7 Appendix

7.1 Notations

In order to facilitate the reading of the paper, we provide below (see Table 2p the list of notations.

Table 2: Notations

notation	description
K	number of actions
M	number of contextual variables
D_{θ}	maximum depth of the tree θ
L	number of trees
T	time horizon
\mathcal{A}	set of actions
\mathcal{V}	set of variables
\mathcal{S}	set of remaining variables
\mathbf{x}	context vector $\mathbf{x}=\left(x_{1}, \ldots, x_{M}\right)$
\mathbf{y}	reward vector $\mathbf{y}=\left(y_{1}, \ldots, y_{K}\right)$
k_{t}	action chosen at time t
c_{θ}	context path the tree $\theta, c_{\theta}=\left(x_{i_{1}}, v_{i_{1}}\right), \ldots,\left(x_{i_{d_{\theta}}}, v_{i_{d_{\theta}}}\right)$
d_{θ}	current depth of the context path c_{θ}
μ_{k}	expected reward of action $k, \mu_{k}=\mathbb{E}_{D_{y}}\left[y_{k}\right]$
$\mu_{k}^{i} \mid v$	expected reward of action k conditioned to $x_{i}=v, \mu_{k}^{i} \mid v=\mathbb{E}_{D_{y}}\left[y_{k} \cdot \mathbb{1}_{x_{i}=v}\right]$
$\mu_{k, v}^{i}$	expected reward of action k and $x_{i}=v, \mu_{k, v}^{i}=\mathbb{E}_{D_{x, y}}\left[y_{k} \cdot \mathbb{1}_{x_{i}=v}\right]$
μ^{i}	expected reward for the use of the variable x_{i} to select the best actions
δ	probability of error
ϵ	approximation error
Δ_{1}	minimum of difference with the expected reward of the best action $\mu_{k^{*}}$
Δ_{2}	and the expected reward of a given action $k: \Delta_{1}=\min _{k \neq k^{*}}\left(\mu_{k^{*}}-\mu_{k}\right)$
t^{*}	minimum of difference with the best variable expected reward $\mu^{i^{*}}$

7.2 Lemma 1

Proof. We cannot use directly Hoeffding inequality (see Hoeffding (1963)) to bound the estimated gains of the use of variables. The proof of Lemma 1 overcomes this difficulty by bounding each estimated gain μ^{i} by the sum of the bounds over the values of the expected reward of the best action $\mu_{k^{*}, v}^{i}$ (inequality 77. From Hoeffding's inequality, at time t we have:

$$
\mathbb{P}\left(\left|\hat{\mu}_{k, v}^{i}-\mu_{k, v}^{i}\right| \geq \alpha_{t_{k}}\right) \leq 2 \exp \left(-2 \alpha_{t_{k}}^{2} t_{k}\right)=\frac{\delta}{2 K M t_{k}^{2}}
$$

where $\alpha_{t_{k}}=\sqrt{\frac{1}{2 t_{k}} \log \frac{4 K M t_{k}^{2}}{\delta}}$.
Using Hoeffding's inequality on each time t_{k}, applying the union bound and then $\sum 1 / t_{k}^{2}=\pi^{2} / 6$, the following inequality holds for any time t with a probability $1-\frac{\delta \pi^{2}}{12 K M}$:

$$
\begin{equation*}
\hat{\mu}_{k, v}^{i}-\alpha_{t_{k}} \leq \mu_{k, v}^{i} \leq \hat{\mu}_{k, v}^{i}+\alpha_{t_{k}} \tag{5}
\end{equation*}
$$

