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A Proof of Theorem 1

We will restate the theorem here for convenience.

Theorem 1. Fix δ ∈ (0, 1). For each ` ≤ dmax, as-
sume that the subroutines nbdSelect and nbdVerify
satisfy:

(C1) For any vertex i ∈ [p] and subset F ⊆ [p] that
are such that |N(i)| = di ≤ ` and N(i) ⊆ F ,
the following holds. Given g(`) samples from

XF , nbdSelect(i, `,
{
X

(j)
F

}
j∈S1

) returns the true

neighborhood of i with probability greater than
1− δ/2pdmax.

(C2) For any vertex i ∈ [p] and subsets F,H ⊆ [p]
that are such that |N(i)| = di ≤ `, N(i) ⊆ F ,
and H ⊆ F , the following holds. Given h(|H|)
samples from XF , nbdVerify (i,H,

{
X

(j)
F

}
) re-

turns true if and only if N(i) ⊆ H with probabil-
ity greater than 1− δ/2pdmax.

Then, with probability no less than 1 − δ, Algo-
rithm 1 returns the correct graph. Furthermore, it
suffices if B ≥

∑
i∈[p]

∑
0≤k≤dlog2 d

i
maxe

g(2k) + h(2k)).
That is, Algorithm 1 has a total sample complexity
of
∑
i∈[p]

∑
0≤k≤dlog2 d

i
maxe

g(2k) + h(2k) at confidence
level 1− δ.

Proof. To prove this theorem, we will use a simple
argument that can be thought of as a proof by prob-
abilistic induction. Towards this end, we will let Ek
be the event that Algorithm 1 succeeds at iteration
number k. Notice that k takes values in the set
{1, 2, . . . , blog2(2p)c} since the algorithm terminates
when the (doubling) counter satisfies ` = 2k−1 ≥ 2p.
We can characterize the event Ek as follows:

• For each i ∈ [p] \ nbdFound, if di = |N(i)| ≤
2k−1, then N̂(i), the output of

nbdSelect(i, `, {X(j)
[p]\settled}j∈S1

) is exactly

N(i), and nbdVerify(i, N̂(i),
{
X[p]\settled

}
j∈S2

)
outputs true.

• For each i ∈ [p] \ nbdFound, if di > 2k−1,

then nbdVerify(i, N̂(i),
{
X[p]\settled

}
j∈S2

) out-

puts false.

We begin our proof by bounding the probability of
error from above as follows.

P [error] = P

blog2(2p)c⋃
k=1

Eck


≤
blog2(2p)c∑

k=1

P [Eck|E1, . . . , Ek−1] , (1)

where we have used the convention that E1, . . . , Ek−1 =
∅ for k = 1. In what follows, fix an arbitrary k ∈
[blog2(2p)c] and set ` = 2k−1; we will bound the prob-
ability P [Eck|E1, . . . , Ek−1].

First, observe that conditioned on E1, . . . , Ek−1, the
following is true of the (evolving) sets nbdFound and
settled. If a vertex i ∈ [p] is such that di = |N(i)| ≤
`/2, then nbdFound contains i, and similarly if every
j ∈ N(i) is such that dj ≤ `/2, then settled contains
i. Next, we observe that since we are conditioning on
E1, . . . , Ek−1, the following statements hold provided
` ≤ dmax:

• If i is such that di ≤ `, then N(i)∩ settled = ∅,
since each j ∈ N(i) has at least one neighbor (viz.,
i) has not been enrolled in nbdFound. Therefore,

by (C1), N̂(i), the output of

nbdSelect(i, `,
{
X

(j)
[p]\settled

}
j∈S1

) is exactly

N(i) with probability at least 1− δ/2pdmax.

• For such an i (i.e., with di ≤ `),

nbdSelect(i, N̂(i), {X(j)
[p]\settled}j∈S2

)
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returns true. On the other hand, if
i is such that di > `, the subroutine

nbdVerify(i, N̂(i), {X(j)
[p]\settled}j∈S2) re-

turns false since
∣∣∣N̂(i)

∣∣∣ ≤ ` by definition of the

nbdSelect function. Both these follow from (C2)
and with probability at least 1− δ/2pdmax.

