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Abstract

Bayesian methods are appealing in their flexi-
bility in modeling complex data and ability in
capturing uncertainty in parameters. However,
when Bayes’ rule does not result in tractable
closed-form, most approximate inference algo-
rithms lack either scalability or rigorous guar-
antees. To tackle this challenge, we propose a
simple yet provable algorithm, Particle Mirror
Descent (PMD), to iteratively approximate the
posterior density. PMD is inspired by stochas-
tic functional mirror descent where one descends
in the density space using a small batch of data
points at each iteration, and by particle filtering
where one uses samples to approximate a func-
tion. We prove result of the first kind that, with m
particles, PMD provides a posterior density esti-
mator that converges in terms of KL-divergence
to the true posterior in rate O(1/

p
m). We

demonstrate competitive empirical performances
of PMD compared to several approximate infer-
ence algorithms in mixture models, logistic re-
gression, sparse Gaussian processes and latent
Dirichlet allocation on large scale datasets.

1 Introduction
Bayesian methods are attractive because of their ability in
modeling complex data and capturing uncertainty in pa-
rameters. The crux of Bayesian inference is to compute
the posterior distribution, p(✓|X) / p(✓)

QN
n=1 p(xn|✓),

of a parameter ✓ 2 Rd given a set of N data points
X = {xn}N

n=1 from RD, with a prior distribution p(✓)
and a model of data likelihood p(x|✓). For many non-
trivial models from real-world applications, the prior might
not be conjugate to the likelihood or might contain hier-
archical structure. Therefore, computing the posterior of-
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ten results in intractable integration and poses computa-
tional challenges. Typically, one resorts to approximate in-
ference such as sampling, e.g., MCMC (Neal, 1993) and
SMC (Doucet et al., 2001), or variational inference (Jordan
et al., 1998; Wainwright and Jordan, 2008).

Two longstanding challenges in approximate Bayesian in-
ference are i) provable convergence and ii) data-intensive
computation at each iteration. MCMC is a general algo-
rithm known to generate samples from distribution that
converges to the true posterior. However, in order to gener-
ate a single sample at every iteration, it requires a complete
scan of the dataset and evaluation of the likelihood at each
data point, which is computationally expensive. To address
this issue, approximate sampling algorithms have been
proposed which use only a small batch of data points at
each iteration (e.g. Chopin, 2002; Balakrishnan and Madi-
gan, 2006; Welling and Teh, 2011; Maclaurin and Adams,
2014). Chopin (2002); Balakrishnan and Madigan (2006)
extend the sequential Monte Carlo (SMC) to Bayesian in-
ference on static models. However, these algorithms rely
on Gaussian distribution or kernel density estimator as tran-
sition kernel for efficiency, which breaks down the conver-
gence guarantee of SMC. On the other hand, the stochastic
Langevin dynamics algorithm (SGLD) (Welling and Teh,
2011) and its derivatives (Ahn et al., 2012; Chen et al.,
2014; Ding et al., 2014) combine ideas from stochastic op-
timization and Hamiltonian Monte Carlo, and are proven
to converge in terms of integral approximation, as recently
shown in (Teh et al., 2014; Vollmer et al, 2015). Still, it is
unclear whether the dependent samples generated reflects
convergence to the true posterior. FireflyMC (Maclaurin
and Adams, 2014), introduces auxiliary variables to switch
on and off data points to save computation for likelihood
evaluations, but this algorithm requires the knowledge of
lower bounds of likelihood that is model-specific and may
be hard to calculate.

In another line of research, the variational inference algo-
rithms (Jordan et al., 1998; Wainwright and Jordan, 2008;
Minka, 2001) attempt to approximate the entire poste-
rior density by optimizing information divergence (Minka,
2005). The recent derivatives (Hoffman et al., 2013) avoid
examination of all the data in each update. However, the
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major issue for these algorithms is the absence of theoret-
ical guarantees. This is due largely to the fact that vari-
ational inference algorithms typically choose a parametric
family to approximate the posterior density, which can be
far from the true posterior, and require to solve a highly
non-convex optimization problem. In most cases, these
algorithms optimize over simple exponential family for
tractability. More flexible variational families have been
explored but largely restricted to mixture models (Jaakkola
and Jordon, 1999; Gershman et al., 2012). In these cases,
it is often difficult to quantify the approximation and opti-
mization error at each iteration, and analyze how the error
accumulates across the iterations. Therefore, a provably
convergent variational inference algorithm is still needed.

