) is
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Then, the SGD prox-mapping is
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We rearrange the prox-mapping,
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The stochastic functional gradient update for q(�|Zi

) is
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) will be uniformly distributed which has no effect to the update. For general setting, to compute
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. However, when D is huge, the second term will be small and we could ignore
it approximately.

Till now, we almost complete the algorithm except the how to assign z
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. We could assign the z
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randomly.
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G More Related Work

Besides the most related two inference algorithms we discussed in Section (5), i.e., stochastic variational inference (Hoff-
man et al., 2013) and static sequential Monte Carlo (Chopin, 2002; Balakrishnan and Madigan, 2006), there are several
other inference algorithms connect to the PMD from algorithm, stochastic approximation, or representation aspects, re-
spectively.

From algorithmic aspect, our algorithm scheme shares some similarities to annealed importance sampling (AIS) (Neal,
2001) in the sense that both algorithms are sampling from a series of densities and reweighting the samples to approximate
the target distribution. The most important difference is the way to construct the intermediate densities. In AIS, the density
at each iteration is a weighted product of the joint distribution of all the data and a fixed proposal distribution, while the
densities in PMD are a weighted product of previous step solution and the stochastic functional gradient on partial data.
Moreover, the choice of the temperature parameter (fractional power) in AIS is heuristic, while in our algorithm, we have a
principle way to select the stepsize with quantitative analysis. The difference in intermediate densities results the sampling
step in these two algorithms is also different: the AIS might need MCMC to generate samples from the intermediate
densities, while we only samples from a KDE which is more efficient. These differences make our method could handle
large-scale dataset while AIS cannot.

Sequential Monte-Carlo sampler (Del Moral et al., 2006) provides a unified view of SMC in Bayesian inference by adopting
different forward/backward kernels, including the variants proposed in (Chopin, 2002; Balakrishnan and Madigan, 2006) as
special cases. There are subtle and important differences between the PMD and the SMC samplers. In the SMC samplers,
the introduced finite forward/backward Markov kernels are used to construct a distribution over the auxiliary variables. To
make the SMC samplers valid, it is required that the marginal distribution of the constructed density by integrating out the
auxiliary variables must be the exact posterior. However, there is no such requirement in PMD. In fact, the PMD algorithm
only approaches the posterior with controllable error by iterating the dataset many times. Therefore, although the proposed
PMD and the SMC sampler bare some similarities operationally, they are essentially different algorithms.

Stochastic approximation becomes a popular trick in extending the classic Bayesian inference methods to large-scale
datasets recently. Besides stochastic variational inference, which incorporates stochastic gradient descent into variational
inference, the stochastic gradient Langevin dynamics (SGLD) Welling and Teh (2011), and its derivatives (Ahn et al., 2012;
Chen et al., 2014; Ding et al., 2014) combine ideas from stochastic optimization and Hamiltonian Monte Carlo sampling.
Although both PMD and the SGLD use the stochastic gradient information to guide next step sampling, the optimization
variable in these two algorithms are different which results the completely different updates and properties. In PMD, we
directly update the density utilizing functional gradient in density space, while the SGLD perturbs the stochastic gradient
in parameter space. Because of the difference in optimization variables, the mechanism of these algorithms are totally
different. The SGLD generates a trajectory of dependent samples whose stationary distribution approximates the posterior,
the PMD keeps an approximation of the posterior represented by independent particles or their weighted kernel density
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estimator. In fact, their different properties we discussed in Table 1 solely due to this essential difference.

A number of generalized variational inference approaches are proposed trying to relax the constraints on the density space
with flexible densities. Nonparametric density family is a natural choice2. (Song et al., 2011) and (Ihler and McAllester,
2009; Lienart et al., 2015) extend the belief propagation algorithm with nonparametric models by kernel embedding and
particle approximation, respectively. The most important difference between these algorithms and PMD is that they orig-
inate from different sources and are designed for different settings. Both the kernel BP Song et al. (2011) and particle
BP Ihler and McAllester (2009); Lienart et al. (2015) are based on belief propagation optimizing local objective and de-
signed for the problem with one sample X in which observations are highly dependent, while the PMD is optimizing the
global objective, therefore, more similar to mean-field inference, for the inference problems with many i.i.d. samples.