Both these observations together imply that for any k
such that 2k−1 ≤ dmax, P [Eck|E1, . . . , Ek−1] ≤ p/dmax;
observe that we have (quite conservatively) bounded
this event by using p as an upper bound to the num-
ber of vertices whose degrees do not exceed 2k−1. On
the other hand, if 2k−1 > dmax, by observations made
above, nbdFound = [p]. Therefore, Algorithm 1
would have terminated before k reached such a value
and P [Eck|E1, . . . , Ek−1] = 0. Therefore, from (1), we
have that the probability that the algorithm errs is no
more than δ, as required.

Finally, observe that the above argument implies that
with probability greater 1 − pdmaxδ, the following is
true. Each vertex i ∈ [p] is enrolled in nbdFound no
later than when the counter reaches ` = 2dlog2 die ≤
2di. Therefore, by the time ` reaches 2dimax, every
neighbor of i has already been enrolled in nbdFound,
which of course implies that i is enrolled in settled
and is no longer sampled from. Therefore, the total
number of samples accumulated for vertex i is given by∑dlog2 d

i
maxe

k=0 g(2k) + h(2k). This implies that a budget
B ≥

∑
i∈[p]

∑
0≤k≤dlog2 d

i
maxe

g(2k)+h(2k) is sufficient.

B Proof of Theorem 2

We will restate Theorem 2 here for convenience.

Theorem 2. Fix δ ∈ (0, 1) and suppose that as-
sumptions (A1) and (A2) hold. Then, there exists a
constant c = c(m,M, δ) such that if we set g(`) =
dc` log pe and ξ = m/2, then with probability no less
than 1− δ, the following hold:

1. The AdPaCT algorithm successfully recovers the
graph G.

2. The computational complexity of the AdPaCT al-
gorithm is no worse than O(pdmax+2)

This implies that the total sample complexity of the
AdPaCT algorithm at confidence level 1−δ is bounded
by 2cd̄maxp log p.

Proof. To prove Theorem 2, we will bound the proba-
bility that the conditions (C1) and (C2) are violated.

First, fix an arbitrary ` ≤ dmax, a vertex i ∈ [p], and
a subset F ⊆ [p] such that di ≤ ` and N(i) ⊆ F .
For ease of notation, we will let n` = g(`). The event
that the nbdVerify subroutine defined in Algorithm 2
does not satisfy the condition (C1) is equivalent to
saying that there is a set S ⊆ F such that |S| ≤ ` and
maxj /∈S∪{i}

∣∣ρ̂i,j|S∣∣ ≤ ξ and one of the following events
hold:

• maxj /∈N(i)

∣∣ρ̂i,j|N(i)

∣∣ > ξ

• |S| < di

• |S| = di and maxj /∈S∪{i}
∣∣ρ̂i,j|S∣∣ ≤

maxj /∈N(i)

∣∣ρ̂i,j|N(i)

∣∣.
Letting Si,j,` denote the set of all sets of size at most
` that do not separate1 i from j in the graph G,
observe that above events imply that one or both of
the following conditions hold: (a) there exists a ver-
tex j ∈ [p] \ {i} and a subset S ⊆ Si,j,` such that∣∣ρ̂i,j|S∣∣ ≤ ξ, or (b) there is a vertex j ∈ [p] \ N(i):∣∣ρ̂i,j|N(i)

∣∣ > ξ. Therefore, we will bound the probabil-
ity that (C1) does not hold, an event we will dub E1,
as follows

P [E1]

≤
∑

j∈[p]\{i}
S∈Si,j,`

P
[∣∣ρ̂i,j|S∣∣ ≤ ξ]+

∑
j∈[p]\N(i)

P
[∣∣ρ̂i,j|N(i)

∣∣ > ξ
]
.