If the inequality $[5]$ holds for the actions $k^{\prime}=\arg \max _{k} \hat{\mu}_{k, v}^{i}$, and $k^{*}=\arg \max _{k} \mu_{k, v}^{i}$, we have:

$$
\begin{align*}
& \hat{\mu}_{k^{\prime}, v}^{i}-\alpha_{t_{k}} \leq \mu_{k^{\prime}, v}^{i} \leq \mu_{k^{*}, v}^{i} \leq \hat{\mu}_{k^{*}, v}^{i}+\alpha_{t_{k}} \leq \hat{\mu}_{k^{\prime}, v}^{i}+\alpha_{t_{k}} \\
& \Rightarrow \hat{\mu}_{k^{\prime}, v}^{i}-\alpha_{t_{k}} \leq \mu_{k^{*}, v}^{i} \leq \hat{\mu}_{k^{\prime}, v}^{i}+\alpha_{t_{k}} \tag{6}
\end{align*}
$$

If the previous inequality (6) holds for all values v of the variable x_{i}, we have:

$$
\begin{align*}
& \sum_{v \in\{0,1\}}\left(\hat{\mu}_{k^{\prime}, v}^{i}-\alpha_{t_{k}}\right) \leq \sum_{v \in\{0,1\}} \mu_{k^{*}, v}^{i} \leq \sum_{v \in\{0,1\}}\left(\hat{\mu}_{k^{\prime}, v}^{i}+\alpha_{t_{k}}\right) \tag{7}\\
& \Leftrightarrow \hat{\mu}^{i}-2 \alpha_{t_{k}} \leq \mu^{i} \leq \hat{\mu}^{i}+2 \alpha_{t_{k}}
\end{align*}
$$

If the previous inequality holds for $i^{\prime}=\arg \max _{i} \hat{\mu}^{i}$, we have:

$$
\begin{equation*}
\hat{\mu}^{i^{\prime}}-2 \alpha_{t_{k}} \leq \mu^{i^{\prime}} \leq \mu^{i^{*}} \tag{8}
\end{equation*}
$$

As a consequence, the variable x_{i} cannot be the best one when:

$$
\begin{equation*}
\hat{\mu}^{i}+2 \alpha_{t_{k}} \leq \hat{\mu}^{i^{\prime}}-2 \alpha_{t_{k}} \tag{9}
\end{equation*}
$$

Using the union bound, the probability of making an error about the selection on the next variable by eliminating each variable x_{i} when the inequality $\sqrt{97}$ holds is bounded by the sum for each variable x_{i} and each value v that the inequality 6 does not hold for k^{\prime} and k^{*} :

$$
\begin{equation*}
\mathbb{P}\left(i^{*} \neq i^{\prime}\right) \leq \sum_{i \in \mathcal{V}} \frac{K \delta \pi^{2}}{12 K M} \leq \sum_{i \in \mathcal{V}} \frac{\delta}{M} \leq \delta \tag{10}
\end{equation*}
$$

Now, we have to consider t_{k}^{*}, the number of steps needed to select the optimal variable. If the best variable has not been eliminated (probability $1-\delta$), the last variable x_{i} is eliminated when:

$$
\hat{\mu}^{i^{*}}-\hat{\mu}^{i} \geq 4 \alpha_{t_{k}^{*}}
$$

The difference between the expected reward of a variable x_{i} and the best next variable is defined by:

$$
\Delta_{i}=\mu^{i^{*}}-\mu^{i}
$$

Assume that:

$$
\begin{equation*}
\Delta_{i} \geq 4 \alpha_{t_{k}} \tag{11}
\end{equation*}
$$

The following inequality holds for the variable x_{i} with a probability $1-\frac{\delta}{K M}$:

$$
\hat{\mu}^{i}-2 \alpha_{t_{k}} \leq \mu^{i} \leq \hat{\mu}^{i}+2 \alpha_{t_{k}}
$$

Then, using the previous inequality in the inequality (11), we obtain:

$$
\left(\hat{\mu}^{i^{*}}+2 \alpha_{t_{k}}\right)-\left(\hat{\mu}^{i}+2 \alpha_{t_{k}}\right) \geq \mu^{i^{*}}-\mu^{i} \geq 4 \alpha_{t_{k}}
$$