After the comprehensive review about the similarities and differences between PMD and the existing related approximate
Bayesian inference methods from algorithm, stochastic approximation and representation perspectives, we can see the
position of the proposed PMD clearly. The PMD connects variation inference and Monte Carlo approximation, which
seem two orthogonal paradigms in approximate Bayesian inference, and achieves a balance in trade-off between efficiency,
flexibility and provability.

H Experiments Details

H.1 Mixture Models
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Figure 3: Visualization of posteriors of mixture model on synthetic dataset obtained by several inference methods.

We use the normalized Gaussian kernel in this experiment. For one-pass SMC, we use the suggested kernel bandwidth
in (Balakrishnan and Madigan, 2006). For our method, since we increase the samples, the kernel bandwidth is shrunk
as the theorem suggested. The batch size for stochastic algorithms and one-pass SMC is set to be 10. The total number
of particles for the Monte Carlo based competitors, i.e., SMC, SGD Langevin, Gibbs sampling, and our method is 1500

in total. We also keep 1500 Gaussian components in SGD NPV. The burn-in period for Gibbs sampling and stochastic
Langevin dynamics are 50 and 1000 respectively.

2Although (Sudderth et al., 2003; Gershman et al., 2012) named their methods as “nonparametric” belief propagation and “nonpara-
metric” variational inference, they indeed use mixture of Gaussians, which is still a parametric model.
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The visualization of 10 runs average posteriors obtained by the alternative methods are plotted in Figure 3. From these
figures, we could have a direct understand about the behaviors for each competitors. The Gibbs sampling and stochastic
gradient Langevin dynamics sampling stuck in one local mode in each run. Gibbs sampler could fit one of the contour quite
well, better than the stochastic Langevin dynamics. It should be noticed that this is the average solution, the two contours
in the result of stochastic gradient Langevin dynamics did not mean it finds both modes simultaneously. The one-pass
sequential Monte Carlo and stochastic nonparametric variational inference are able to location multiple modes. However,
their shapes are not as good as ours. Because of the multiple modes and the highly dependent variables in posterior, the
stochastic variational inference fails to converge to the correct modes.

To compare these different kinds of algorithms in a fair way, we evaluate their performances using total variation and cross
entropy of the solution against the true potential functions versus the number of observations visited. In order to evaluate
the total variation and the cross entropy between the true posterior and the estimated one, we use both kernel density
estimation and Gaussian estimation to approximate the posterior density and report the better one for Gibbs sampling and
stochastic Langevin dynamics. The kernel bandwidth is set to be 0.1 times the median of pairwise distances between data
points (median trick).

In Figure 1(3)(4), the one-pass SMC performs similar to our algorithm at beginning. However, it cannot utilize the dataset
effectively, therefore, it stopped with high error. It should be noticed that the one-pass SMC starts with more particles
while our algorithm only requires the same number of particles at final stage. The reason that Gibbs sampling and the
stochastic gradient Langevin dynamics perform worse is that they stuck in one mode. It is reasonable that Gibbs sampling
fits the single mode better than stochastic gradient Langevin dynamics since it generates one new sample by scanning the
whole dataset. For the stochastic nonparametric variational inference, it could locate both modes, however, it optimizes a
non-convex objective which makes its variance much larger than our algorithm. The stochastic variational inference fails
because of the highly dependent variables and multimodality in posterior.

H.2 Bayesian Logistic Regression

The likelihood function is
p(y|x,w) = 1

1 + exp(�yw>x)
with w as the latent variables. We use Gaussian prior for w with identity covariance matrix.

We first reduce the dimension to 50 by PCA. The batch size is set to be 100 and the step size is set to be 1

100+

p
t

. We stop
the stochastic algorithms after they pass through the whole dataset 5 times. The burn-in period for stochastic Langevin
dynamic is set to be 1000. We rerun the experiments 10 times.