(2)

To proceed, let us consider an arbitrary term in the
first sum. Since S ∈ Si,j,`, we know by the second part
of assumption (A2) that

∣∣ρi,j|S∣∣ > m. Now, observe

that
∣∣ρ̂i,j|S∣∣ ≤ ξ and

∣∣ρi,j|S∣∣ ≥ m together imply that∣∣ρi,j|S∣∣ − ∣∣ρ̂i,j|S∣∣ ≥ m − ξ ⇒
∣∣ρi,j|S − ρ̂i,j|S∣∣ ≥ m − ξ,

since m > ξ. Therefore, in this case, we have

P
[∣∣ρ̂i,j|S∣∣ ≤ ξ]
≤ P

[∣∣ρ̂i,j|S − ρi,j|S∣∣ ≥ m− ξ] (3)

(a)

≤ C1 (n` − 2− |S|)

exp

{
− (n` − 4− |S|) log

(
4 + (m− ξ)2

4− (m− ξ)2

)}
(4)

≤ C1n` exp

{
− (n` − 4− `) log

(
16 +m2

16−m2

)}
, (5)

where (a) follows from Lemma 3 in Appendix D and
as in the lemma, the constant C1 only depends on M .
The last step follows from the condition that |S| ≤ `
and ξ = m/2.

1A set S is said to separate a pair of vertices i and j
in a graph if all the paths that connect i and j contain at
least one vertex from S.
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Next, we will consider an arbitrary term in the sec-
ond summation of (2). Since j /∈ N(i), we know by
assumption (A1), ρi,j|N(i) = 0. Therefore,

P
[∣∣ρ̂i,j|S∣∣ ≥ ξ]
= P

[∣∣ρ̂i,j|S − ρi,j|S∣∣ ≥ ξ] (6)

(a)

≤ C1 (n` − 2− |S|)

exp

{
− (n` − 4− |S|) log

(
4 + ξ2

4− ξ2

)}
(7)

≤ C1n` exp

{
− (n` − 4− `) log

(
16 +m2

16−m2

)}
, (8)

where, again, (a) follows from Lemma 3 in Appendix D
and the last step follows after observing that |S| ≤ `
and ξ = m/2. So, from (2), we have the following
upper bound on the probability that (C1) is violated:

P [(C1) is violated for a fixed i]

≤
∑

j∈[p]\{i}
S∈Si,j,`

P
[∣∣ρ̂i,j|S∣∣ ≤ ξ]+

∑
j∈[p]\N(i)

P
[∣∣ρ̂i,j|N(i)

∣∣ > ξ
]

(9)

≤ 2C1p
`+1n` exp

{
− (n` − 4− `) log

(
16 +m2

16−m2

)}
,

(10)

where the last step follows from observing that there
are no more than p`+1 terms in the first sum and p
terms in the second sum. As observed in Section 4 in
the manuscript, (C2) is satisfied by default for Algo-
rithm 2 since the verification is implicitly performed
by the exhaustive searching of the ndbSelect subrou-
tine. Therefore, if the number of samples n` = g(`)
satisfies

n` ≥

`+ 5 +
((`+ 5) log(2C1p) + log(2/δ))

log
(

16+m2

16−m2

)
 ,

then the following implications hold

2C1p
`+1n` exp

{
− (n` − 4− `) log

(
16 +m2

16−m2

)}

≤ 2C1p
`+1

`+ 6 +
((`+ 5) log(2C1p) + log(2/δ))

log
(

16+m2

16−m2

)


exp {− (`+ 5) log(2C1p)} ×
δ

2
(11)

≤ (2C1)−`−4p−4p+ 6 +
((p+ 5) log(2C1p) + log(2/δ))

log
(

16+m2

16−m2

)
 (12)

≤ δ

2
p−2, for p large enough. (13)

Therefore, from Theorem 1, we have that the Ad-
PaCT algorithm succeeds with probability exceeding
1 − pdmaxδp

−2 ≥ 1 − δ (since dmax ≤ p), as required.
The above calculation also demonstrates that (pro-
vided there is a constant c′′ > 0 such that δ < p−c

′′
,

which is a mild requirement) there exists a constant
c′ > 0 such that we might choose g(`) = dc′` log(p)/2e.
Finally, using Theorem 1, we observe that the number
of samples accumulated for vertex i is no more than∑
k≤dlog2 d

i
maxe

g(2k) +h(2k) ≤ 2cdimax log p/2 (where c

accounts for the integer effects ). Therefore, for the
AdPaCT algorithm to succeed, it suffices to pick a
budget that satisfies B ≥ cd̄maxp log p. Finally, ob-
serve that the computational complexity statement
follows from the size of the subsets that are being
searched over. This concludes the proof.

C Proof of Theorem 3

In this section, we will prove Theorem 3, which we
again restate here for convenience.