In this paper, we present such a simple and provable
nonparametric inference algorithm, Particle Mirror De-
scent (PMD), to iteratively approximate the posterior den-
sity. PMD relies on the connection that Bayes’ rule can
be expressed as the solution to a convex optimization prob-
lem over the density space (Williams, 1980; Zellner, 1988;
Zhu et al., 2014). However, directly solving the optimiza-
tion will lead to both computational and representational
issues: one scan over the entire dataset at each iteration
is needed, and the exact function update has no closed-
form. To address these issues, we draw inspiration from
two sources: (i) stochastic mirror descent, where one can
instead descend in the density space using a small batch
of data points at each iteration; and (ii) particle filtering
and kernel density estimation, where one can maintain a
tractable approximate representation of the density using
samples. In summary, PMD possesses a number of desider-
ata:

Simplicity. PMD applies to many probabilistic models,
even with non-conjugate priors. The algorithm is summa-
rized in just a few lines of codes, and only requires the value
of likelihood and prior, unlike other approximate inference
techniques (Welling and Teh, 2011; Gershman et al., 2012;
Paisley et al., 2012; Hoffman et al., 2013, e.g.), which typ-
ically require their first and/or second-order derivatives.

Flexibility. Different from other variational inference al-
gorithms, which sacrifice the model flexibility for tractabil-
ity, our method approximates the posterior by particles or
kernel density estimator. The flexibility of nonparametric
model enables PMD to capture multi-modal in posterior.

Stochasticity. At iteration t, PMD only visits a mini-batch
of data to compute the stochastic functional gradient, and
samples O(t) points from the solution. Hence, it avoids
scanning over the whole dataset in each update.

Theoretical guarantees. We show the density estimator
provided by PMD converges in terms of both integral ap-
proximation and KL-divergence to the true posterior den-
sity in rate O(1/

p
m) with m particles. To our best knowl-

edge, these results are the first of the kind in Bayesian in-

ference for estimating posterior.

In the remainder, we will introduce the optimization view
of Bayes’ rule before presenting our algorithm, and then we
provide both theoretical and empirical supports of PMD.

Throughout this paper, we denote KL as the Kullback-
Leibler divergence, function q(✓) as q, a random sequence
as ✓[t] := [✓1, . . . , ✓t], integral f(·) w.r.t. some measure
µ(✓) over support ⌦ as

R
f(✓)µ(d✓), or

R
f(✓)d✓ without

ambiguity, h·, ·iL2
as the L2 inner product, and k · kp as the

Lp norm for 1 6 p 61.

2 Optimization View of Bayesian Inference
Our algorithm stems from the connection between Bayes’
rule and optimization. Williams (1980); Zellner (1988);
Zhu et al. (2014) showed that Bayes’ rule

p(✓|X) =
p(✓)

QN
n=1 p(xn|✓)
p(X)

where p(X) =
R

p(✓)
QN

n=1 p(xn|✓)d✓, can be obtained
by solving the optimization problem

min
q(✓)2P

L(q) := �
NX

n=1

 Z
q(✓) log p(xn|✓) d✓

�
(1)

+KL(q(✓) || p(✓)),

where P is the valid density space. The objective, L(q), is
continuously differentiable with respect to q 2 P and one
can further show that

Lemma 1 Objective function L(q) defined on q(✓) 2 P is
1-strongly convex w.r.t. KL-divergence.

Despite of the closed-form representation of the optimal
solution, it can be challenging to compactly represent,
tractably compute, or efficiently sample from the solution.
The normalization, p(X) =

R
p(✓)

QN
n=1 p(xn|✓)d✓, in-

volves high dimensional integral and typically does not
admit tractable closed-form computation. Meanwhile, the
product in the numerator could be arbitrarily complicated,
making it difficult to represent and sample from. However,
this optimization perspective provides us a way to tackle
these challenges by leveraging recent advances from opti-
mization algorithms.

2.1 Stochastic Mirror Descent in Density Space

We will resort to stochastic optimization to avoid scanning
the entire dataset for each gradient evaluation. The stochas-
tic mirror descent (Nemirovski et al., 2009) expands the
usual stochastic gradient descent scheme to problems with
non-Euclidean geometries, by applying unbiased stochas-
tic subgradients and Bregman distances as prox-map func-
tions. We now explain in details, the stochastic mirror de-
scent algorithm in the context of Bayesian inference.

At t-th iteration, given a data point xt drawn randomly
from the dataset, the stochastic functional gradient of L(q)
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with respect to q(✓) 2 L2 is gt(✓) = log(q(✓)) �
log(p(✓)) � N log p(xt|✓). The stochastic mirror descent
iterates over the prox-mapping step qt+1 = Pqt

(�tgt),
where �t > 0 is the stepsize and

Pq(g) := argminbq(✓)2P {hbq, giL2
+ KL(bqkq)}.

Since the domain is density space, KL-divergence is a nat-
ural choice for the prox-function. The prox-mapping there-
fore admits the closed-form

qt+1(✓) = qt(✓) exp(��tgt(✓))/Z (2)
= qt(✓)

1��tp(✓)�tp(xt|✓)N�t/Z,

where Z :=
R

qt(✓) exp(��tgt(✓)) d✓ is the normaliza-
tion. This update is similar the Bayes’ rule. However, an
important difference here is that the posterior is updated
using the fractional power of the previous solution, the
prior and the likelihood. Still computing qt+1(✓) can be
intractable due to the normalization Z.