Although the stochastic variant of nonparametric variational inference performs comparable to our algorithm with fewer
components, its speed is bottleneck when applied to large-scale problems. The gain from using stochastic gradient is
dragged down by using L-BFGS to optimize the second-order approximation of the evidence lower bound.

H.3 Sparse Gaussian Processes

H.3.1 1D Synthetic Dataset

We test the proposed algorithm on 1D synthetic data. The data are generated by

y = 3x2

+ (sin(3.53⇡x) + cos(7.7⇡x)) exp(�1.6⇡|x|) + 0.1e

where x 2 [�0.5, 0.5] and e ⇠ N (0, 1). The dataset contains 2048 observations which is small enough to run the exact GP
regression. We use Gaussian RBF kernel in Gaussian processes and sparse Gaussian processes. Since we are comparing
different inference algorithms on the same model, we use the same hyperparameters for all the inference algorithms. We
set the kernel bandwidth � to be 0.1 times the median of pairwise distances between data points (median trick), and
��1

= 0.001. We set the stepsize in the form of ⌘

n0+
p
t

for both PMD and SVI and the batch size to be 128. Figure. 4
illustrates the evolving of the posterior provided by PMD with 16 particles and 128 inducing variables when the algorithms
visit more and more data. To illustrate the convergence of the posterior provided by PMD, we initialize the u = 0 in PMD.
Later, we will see we could make the samples in PMD more efficient.
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Figure 4: Visualization of posterior prediction distribution. The red curve is the mean function and the pale red region is
the variance of the posterior. The cyan curve the ground truth. The last one shows convergence of the posterior mean to
the ground truth.

H.3.2 Music Year Prediction

We randomly selected 463, 715 songs to train the model and test on 5, 163 songs. As in (Bertin-Mahieux et al., 2011), the
year values are linearly mapped into [0, 1]. The data is standardized before regression. Gaussian RBF kernel is used in the
model. Since we are comparing the inference algorithms, for fairness, we fixed the model parameters for all the inference
algorithms, i.e., the kernel bandwidth is set to be the median of pairwise distances between data points and the observations
precision ��1

= 0.01. We set the number of inducing inputs to be 2

10 and batch size to be 512. The stepsize for both
PMD and SVI are in the form of ⌘

n0+
p
t

. To demonstrate the advantages of PMD comparing to SMC, we initialize PMD
with prior while SMC with the SoD solution. We rerun the experiments 10 times. We use both 16 particles in SMC and
PMD. We stop the stochastic algorithms after they pass through the whole dataset 2 times.

H.4 Latent Dirichlet Allocation

Figure 5: Several topics learnd by LDA with PMD
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We fix the hyper-parameter ↵ = 0.1, � = 0.01, and K = 100. The batchsize is set to be 100. We use stepsize ⌘

n0+t

 for
PMD, stochastic variational inference and stochastic Riemannian Langevin dynamic. For each algorithm a grid-search was
run on step-size parameters and the best performance is reported. We stop the stochastic algorithms after they pass through
the whole dataset 5 times.

The log-perplexity was estimated using the methods discussed in (Patterson and Teh, 2013) on a separate holdout set with
1000 documents. For a document x

d

in holdout set, the perplexity is computed by

perp(x
d

|X,↵,�) = exp
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�
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Nd
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log p(x
dn
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�
. (19)

We separate the documents in testing set into two non-overlapped parts, xestimation
d

and xevaluation
d

. We first evaluate the ✓
d

based on the xestimation
d

. For different inference methods, we use the corresponding strategies in learning algorithm to obtain
the distribution of ✓

d

based on xestimation
d

. We evaluate p(x
dn

|X,↵,�) on xevaluation
d

with the obtained distribution of ✓
d

.
Specifically,
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For PMD, SMC and stochastic Langevin dynamics,

✓evaluation
dk

=

P
N

estimation
d

n=1

�(zestimation
dnk

= 1) + ↵

N estimation
d

+K↵

For stochastic variational inference, q(✓
d

) is updated as in the learning procedure.

We illustrate several topics learned by LDA with our algorithm in Figure.5.
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