Theorem 3. Fix δ > 0. Suppose that assumptions
(A1)-(A4) hold. There exists constants C1, C2, C3

which depend on Σ,m, δ such that if we set c = C1

(i.e., g(`) = c` log p), ξ = m/2, λ` =
√

2C2‖Σ‖∞
C1γ2 , and

budget B = 2cd̄maxp log p, then with probability at least
1− δ, the following hold

1. the AMPL algorithm successfully recovers the
graph G,

2. The computational complexity is bounded from
above by dmaxpC, where C is the computational
cost of solving a single instance of Lasso,

provided

m ≥
(
Cmin

Cmax
+
Cmax

Cmin
+ 2

)
×

1

4 mini |Σii|

[
C3

√
2C1 ‖Σ‖∞
C2γ2

max
i

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̃iN(i),N(i)

)−1/2
∣∣∣∣∣∣∣∣∣∣∣∣2
∞

+20

√
‖Σ‖∞
CminC2


Proof. As in the proof of Theorem 2, we will prove
Theorem 3 by showing that the subroutines nbdSelect
and nbdVerify from Algorithm 3 (AMPL) satisfy the
conditions (C1) and (C2) of Theorem 1. Along the
way, we will also identify the functions g() and h()
which will suggest a choice for the budget.

Lemma 1. Fix an arbitrary ` ≤ dmax. Let i ∈ [p] and
F ⊆ [p] be such that di ≤ ` and N(i) ⊆ F . There ex-
ist constants C1, C2, C3 > 0 such that the ndbSelect
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subroutine returns N(i) with probability greater than
1− δ/pdmax, provided the following hold

1. g(`) = C1` log p

2. λ` =
√

2C2‖Σ‖∞
C1γ2

3.

m ≥
(
Cmin

Cmax
+
Cmax

Cmin
+ 2

)
× 1

4 mini |Σii|
×[

C3

√
2C1 ‖Σ‖∞
C2γ2

max
i

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̃iN(i),N(i)

)−1/2
∣∣∣∣∣∣∣∣∣∣∣∣2
∞

+20

√
‖Σ‖∞
CminC2


Proof. The subroutine ndbSelect receives as input
g(`) (which we will denote as n` for the rest of this
proof) samples from the random variables XF =
{Xi : i ∈ F}. Notice that XF is distributed accord-
ing to N (0, Σ̄), where we write Σ̄ to denote Σ(F, F ),
the (F, F ) submatrix of Σ.

First, we will begin by providing justification for the
fact that the Lasso [1] can be used for selecting the
neighborhood of i in our setting. The seminal work
of [2] first recognized that the Lasso can be used for
neighborhood selection in Gaussian graphical models.
We will adapt this insight, while accounting for the se-
quential marginalization of our active algorithm. To-
wards this end, let Xi denote the random variable cor-
responding to vertex i and let XG denote the random
vector corresponding to the vertices G , F \ {i}. As
noted above, XF ∼ N (0, Σ̄). Notice that the corre-
sponding precision matrix, K̄ , Σ̄−1, is not equal to
the original precision matrix K. We know that con-
ditioned on XG, Xi behaves like a Gaussian random
variable, and in particular, the conditional distribution
takes the following form (see, e.g., [3, Chapter 9]):

p(Xi | XG) = N (Σ̄iGΣ̄−1
GGXG, Σ̄ii − Σ̄iGΣ̄−1

GGΣ̄Gi).
(14)

Now, we will let y ∈ Rn` denote the vector of samples
from Xi that is received by ndbSelect and we will
let X ∈ Rn`×|G| denote the matrix of corresponding
samples from the random vector XG. This notation
will let us simplify the following presentation while
allowing us to readily identify the components of our
problem with the classic Lasso problem. With this no-
tation, from (14), we can write down the “true model”
corresponding to our problem as

y = Xβ∗ + w, (15)

where y,X are as above, β∗ , Σ̄iGΣ̄−1
GG ∈ R|G|, and

w ∈ Rn`
iid∼ N

(
0, Σ̄ii − Σ̄iGΣ̄−1

GGΣ̄Gi
)
. We will now

show that recovering the support of β∗ suffices.

Claim 1. For any j ∈ F \ {i}, we have that β∗j =

−Kij

Kii
.