2.2 Error Tolerant Stochastic Mirror Descent

To handle the intractable integral normalization at each
prox-mapping step, we will consider a modified version of
the stochastic mirror descent algorithm which can tolerate
additional error in the prox-mapping step. Given ✏ > 0 and
g 2 L2, we define the ✏-prox-mapping of q as the set

P✏
q(g) := {bq 2 P : KL(bq||q) + hg, bqiL2 (3)

6 minbq2P{KL(bq||q) + hg, bqiL2
} + ✏},

and consider the update q̃t+1(✓) 2 P✏t

q̃t
(�tgt). When

✏t = 0, 8t, this reduces to the usual stochastic mirror de-
scent algorithm. The classical results regarding the conver-
gence rate can also be extended as below

Theorem 2 Let q⇤ = argminq2P L(q), stochastic mirror
descent with inexact prox-mapping after T steps gives the
recurrence:

E[KL(q⇤||q̃t+1)] 6 ✏t+(1��t)E[KL(q⇤||q̃t)]+
�2

t

2
Ekgtk21

Remark 1: As shown in the classical analysis of stochas-
tic mirror descent, we could also provide a non-asymptotic
convergence results in terms of objective error at average
solutions, e.g., simple average q̄T =

PT
t=1 �tq̃t/

PT
t=1 �t

in Appendix B.

Remark 2: For simplicity, we present the algorithm with
stochastic gradient estimated by a single data point. The
mini-batch trick is also applicable to reduce the variance
of stochastic gradient, and convergence remains the same
order but with an improved constant.

Allowing error in each step gives us room to design more
flexible algorithms. Essentially, this implies that we can
approximate the intermediate density by some tractable
representation. As long as the approximation error is not
too large, the algorithm will still converge; and if the ap-
proximation does not involve costly computation, the over-
all algorithm will still be efficient.

3 Particle Mirror Descent Algorithm
We introduce two efficient strategies to approximate prox-
mappings, one based on weighted particles and the other
based on weighted kernel density estimator. The first strat-
egy is designed for the situation when the prior is a “good”
guess of the true posterior, while the second strategy works
for general situations. Interestingly, these two methods re-
semble particle reweighting and rejuvenation respectively
in sequential Monte Carlo yet with notable differences.

3.1 Posterior Approximation Using Weighted Particle

We first consider the situation when we are given a “good”
prior, such that p(✓) has the same support as the true pos-
terior q⇤(✓), i.e., 0 6 q⇤(✓)/p(✓) 6 C. We will simply
maintain a set of samples (or particles) from p(✓), and ut-
lize them to estimate the intermediate prox-mappings. Let
{✓i}m

i=1 ⇠ p(✓) be a set of fixed i.i.d. samples. We approx-
imate qt+1(✓) as a set of weighted particles

q̃t+1(✓) =
Pm

i=1 ↵
t+1
i �(✓i), (4)

↵t+1
i :=

↵t
i exp(��tgt(✓i))Pm

i=1 ↵t
i exp(��tgt(✓i))

, 8t > 1.

The update is derived from the closed-form solution to the
exact prox-mapping step (2). Since the normalization is a
constant common to all components, one can simply update
the set of working variable ↵i as

↵i  ↵1��t

i p(xt|✓i)
N�t , 8i (5)

↵i  
↵iPm
i=1 ↵i

.

We show that the one step approximation (4) incurs a
dimension-independent error when estimating the integra-
tion of a function.

Theorem 3 For any bounded and integrable function f ,
E
⇥��R q̃t(✓)f(✓)d✓ �

R
qt(✓)f(✓)d✓

��⇤ 6 2Ckfk1p
m

.

Remark. Please refer to the Appendix C for details.
When the model has several latent variables ✓ = (⇠, ⇣) and
some parts of the variables have closed-form update in (2).
e.g., sparse GPs and LDA (refer to Appendix F), we could
incorporate such structure information into algorithm by
decomposing the posterior q(✓) = q(⇠)q(⇣|⇠). When p(⇠)
satisfies the condition, we could sample {⇠i}m

i=1 ⇠ p(⇠)
and approximate the posterior with summation of several
functions, i.e., in the form of q(✓) ⇡P

↵iq(⇣|⇠i).

3.2 Posterior Approximation Using Weighted Kernel
Density Estimator

In general, sampling from prior p(✓) that are not so “good”
will lead to particle depletion and inaccurate estimation of
the posterior. To alleviate particle degeneracy, we propose
to estimate the prox-mappings via weighted kernel den-
sity estimator (KDE). The weighted KDE prevents particles
from dying out, in a similar fashion as kernel smoothing
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variant SMC (Doucet et al., 2001) and one-pass SMC (Bal-
akrishnan and Madigan, 2006), but with guarantees.