Hence, we have:

$$
\hat{\mu}^{i^{*}}-\hat{\mu}^{i} \geq 4 \alpha_{t_{k}}
$$

The condition $\Delta_{i} \geq 4 \alpha_{t_{k}}$ implies the elimination of the variable x_{i}. Then, we have:

$$
\Delta_{i} \geq 4 \alpha_{t_{k}}
$$

$$
\begin{equation*}
\Rightarrow \Delta_{i}^{2} \geq \frac{8}{t_{k}} \log \frac{4 K M t_{k}^{2}}{\delta} \tag{12}
\end{equation*}
$$

The time t_{k}^{*}, where all non optimal variables have been eliminated, is reached when the variable corresponding to the minimum of Δ_{i}^{2} is eliminated.

$$
\begin{equation*}
\Rightarrow \Delta^{2} \geq \frac{8}{t_{k}^{*}} \log \frac{4 K M t_{k}^{* 2}}{\delta} \tag{13}
\end{equation*}
$$

where $\Delta=\min _{i \neq i^{*}} \Delta_{i}$.
The inequality $\sqrt{13}$ holds for all variables x_{i} with a probability $1-\delta$ for:

$$
\begin{equation*}
t_{k}^{*}=\frac{64}{\Delta^{2}} \log \frac{4 K M}{\delta . \Delta} \tag{14}
\end{equation*}
$$

Indeed, if we replace the value of t_{k}^{*} in the right term of the inequality 12 , we obtain:

$$
\begin{aligned}
& \frac{\Delta^{2}}{8 \log \frac{4 K M}{\delta . \Delta}}\left(\log \frac{4 K M}{\delta}+2 \log \frac{64}{\Delta^{2}}+2 \log \log \frac{4 K M}{\delta . \Delta}\right)= \\
& \frac{\Delta^{2}}{8 \log \frac{4 K M}{\delta . \Delta}}\left(\log \frac{4 K M}{\delta}-4 \log \Delta+12 \log 2+2 \log \log \frac{4 K M}{\delta . \Delta}\right) \leq \\
& \frac{\Delta^{2}}{8 \log \frac{4 K M}{\delta . \Delta}}\left(4 \log \frac{4 K M}{\delta . \Delta}+12 \log 2+2 \log \log \frac{4 K M}{\delta . \Delta}\right)
\end{aligned}
$$

For $x \geq 13$, we have:

$$
12 \log 2+2 \log \log x<4 \log x
$$

Hence, for $8 K M \geq 13$, we have:

$$
\begin{aligned}
& \frac{\Delta^{2}}{8 \log \frac{4 K M}{\delta . \Delta}}\left(4 \log \frac{4 K M}{\delta . \Delta}+12 \log 2+2 \log \log \frac{4 K M}{\delta . \Delta}\right) \leq \\
& \frac{\Delta^{2}}{8 \log \frac{4 K M}{\delta . \Delta}} 8 \log \frac{4 K M}{\delta . \Delta}=\Delta^{2}
\end{aligned}
$$

Hence, we obtain:

$$
t_{k}^{*}=\frac{64}{\Delta^{2}} \log \frac{4 K M}{\delta}, \text { with a probability } 1-\delta
$$

As the actions are chosen the same number of times (Round-robin function), we have $t=K t_{k}$, and thus:

$$
t^{*}=\frac{64 K}{\Delta^{2}} \log \frac{4 K M}{\delta}, \text { with a probability } 1-\delta
$$