Proof. To prove this, we will first begin by writing Σ̄
and K̄ in their partitioned form:

Σ̄ =

(
Σ̄ii Σ̄iG

Σ̄Gi Σ̄GG

)
(16)

K̄ =

(
K̄ii K̄iG

K̄Gi K̄GG

)
(17)

Using a standard block matrix inversion (see, e.g., [4]),
we observe that(

K̄ii K̄iG

K̄Gi K̄GG

)
= K̄ = Σ̄−1

=

(
Σ̄ii Σ̄iG

Σ̄Gi Σ̄GG

)−1

=

(
Σ̄−1
i\G −Σ̄−1

i\GΣ̄iGΣ̄−1
GG

∗ ∗

)
, (18)

where Σ̄i\G = Σ̄ii − Σ̄iGΣ̄−1
GGΣ̄Gi, and the ∗ values

maybe ignored for the present calculation. Comparing
the two block matrices above, it becomes clear that
−K̄iiΣ̄iGΣ̄−1

GG = K̄iG. Since we know from (14) that

β∗ = Σ̄iGΣ̄−1
GG, we have shown that β∗j = − K̄ij

K̄ii
.

Recall that Σ̄ = Σ(F, F ). Therefore, arguing as above,
we have the following relationship between the entries
of K and K̄

K̄ = KFF −KFF cK−1
F cF cKF cF . (19)

K̄ is called the Schur complement of the block KF cF c

with respect to the matrix K. Now, by the hypothe-
sis of the condition (C1), we know that F c ⊆ N̄(i)c.
This implies that KiF c = 0 identically, and in partic-
ular, this means that K̄ij = Kij for any j ∈ F . This
concludes the proof.

Along with the fact that the non-zeros in the concen-
tration matrix, K, correspond to graph edges, Claim 1
shows us that the support of β∗ from (15) gives us the
neighborhood of i.

Observe that the candidate neighborhood chosen by
the ndbSelect subroutine is the support of a vector
β̂ ∈ R|G|, where

β̂ ∈ arg min
β∈R|G|

1

2n`
‖y −Xβ‖22 + λ` ‖β‖1 . (20)
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Therefore, to conclude the proof of Lemma 1, it suffices
to show that β̂ and β∗ have the same support with
high probability. For this, we will borrow the results
of Theorem 4, which is based on the seminal work of
Wainwright [5]. In order to apply this theorem in our
setting, we need to ensure that the assumptions of the
theorem are satisfied, and this is what the next claim
will demonstrate.

Claim 2. Let Σ̆ , Σ(F \ {i}, F \ {i}) denote the co-
variance matrix corresponding to the rows of X and let
β∗min = minj∈N(i) |β∗j |. Then, the following hold∣∣∣∣∣∣∣∣∣∣∣∣Σ̆F\N(i),N(i)

(
Σ̆N(i),N(i)

)−1
∣∣∣∣∣∣∣∣∣∣∣∣
∞
≤ 1− γ (21)

0 < Cmin ≤ Λmin

(
Σ̆N(i),N(i)

)
(22)

Λmax

(
Σ̆N(i),N(i)

)
≤ Cmax <∞. (23)

β∗min ≥
m×mini∈[p] Σii(
Cmin

Cmax
+ Cmax

Cmin
+ 2
) (24)

Proof. First observe that the submatrices Σ̆N(i),N(i)

and Σ̃N(i),N(i) are identical since, by assumption
N(i) ⊆ F \ {i}. Therefore, by the hypotheses of The-
orem 3, the second set of inequalities follow immedi-
ately. Similarly, we observe that since F \ N(i) ⊆
[p] \N(i), the hypothesis of Theorem 3 implies that∣∣∣∣∣∣∣∣∣∣∣∣Σ̆F\N(i),N(i)

(
Σ̆N(i),N(i)

)−1
∣∣∣∣∣∣∣∣∣∣∣∣
∞

= max
j∈F\N(i)

∑
r∈N(i)

∣∣∣∣∣∣
∑
t∈N(i)

Σ̆j,r

[(
Σ̆N(i),N(i)

)−1
]
r,t

∣∣∣∣∣∣
= max
j∈F\N(i)

∑
r∈N(i)

∣∣∣∣∣∣
∑
t∈N(i)