More specifically, we approximate qt+1(✓) via a weighted
kernel density estimator

q̃t+1(✓) =
Xm

i=1
↵i Kh(✓ � ✓i), (6)

↵i :=
exp(��tgt(✓i))Pm
i=1 exp(��tgt(✓i))

, {✓i}m
i=1

i.i.d.⇠ q̃t(✓),

where h > 0 is the bandwidth parameter and Kh(✓) :=
1

hd K(✓/h) is a smoothing kernel. The update serves
as an ✏-prox-mapping (3) based on the closed-form so-
lution to the exact prox-mapping step (2). Unlike the
first strategy, the particle location in this case is sampled
from the previous solution q̃t(✓). The idea here is that
q̃+
t (✓) = q̃t(✓) exp(��tgt(✓))/Z can be viewed as an im-

portance weighted version of q̃t(✓) with weights equal to
exp(��tgt(✓))/Z. If we want to approximate q̃+

t (✓), we
can sample m locations from q̃t(✓) and associate each lo-
cation the normalized weight ↵i. To obtain a density for
re-sampling in the next iteration, we place a kernel func-
tion Kh(✓) on each sampled location. Since ↵i is a ratio,
we can avoid evaluating the normalization factor Z when
computing ↵i. In summary, we can simply update the set
of working variable ↵i as

↵i  q̃t(✓i)
��tp(✓i)

�tp(xt|✓i)
N�t , 8i (7)

↵i  
↵iPm
i=1 ↵i

.

Intuitively, the sampling procedure gradually adjusts the
support of the intermediate distribution towards that of the
true posterior, which is similar to “rejuvenation” step. The
reweighting procedure gradually adjusts the shape of the
intermediate distribution on the support. Same as the mech-
anism in Doucet et al. (2001); Balakrishnan and Madigan
(2006), the weighted KDE could avoid particle depletion.

We demonstrate that the estimator in (6) in one step pos-
sesses similar estimation properties as standard KDE for
densities (for details, refer to the Appendix D).

Theorem 4 Let qt be a (�; L)-Hölder density function,
and K be a �-valid density kernel, and the kernel band-
width chosen as h = O(m� 1

d+2� ). Then, under some mild
conditions, E kq̃t(✓)� qt(✓)k1 = O(m� �

d+2� ).

A kernel function K(·) is called �-valid, if
R

zsK(z)dz =
0 holds true for any s = (s1, . . . , sd) 2 Nd with |s| 6 b�c.
Notice that all spherically symmetric and product kernels
satisfy the condition. For instance, the Gaussian kernel
K(✓) = (2⇡)�d/2 exp(�k✓k2 /2) satisfies the condition
with � = 1, and it is used throughout our experiments.
Theorem 4 implies that the weighted KDE achieves the
minmax rate for density estimation in (�; L)-Hölder func-
tion class (Delyon and Juditsky, 1996), where � stands for

Algorithm 1 Particle Mirror Descent Algorithm

1: Input: Data set X = {xn}N
n=1, prior p(✓)

2: Output: posterior density estimator q̃T (✓)
3: Initialize q̃1(✓) = p(✓)
4: for t = 1, 2, . . . , T � 1 do
5: xt

unif.⇠ X
6: if Good p(✓) is provided then
7: {✓i}mt

i=1
i.i.d.⇠ p(✓) when t = 1

8: ↵i  ↵1��t

i p(xt|✓i)
N�t , 8i

9: ↵i  ↵iPmt
i=1 ↵i

, 8i
10: q̃t+1(✓) =

Pmt

i=1 ↵i �(✓i)
11: else
12: {✓i}mt

i=1
i.i.d.⇠ q̃t(✓)

13: ↵i  q̃t(✓i)
��tp(✓i)

�tp(xt|✓i)
N�t , 8i

14: ↵i  ↵iPmt
i=1 ↵i

, 8i
15: q̃t+1(✓) =

Pmt

i=1 ↵iKht
(✓ � ✓i)

16: end if
17: end for

the smoothness parameter and L is the corresponding Lips-
chitz constant. With further assumption on the smoothness
of the density, the weighted KDE can achieve even better
rate. For instance, if � scales linearly with dimension, the
error of weighted KDE can achieve a rate independent of
the dimension.

Essentially, the weighted KDE step provides an ✏-prox-
mapping P✏t

q̃t
(�tgt) (3) in density space as we discussed

in Section 2. The inexactness is therefore determined by
the number of samples mt and kernel bandwidth ht used in
the weighted KDE.