7.3 Lemma 2

Proof. Let $y_{k, v}^{i}$ be a bounded random variable corresponding to the reward of the action k when the value v of the variable i is observed. Let y^{i} be a random variable such that:

$$
y^{i}=\max _{k} y_{k, v}^{i}
$$

We have:

$$
\mathbb{E}_{D_{x, y}}\left[y^{i}\right]=\mu^{i}
$$

Each y^{i} is updated each step t_{k} when each action has been played once. Let Θ be the sum of the binary random variables $\theta_{1}, \ldots, \theta_{t_{k}}, \ldots, \theta_{t_{k}^{*}}$ such that $\theta_{t_{k}}=\mathbb{1}_{y^{i}\left(t_{k}\right) \geq y^{j}\left(t_{k}\right)}$. Let $p_{i j}$ be the probability that the use of variable i leads to more rewards than the use of variable j. We have:

$$
p_{i j}=\frac{1}{2}-\Delta_{i j}, \text { where } \Delta_{i j}=\mu^{i}-\mu^{j}
$$

Slud's inequality (see Slud (1977)) states that when $p \leq 1 / 2$ and $t_{k}^{*} \leq x \leq t_{k}^{*} .(1-p)$, we have:

$$
\begin{equation*}
P(\Theta \geq x) \geq P\left(Z \geq \frac{x-t_{k}^{*} \cdot p}{\sqrt{t_{k}^{*} \cdot p(1-p)}}\right) \tag{15}
\end{equation*}
$$

where Z is a normal $\mathcal{N}(0,1)$ random variable.
To choose the best variable between i and j, one needs to find the time t_{k}^{*} where $P\left(\Theta \geq t_{k}^{*} / 2\right) \geq \delta$. To state the number of trials t_{k}^{*} needed to estimate $\Delta_{i j}$, we recall and adapt the arguments developed in Mousavi (2010). Using Slud's inequality (see equation 15), we have:

$$
\begin{equation*}
P\left(\Theta \geq t_{k}^{*} / 2\right) \geq P\left(Z \geq \frac{t_{k}^{*} \cdot \Delta_{i j}}{\sqrt{t_{k}^{*} \cdot p_{i j}\left(1-p_{i j}\right)}}\right) \tag{16}
\end{equation*}
$$

Then, we use the lower bound of the error function (see Chu (1955)):

$$
P(Z \geq z) \geq 1-\sqrt{1-\exp \left(-\frac{z^{2}}{2}\right)}
$$

Therefore, we have:

$$
\begin{aligned}
P\left(\Theta \geq t_{k}^{*} / 2\right) & \geq 1-\sqrt{1-\exp \left(-\frac{t_{k}^{*} \cdot \Delta_{i j}^{2}}{2 p_{i j}\left(1-p_{i j}\right)}\right)} \\
& \geq 1-\sqrt{1-\exp \left(-\frac{t_{k}^{*} \cdot \Delta_{i j}^{2}}{p_{i j}}\right)} \\
& \geq \frac{1}{2} \exp \left(-\frac{t_{k}^{*} \cdot \Delta_{i j}^{2}}{p_{i j}}\right)
\end{aligned}
$$

As $p_{i j}=1 / 2-\Delta_{i j}$, we have:

$$
\log \delta=\log \frac{1}{2}-\frac{t_{k}^{*} \cdot \Delta_{i j}^{2}}{1 / 2-\Delta_{i j}} \geq \log \frac{1}{2}-2 t_{k}^{*} \cdot \Delta_{i j}^{2}
$$

Hence, we have:

$$
t_{k}^{*}=\Omega\left(\frac{1}{\Delta_{i j}^{2}} \log \frac{1}{\delta}\right)
$$

Then, we need to use the fact that as all the values of all the variables are observed when one action is played: the $M(M-1) / 2$ estimations of bias are solved in parallel. In worst case, $\min _{i j} \Delta_{i j}=\min _{j} \Delta_{i^{*} j}=\Delta$. Thus any algorithm needs at least a sample complexity t^{*}, where:

$$
t^{*}=K . t_{k}^{*}=\Omega\left(\frac{K}{\Delta^{2}} \log \frac{1}{\delta}\right)
$$