Σ̆j,r

[(
Σ̃N(i),N(i)

)−1
]
r,t

∣∣∣∣∣∣
≤ max
j∈[p]\N(i)

∑
r∈N(i)

∣∣∣∣∣∣
∑
t∈N(i)

Σ̆j,r

[(
Σ̃N(i),N(i)

)−1
]
r,t

∣∣∣∣∣∣
≤ 1− γ. (25)

To conclude the proof of the claim, we will provide a
lower bound on β∗min. Towards this end, note that by
Claim 1, we have that

β∗min ≥ min
i,j∈[p]:Kij 6=0

|Kij |
max{|Kii| . |Kjj |}

≥ m

maxi∈[p] |Kii|
,

(26)

where the last inequality follows from assump-
tion (A2). We will proceed by obtaining an upper
bound on the denominator. Towards this end, we will
employ the well known Kantorovich inequality for pos-
itive definite matrices (see, e.g., [6]). This inequality

states that for a positive definite matrix A ∈ Rd×d
with real eigenvalues L ≤ λ1 ≤ · · · ≤ λd ≤ U , the
following holds for any x ∈ Rd

1 ≤
(
xTAx

) (
xTA−1x

)
≤ 1

4

(
L

U
+
U

L
+ 2

)
. (27)

Therefore, choosing x to be the i−th canonical vector
ei, we have the following useful inequality relating the
diagonal elements of a matrix to the diagonal elements
of its inverse

A−1
ii ≤

1

4Aii

(
L

U
+
U

L
+ 2

)
. (28)

Applying this to (26), we get the desired result. This
concludes the proof of the claim.

Claim 2 paves the way for applying Theorem 4 to our
setting. Before, we conclude, we observe the following:

(a) The noise variance (σ2) of Theorem 4 can be taken
to be maxi∈[p] Σii, from (15). It is not hard to see
that since Σ is a positive definite matrix, we have
that maxi∈[p] Σii = ‖Σ‖∞, the absolute maximum
element of Σ.

(b) Our bound from Claim 2 on β∗min implies that
we can satisfy the so-called “beta-min” condition
required by Theorem 4, provided m is as in the
statement of Theorem 3

Therefore, we now have that there exists constants
C1, C2 > 0 such that if we set n` = C1` log p and

λ` =
√

2C2‖Σ‖∞
C1`γ2 , we can be guaranteed that ndbSe-

lect succeeds with probability at least 1− δ/2pdmax.

This concludes the proof.

Lemma 2. Fix an arbitrary ` ≤ dmax, a vertex i ∈
[p] and subsets F,G ⊆ [p] that are such that di ≤ `,
N(i) ⊆ F , and H ⊆ F . There exists a constant C4 > 0
such that if we set h(`) = C4` log p, then the probability
that nbdVerify fails (as in (C2)) is at most δ/2pdmax.

The proof of this lemma follows directly from the
proof of Theorem 2. Therefore, using Lemma 1 and
Lemma 2 in Theorem 1, completes the proof of Theo-
rem 3.

D Helpful Results

D.1 Concentration of Partial Correlation
Coefficients

In this section, we will state a lemma that characterizes
the concentration of empirical partial correlation coef-
ficients (defined as in the paragraph after equation (3)
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in the manuscript) about their expected values. See [7]
for a proof.

Lemma 3. Provided (A2) holds, given n samples from
(Xi, Xj , XS), if the partial correlation coefficient ρ̂i,j|S
is defined as above, then we have the following result

P
[∣∣ρ̂i,j|S − ρi,j|S∣∣ ≥ ε]
≤ C1 (n− 2− |S|) exp

{
− (n− 4− |S|) log

(
4 + ε2

4− ε2

)}
,

(29)

where C1 > 0 is a constant that depends on M from
(A2).

D.2 Support Recovery for Lasso

Assume that y = Xβ∗+w, where y, w ∈ Rn, β∗ ∈ Rp,
and X ∈ Rn×p with iid rows xi ∼ N (0,Σ). Suppose
S is the support of β∗ and suppose that the following
hold ∣∣∣∣∣∣∣∣∣ΣScS (ΣSS)

−1
∣∣∣∣∣∣∣∣∣
∞
≤ 1− γ, γ ∈ (0, 1] (30)

Λmin (ΣSS) ≥ Cmin > 0 (31)

Λmax (ΣSS) ≤ Cmin < +∞ (32)

If we let β̂ ∈ Rp denote the solution to the Lasso prob-
lem

β̂ ,
1

2n
min
β∈Rp

‖y −Xβ‖22 + λn ‖β‖1 , (33)

then we have the following result.