3.3 Overall Algorithm

We present the overall algorithm, Particle Mirror De-
scent (PMD), in Algorithm 1. The algorithm is based on
stochastic mirror descent incorporated with two strategies
from section 3.1 and 3.2 to compute prox-mapping. PMD
takes as input N samples X = {xn}N

n=1, a prior p(✓) over
the model parameter and the likelihood p(x|✓), and outputs
the posterior density estimator q̃T (✓) after T iterations. At
each iteration, PMD takes the stochastic functional gradient
information and computes an inexact prox-mapping q̃t(✓)
through either weighted particles or weighted kernel den-
sity estimator. Note that as discussed in Section 2, we can
also take a batch of points at each iteration to compute the
stochastic gradient in order to reduce variance.

In Section 4, we will show that, with proper setting of step-
size �, Algorithm 1 converges in rate O(1/

p
m) using m

particles, in terms of either integral approximation or KL-
divergence, to the true posterior.

In practice, we could combine the proposed two algorithms
to reduce the computation cost. In the beginning stage, we
adopt the second strategy. The computation cost is afford-
able for small number of particles. After we achieve a rea-
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sonably good estimator of the posterior, we could switch to
the first strategy using large size particles to get better rate.

4 Theoretical Guarantees

In this section, we show that PMD algorithm (i) given good
prior p(✓), achieves a dimension independent, sublinear
rate of convergence in terms of integral approximation; and
(ii) in general cases, achieves a dimension dependent, sub-
linear rate of convergence in terms of KL-divergence with
proper choices of stepsizes.

4.1 Weak Convergence of PMD

The weighted particles approximation, q̃t(✓) =Pm
i=1 ↵i �(✓i), returned by Algorithm 1 can be used

directly for Bayesian inference. That is, given a function
f ,

R
q⇤(✓)f(✓)d✓ can be approximated as

Pm
i=1 ↵if(✓i).

We will analyze its ability in approximating integral,
which is commonly used in sequential Monte Carlo for
dynamic models (Crisan and Doucet, 2002) and stochastic
Langevin dynamics (Vollmer et al, 2015). For simplicity,
we may write

Pm
i=1 ↵if(✓i) as

R
q̃t(✓)f(✓)d✓, despite

of the fact that q̃t(✓) is not exactly a density here. We
show a sublinear rate of convergence independent of the
dimension exists.

Theorem 5 (Integral approximation) Assume p(✓) has
the same support as the true posterior q⇤(✓), i.e., 0 6
q⇤(✓)/p(✓) 6 C. Assume further model kp(x|✓)Nk1 6
⇢, 8x. Then 8f(✓) bounded and integrable, the T -step
PMD algorithm with stepsize �t = ⌘

t returns m weighted
particles such that

E
����
Z

q̃T (✓)f(✓)d✓ �
Z

q⇤(✓)f(✓)d✓

����
�

6 2
p

max{C, ⇢eM )}kfk1p
m

+ max

⇢p
KL(q⇤||p),

⌘Mp
2⌘ � 1

�kfk1p
T

where M := maxt=1,...,T kgtk1.

Remark. The condition for the models, kp(x|✓)Nk1 6
⇢, 8x, is mild, and there are plenty of models satisfying
such requirement. For examples, in binary/multi-class lo-
gistic regression, probit regression, as well as latent Dirich-
let analysis, ⇢ 6 1. Please refer to details in Appendix C.
The proof combines the results of the weighted particles
for integration, and convergence analysis of mirror descent.
One can see that the error consists of two terms, one from
integration approximation and the other from optimization
error. To achieve the best rate of convergence, we need to
balance the two terms. That is, when the number particles,
m, scales linearly with the number of iterations, we obtain
an overall convergence rate of O( 1p

T
). In other words, if

the number of particles is fixed to m, we could achieve the
convergence rate O( 1p

m
) with T = O(m) iterations.

4.2 Strong Convergence of PMD
In general, when the weighted kernel density approxima-
tion scheme is used, we show that PMD enjoys a much
stronger convergence, i.e., the KL-divergence between the
generated density and the true posterior converges sublin-
early. Throughout this section, we merely assume that

• The prior and likelihood belong to (�; L)-Hölder
class.

• Kernel K(·) is a �-valid density kernel with a com-
pact support and there exists µ, ⌫, � > 0 such thatR

K(z)2 dz 6 µ2,
R
kzk� |K(z)|dz 6 ⌫.

• There exists a bounded support ⌦ such that q̃+
t almost

surely bounded away from ��1 > 0.
Note that the above assumptions are more of a brief charac-
teristics of the commonly used kernels and inferences prob-
lems in practice rather than an exception. The first condi-
tion clearly holds true when the logarithmic of the prior
and likelihood belongs to C1 with bounded derivatives
of all orders, as assumed in several literature (Teh et al.,
2014; Vollmer et al, 2015). The second condition is for
regularizing kernels for density estimation. The third con-
dition is for characterizing the estimator over its support.
These assumptions automatically validate all the conditions
required to apply Theorem 4 and the corresponding high
probability bounds (stated in Corollary 17 in appendix).
Let the kernel bandwidth ht = m

�1/(d+2�)
t , we immedi-

ately have that with high probability,

kq̃t+1 �Pq̃t
(�tgt)k1 6 O(m

��/(d+2�)
t ).

