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S1 DETAILED DESCRIPTION OF FIGURE 1

The plots in Figure 1 from the main text were generated using various estimators of σ2
0 , each of which was

computed for 500 independent datasets (y, X). The datasets were generated according to the linear model (1)–
(2) (equation references refer to the main text), with n = 500, p = 1000, σ2

0 = 1, and η20 = 4. We considered
settings where β had various sparsity levels, indicated by a parameter α ∈ [0, 100]. In the α%-sparse setting,
β has its first p(1 − α/100) entries all equal to each other and greater than zero; the rest of the entries are set
to 0. Detailed results on the performance of the various estimators, corresponding to the plots in Figure 1 are
reported in Table S1.

S2 DETAILED DESCRIPTION OF FIGURE 2

The asymptotic variances of various estimators for σ2
0 and r20 are plotted in Figure 2 of the main text. In the

main text, we describe in detail how the asymptotic variances of the MLEs σ̂2 and r̂2 are derived. Here we give
a brief derivation of the asymptotic variance of the MM and OLS estimators for σ2

0 and r20.

Dicker (2014) proposed the MM estimators σ̂2
MM and r̂2MM, and showed that they are asymptotically normal under

essentially the same conditions found in Theorem 2 of the main text. Moreover, their asymptotic variances are
given by

vMM(η20 , ρ) =
n

2σ4
0

lim
p/n→ρ

Var(σ̂2
MM) = ρ(1 + η20)2 + 1 + η40 ,

wMM(η20 , ρ) =
1

2
lim

p/n→ρ
Var(r̂2MM) = 1 + ρ− 1

(1 + η20)2
,

respectively. It is straightforward to check that the asymptotic variance of σ̂2
OLS is

vOLS(η20 , ρ) = lim
p/n→ρ

n

2σ4
0

Var(σ̂2
OLS) =

1

1− ρ
,

for ρ ∈ (0, 1).
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Table S1: Numerical results corresponding to the plots in Figure 1 from the main text. Actual value of the
residual variance is σ2

0 = 1. “Mean” and “Std. Err.” refer to the mean and standard error of the corresponding
estimator, computed from 500 independent datasets.

10% Sparsity 40% Sparsity 90% Sparsity 99.8% Sparsity
Method Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err.
MLE 1.0023 0.2890 1.0051 0.3008 1.0057 0.2978 1.0128 0.2911
MM 1.0136 0.4932 1.0270 0.4915 1.0172 0.5212 1.0242 0.5510
EigenPrism 1.0150 0.4896 1.0268 0.4862 1.0138 0.5168 1.0247 0.5468
AMP 0.9945 0.4165 0.9980 0.4412 1.0144 0.3022 1.0011 0.1143
Scaled-Lasso 4.9634 0.3075 4.9488 0.3100 4.8734 0.2956 1.0500 0.0679
RCV-Lasso 4.8668 0.3513 4.8293 0.3396 3.9171 0.4891 0.9973 0.0660

S3 PREPROCESSING STEPS FOR THE SNP AND GENE EXPRESSION
DATA DESCRIBED IN SECTION 6

Preprocessing steps of particular significance included: (i) For each of the 100 genes included in the data analysis,
only SNPs within 1 megabase pairs (Mbp) of the gene midpoint were included in the analysis; (ii) we only utilized
SNPs with minor allele frequency greater than 5% and no more than 10% missingness; (iii) we imputed missing
minor allele counts using the marginal mean from the Han Chinese population; and (iv) highly correlated SNPs
were removed from the analysis, by setting a correlation threshold of 2

√
log(n)/n and discarding SNPs that

exceeded this thresholded (one SNP chosen at random from each highly-correlated pair). A correlation screening
procedure similar to that described in (iv) was utilized in (Dicker, 2014) and is loosely justified by results on
random correlation matrices in (Jiang, 2004).

References

Dicker, L. H. Variance estimation in high-dimensional linear models. Biometrika, 101:269–284, 2014.

Jiang, T. The asymptotic distributions of the largest entries of sample correlation matrices. Ann. Appl. Probab., 14:
865–880, 2004.