Theorem 4. Suppose w ∼ N (0, σ2I) and suppose
that Σ satisfies the properties listed above. Then,
there exists constants C1, C2, C3, C4, C5 such that if
λn = σγ−1

√
2C1 log p/n, n ≥ C2k log p, and βmin ,

mini∈S |β∗i | > u(λn), where

u(λn) , C5λn

∣∣∣∣∣∣∣∣∣Σ−1/2
SS

∣∣∣∣∣∣∣∣∣2
∞

+ 20

√
σ2 log k

Cminn
, (34)

the support β̂ is identical to that of β∗ with probability
exceeding 1− C3p

−C4 .

Proof. The proof of this theorem follows almost en-
tirely from Theorem 3 in [5]. In fact, the only thing
we modify from that result is the rate of decay of
the probability of error. In particular, we will show
that the probability of error decays polynomially in p
(or equivalently exponentially in log p) for all values
of k, whereas Theorem 3 of [5] shows that the error
decays exponentially in min {k, log(p− k)}, which is
somewhat weak for our purposes.

Towards this end, it is not hard to see that the result
that requires strengthening is Lemma 5 in [5]. We
furnish a sharper substitute in Lemma 4.

Lemma 4. Consider a fixed z ∈ Rk, a constant
c1 > 0, and a random matrix W ∈ Rn×k with
i.i.d elements Wij ∼ N (0, 1). Suppose that n ≥

max

{
4

(
√

8−1)
2 k,

64
c21
k log(p− k)

}
, then there exists a

constant c2 > 0 such that

P

[∥∥∥∥∥
[(

1

n
WTW

)−1

− Ik

]
z

∥∥∥∥∥
∞

≥ C1 ‖z‖∞

]
≤ 4 exp (−c2 log(p− k))

Proof. Set A =
(

1
nW

TW
)−1 − Ik. Observe that

P [‖Az‖∞ ≥ c1 ‖z‖∞] ≤ P [‖A‖∞ ≥ c1] by the defini-
tion of the matrix infinity norm. Next, observe that
since the infinity norm is the maximum absolute row
sum of the matrix, we have that P [‖A‖∞ ≥ c1] ≤
P
[
‖A‖2 ≥ c1/

√
k
]
. From [5, Lemma 9] (which follows

in a straightforward manner from the seminal results
of [8]), we know that

P [‖A‖2 ≥ δ(n, k, t)] ≤ 2e−nt
2/2, (35)

where δ(n, k, t) = 2

(√
k
n + t

)
+

(√
k
n + t

)2

. We will

divide the proof into three cases:

Case (a): k ≤ c21
64

Suppose we pick t =
√

c1√
k
−1−

√
k
n , under the setting

of this case, provided n ≥ 4

(
√

8−1)
2 k, we have that

t >
√

8−1
2 > 0. Notice that for this choice of t, we have

δ(n, k, t) = c1√
k

. This gives us the following bound

P
[
‖A‖2 ≥

c1√
k

]
≤ 2 exp

−n2
(√

c1√
k
− 1−

√
k

n

)2


(36)

≤ 2 exp

−n2
(√

8− 1

2

)2
 (37)

Case (b): log(p− k) ≥ k > c21
64

Suppose we pick t = c1
8
√
k

, we have that t < 1, by the

assumption of this case. Then, if n ≥ 64k2

c21
observe

that

δ(n, k, t) = 2

(√
k

n
+ t

)
+

(√
k

n
+ t

)2

(38)

≤ c1√
k
. (39)

This implies that

P
[
‖A‖2 ≥

c1√
k

]
≤ 2 exp

{
− nc21

128k

}
. (40)
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Notice that if n ≥ 64
c21
k log(p − k), then n ≥ 64k2

c21
, as

required.

Case (c): k > log(p− k)
In this case, we can adopt the result from Lemma 5
of [5].

Putting all this together, we get the desired result.
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