Directly applying Theorem 2, and solving the recursion fol-
lowing (Nemirovski et al., 2009), we establish the conver-
gence results in terms of KL-divergence.

Theorem 6 (KL-divergence) Based on the above as-
sumptions, when setting �t = min{ 2

t+1 , �

Mm
�/(d+2�)
t

},

E[KL(q⇤||q̃T )] 6
2 max

�
D1, M

2
 

T

+ C1

PT
t=1 t2m

� 2�
d+2�

t

T 2
+ C2m

� �
d+2�

T

where M := maxt=1,...,T kgtk1, D1 = KL(q⇤||q̃1),
C1 := O(1)(µ + ⌫L)2µ2�, and C2 := O(1)M(µ + ⌫L)
with O(1) being a constant.

Remark. Unlike Theorem 5, the convergence results are
established in terms of the KL-divergence, which is a
stronger criterion and can be used to derive the conver-
gence under other divergences (Gibbs and Su, 2002). To
our best knowledge, these results are the first of its kind
for estimating posterior densities in literature. One can im-
mediately see that the final accuracy is essentially deter-
mined by two sources of errors, one from noise in applying
stochastic gradient, the other from applying weighted ker-
nel density estimator. For the last iterate, an overall O( 1

T )

convergence rate can be achieved when mt = O(t2+d/�).
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Table 1: Summary of the related inference methods

Methods Provable Convergence Convergence Cost Black
Criterion Rate Computation Memory Box

per Iteration
SVI No � � ⌦(d) O(d) No
NPV No � � ⌦(dm2N + d2N) O(dm) No
Static SMC No � � ⌦(dm) O(dm) Yes
SGLD Yes |hq � q⇤, fi| O(m� 1

3 ) ⌦(d) O(dm) Yes
PMD Yes |hq � q⇤, fi| O(m� 1

2 ) ⌦(dm) O(dm) Yes
KL(q⇤||q) O(m� 1

2 ) ⌦(dm2) O(dm)

There is an explicit trade-off between the overall rate and
the total number of particles: the more particles we use at
each iteration, the faster algorithm converges. One should
also note that in our analysis, we explicitly characterize the
effect of the smoothness of model controlled by �, which is
assumed to be infinite in existing analysis of SGLD. When
the smoothness parameter � >> d, the number of particles
is no longer depend on the dimension. That means, with
memory budget O(dm), i.e., the number of particles is set
to be O(m), we could achieve a O(1/

p
m) rate.

Open question. It is worth mentioning that in the above
result, the O(1/T ) bound corresponding to the stochas-
ticity is tight (see Nemirovski et al. (2009)), and the
O(m� �

d+2� ) bound for KDE estimation is also tight by it-
self (see (Barron and Yang, 1995)). An interesting question
here is whether the overall complexity provided here is in-
deed optimal? This is out of the scope of this paper, and we
will leave it as an open question.

5 Related Work

PMD connects stochastic optimization, Monte Carlo ap-
proximation and functional analysis to Bayesian inference.
Therefore, it is closely related to two different paradigms of
inference algorithms derived based on either optimization
or Monte Carlo approximation.

Relation to SVI. From the optimization point of view,
the proposed algorithm shares some similarities to stochas-
tic variational inference (SVI) (Hoffman et al., 2013)–both
algorithms utilize stochastic gradients to update the solu-
tion. However, SVI optimizes a surrogate of the objective,
the evidence lower bound (ELBO), with respect to a re-
stricted parametric distribution1; while the PMD directly
optimizes the objective over all valid densities in a non-
parametric form. Our flexibility in density space eliminates
the bias and leads to favorable convergence results.

Relation to SMC. From the sampling point of
view, PMD and the particle filtering/sequential Monte
Carlo (SMC) (Doucet et al., 2001) both rely on importance
sampling. In the framework of SMC sampler (Del Moral

1Even in (Gershman et al., 2012), “nonparametric variational
inference” (NPV) uses the mixture of Gaussians as the variational
family which is still parametric.

et al., 2006), the static SMC variants proposed in (Chopin,
2002; Balakrishnan and Madigan, 2006) bares some
resemblances to the proposed PMD. However, their
updates come from completely different origins: the static
SMC update is based on Monte Carlo approximation
of Bayes’ rule, while the PMD update based on inexact
prox-mappings. On the algorithmic side, (i) the static
SMC re-weights the particles with likelihood while the
PMD re-weights based on functional gradient, which can
be fractional power of the likelihood; and (ii) the static
SMC only utilizes each datum once while the PMD allows
multiple pass of the datasets. Most importantly, on the
theoretical side, PMD is guaranteed with convergence in
terms of both KL-divergence and integral approximation
for static model, while SMC is only rigoriously justified
for dynamic models. It is unclear whether the convergence
still holds for these extensions.

Summary of the comparison. We summarize the com-
parison between PMD and static SMC, SGLD, SVI and
NPV in Table 1. For the connections to other inference
algorithms, including Annealed IS (Neal, 2001), general
SMC sampler (Del Moral et al., 2006), stochastic gradi-
ent dynamics family, and nonparametric variational infer-
ence, please refer to Appendix G. Given dataset {xi}N

i=1,
the model p(x|✓), ✓ 2 Rd and prior p(✓), whose value
and gradient could be computed, we set PMD, static SMC,
SGLD and NPV to keep m samples/components, so that
they have the same memory cost and comparable conver-
gence rate in terms of m. Therefore, SGLD runs O(m)
iterations. Meanwhile, by balancing the optimization error
and approximation in PMD, we have PMD running O(m)
for integal approximation and O(

p
m) for KL-divergence.

For static SMC, the number of iteration is O(N). From
Table 1, we can see that there exists a delicate trade-off be-
tween computation, memory cost and convergence rate for
the approximate inference methods.

1. The static SMC uses simple normal distribu-
tion (Chopin, 2002) or kernel density estimation (Bal-
akrishnan and Madigan, 2006) for rejuvenation. How-
ever, such moving kernel is purely heuristic and it is
unclear whether the convergence rate of SMC for dy-
namic system (Crisan and Doucet, 2002; Gland and
Oudjane, 2004) still holds for static models. To en-
sure the convergence of static SMC, MCMC is needed
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in the rejuvenation step. The MCMC step requires to
browse all the previously visited data, leading to ex-
tra computation cost ⌦(dmt) and memory cost O(dt),
and hence violating the memory budget requirement.
We emphasize that even using MCMC in static SMC
for rejuvenation, the conditions required for static
SMC is more restricted. We discuss the conditions
for convergence of SMC and PMD using particles ap-
proximation in Appendix C.

2. Comparing with SGLD, the cost of PMD at each it-
eration is higher. However, PMD converges in rate
of O(m� 1

2 ), faster than SGLD, O(m� 1
3 ), in terms

of integral approximation and KL-divergence which
is more stringent if all the orders of derivatives of
stochastic gradient is bounded. Moreover, even for the
integral approximation, SGLD converges only when f
having weak Taylor series expansion, while for PMD,
f is only required to be bounded. The SGLD also
requires the stochastic gradient satisfying several ex-
tra conditions to form a Lyapunov system, while such
conditions are not needed in PMD.

6 Experiments

We conduct experiments on mixture models, logistic re-
gression, sparse Gaussian processes and latent Dirichlet
allocation to demonstrate the advantages of PMD in cap-
turing multiple modes, dealing with non-conjugate models
and incorporating special structures, respectively.

Competing algorithms. For the mixture model and lo-
gistic regression, we compare our algorithm with five gen-
eral approximate Bayesian inference methods, including
three sampling algorithms, i.e., one-pass sequential Monte
Carlo (one-pass SMC) (Balakrishnan and Madigan, 2006)
which is an improved version of the SMC for Bayesian
inference (Chopin, 2002), stochastic gradient Langevin
dynamics (SGD Langevin) (Welling and Teh, 2011) and
Gibbs sampling, and two variational inference methods,
i.e., stochastic variational inference (SVI) (Hoffman et al.,
2013) and stochastic variant of nonparametric variational
inference (SGD NPV) (Gershman et al., 2012). For sparse
GP and LDA, we compare with the existing large-scale in-
ference algorithms designed specifically for the models.

Evaluation criterion. For the synthetic data generated
by mixture model, we could calculate the true posterior,
Therefore, we evaluate the performance directly through
total variation and KL-divergence (cross entropy). For the
experiments on logistic regression, sparse GP and LDA
on real-world datasets, we use indirect criteria which are
widely used (Chen et al., 2014; Ding et al., 2014; Hensman
et al., 2013; Patterson and Teh, 2013; Hoffman et al., 2013)
because of the intractability of the posterior. We keep the
same memory budget for Monte Carlo based algorithms if
their computational cost is acceptable. To demonstrate the

efficiency of each algorithm in utilizing data, we use the
number of data visited cumulatively as x-axis.

For the details of the model specification, experimental se-
tups, additional results and algorithm derivations for sparse
GP and LDA, please refer to the Appendix H.

Mixture Models. We conduct comparison on a simple
yet interesting mixture model (Welling and Teh, 2011), the
observations xi ⇠ pN (✓1, �

2
x)+(1�p)N (✓1+✓2, �

2
x) and

✓1 ⇠ N (0, �2
1), ✓2 ⇠ N (0, �2

2), where (�1, �2) = (1, 1),
�x = 2.5 and p = 0.5. The means of two Gaussians are
tied together making ✓1 and ✓2 correlated in the posterior.
We generate 1000 data from the model with (✓1, ✓2) =
(1,�2). This is one mode of the posterior, there is another
equivalent mode at (✓1, ✓2) = (�1, 2). We initialize all al-
gorithms with prior on (✓1, ✓2). We repeat the experiments
10 times and report the average results. We keep the same
memory for all except SVI. The true posterior and the one
generated by our method is illustrated in Figure 1 (1)(2).
PMD fits both modes well and recovers nicely the poste-
rior while other algorithms either miss a mode or fail to fit
the multimodal density. For the competitors’ results, please
refer to Appendix H. PMD achieves the best performance
in terms of total variation and cross entropy as shown in
Figure 1 (3)(4). This experiment clearly indicates our algo-
rithm is able to take advantages of nonparametric model to
capture multiple modes.

Bayesian Logistic Regression. We test our algorithm
on logistic regression with non-conjugate prior for hand-
written digits classification on the MNIST8M 8 vs. 6
dataset. The dataset contains about 1.6M training sam-
ples and 1932 testing samples. We initialize all algorithms
with same prior and terminate the stochastic algorithms af-
ter 5 passes through the dataset. We keep 1000 samples
for Monte Carlo based algorithms, except Gibbs sampling
whose computation cost is unaffordable. We repeat the
experiments 10 times and the results are reported in Fig-
ure 2(1). Obviously, Gibbs sampling (Holmes and Held,
145-168), which needs to scan the whole dataset, is not
suitable for large-scale problem. In this experiment, SVI
performs best at first, which is expectable because learn-
ing in the Gaussian family is simpler comparing to non-
parametric density family. Our algorithm achieves com-
parable performance in nonparametric form after fed with
enough data, 98.8%, to SVI which relies on carefully de-
signed lower bound of the log-likelihood (Jaakkola and Jor-
dan, 1997). SGD NPV is flexible with mixture models fam-
ily, however, its speed becomes the bottleneck. For SGD
NPV, the speed is dragged down for the use of L-BFGS to
optimize the second-order approximation of ELBO.

Sparse Gaussian Processes. We use sparse GPs mod-
els to predict the year of songs (Bertin-Mahieux et al.,
2011). In this task, we compare to the SVI for sparse
GPs (Hoffman et al., 2013; Hensman et al., 2013) and one-
pass SMC. We also included subset of data approxima-
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Figure 1: Experimental results for mixture model on synthetic dataset.
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Figure 2: Experimental results on several different models for real-world datasets.

tion (SoD) (Quiñonero-Candela and Rasmussen, 2005) as
baseline. The data contains about 0.5M songs, each repre-
sented by 90-dimension features. We terminate the stochas-
tic algorithms after 2 passes of dataset. We use 16 particles
in both SMC and PMD. The number of inducing inputs in
sparse GP is set to be 210, and other hyperparameters of
sparse GP are fixed for all methods. We run experiments
10 times and results are reported in Figure. 2(2). Our al-
gorithm achieves the best RMSE 0.027, significantly better
than one-pass SMC and SVI.

Latent Dirichlet Allocation. We compare to SVI (Hoff-
man et al., 2013), stochastic gradient Riemannian Langevin
dynamic (SGRLD) (Patterson and Teh, 2013), and SMC
specially designed for LDA (Canini et al., 2009) on
Wikipedia dataset (Patterson and Teh, 2013). The dataset
contains 0.15M documents, about 2M words and 8000 vo-
cabulary. Since we evaluate their performances in terms
of perplexity, which is integral over posterior, we do not
need to recover the posterior, and therefore, we follow the
same setting in (Ahmed et al., 2012; Mimno et al., 2012),
where one particle is used in SMC and PMD to save the
cost. We set topic number to 100 and fix other hyperparam-
eters to be fair to all algorithms. We stop the stochastic al-
gorithms after 5 passes of dataset. The results are reported
in Figure 2(3). The top words from several topics found
by our algorithm are illustrated in Appendix H. Our algo-
rithm achieves the best perplexity, significantly better than
SGRLD and SVI. In this experiment, SMC performs well
at the beginning since it treats each documents equally and
updates with full likelihood. However, SMC only uses each

datum once, while the stochastic algorithms, e.g., SGRLD,
SVI and our PMD, could further refine the solution by run-
ning the dataset multiple times.

7 Conclusion
Our work contributes towards achieving better trade-off be-
tween efficiency, flexibility and provability in approximate
Bayesian inference from optimization perspective. The
proposed algorithm, Particle Mirror Descent, successfully
combines stochastic mirror descent and nonparametric den-
sity approximation. Theoretically, the algorithm enjoys a
rate O(1/

p
m) in terms of both integral approximation and

KL-divergence, with O(m) particles. Practically, the algo-
rithm achieves competitive performance to existing state-
of-the-art inference algorithms in mixture models, logistic
regression, sparse Gaussian processes and latent Dirichlet
analysis on several large-scale datasets.
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