7.4 Theorem 1

Proof. Lemma 1 states that the sample complexity needed to find the best variable is:

$$
t_{1}^{*}=\frac{64 K}{\Delta_{1}^{2}} \log \frac{4 K M}{\delta \Delta_{1}}, \text { where } \quad \Delta_{1}=\min _{i \neq i^{*}}\left(\mu^{i^{*}}-\mu^{i}\right)
$$

Lemma 3 states that the sample complexity needed to find the optimal action for a value v of the best variable is:

$$
t_{2, v}^{*}=\frac{64 K}{\Delta_{2, v}^{2}} \log \frac{4 K}{\delta \Delta_{2, v}}, \text { where } \quad \Delta_{2, v}=\min _{k \neq k^{*}}\left(\mu_{k^{*}, v}^{i^{*}}-\mu_{k, v}^{i^{*}}\right)
$$

The sample complexity of decision stump algorithm is bounded by the sum of the sample complexities of variable selection and action elimination algorithms:

$$
t^{*}=t_{1}^{*}+t_{2}^{*}, \text { where } t_{2}^{*}=\max _{v} t_{2, v}^{*}
$$

7.5 Theorem 2

Proof. In worst case, all the values of variables have different best actions, and $K=2 M$. If an action is suppressed before the best variable is selected, the estimation of the mean reward of one variable is underestimated. In worst case this variable is the best one, and a sub-optimal variable is selected. Thus, the best variable has to be selected before an action be eliminated. The lower bound of the decision stump problem is the sum of variable selection and best arm identification lower bounds, stated respectively in Lemma 2 and Lemma 4.

7.6 Theorem 3

Proof. The proof of Theorem 3 uses Lemma 1 and Lemma 3. Using the slight modification of the variable elimination inequality proposed in section 3 , Lemma 1 states that for each decision stump, we have:

$$
\mathbb{P}\left(i_{d_{\theta}}^{*}\left|c_{\theta} \neq i_{d_{\theta}}^{\prime}\right| c_{\theta}\right) \leq \frac{\delta_{1}}{D_{\theta} L}
$$

Then, from the union bound, we have for each path c_{θ} :

$$
\begin{aligned}
\mathbb{P}\left(c_{\theta} \neq c_{\theta}^{*}\right) \leq & \mathbb{P}\left(i_{1}^{*} \neq i_{1}^{\prime}\right)+\mathbb{P}\left(i_{2}^{*}\left|x_{i_{1}}(t) \neq i_{2}^{\prime}\right| x_{i_{1}}(t)\right)+\ldots \\
& +\mathbb{P}\left(i_{D_{\theta}}^{*}\left|\left(x_{i_{1}}(t), \ldots, x_{i_{D_{\theta}-1}}(t)\right) \neq i_{D_{\theta}}^{\prime}\right|\left(x_{i_{1}}(t), \ldots, x_{i_{D_{\theta}-1}}(t)\right)\right) \leq \frac{\delta_{1}}{L}
\end{aligned}
$$

For the action corresponding to the path c_{θ}, Lemma 3 states that:

$$
\mathbb{P}\left(k \neq k^{*}\right) \leq \frac{\delta_{1}}{L}
$$

From the union bound, we have for any path c_{θ} :

$$
\mathbb{P}\left(c_{\theta} \neq c_{\theta}^{*}\right) \leq \delta_{1} \text { and } \mathbb{P}\left(k \neq k^{*}\right) \leq \delta_{1}
$$

Using Lemma 1 and Lemma 3, and summing the sample complexity of each $2^{D_{\theta}}$ variable selection tasks and the sample complexity of each $2^{D_{\theta}}$ action selection tasks, we bound the sample complexity of any tree θ by:

$$
t^{*} \leq 2^{D} \frac{64 K}{\Delta_{1}^{2}} \log \frac{4 K M D L}{\delta \Delta_{1}}+2^{D} \frac{64 K}{\Delta_{2}^{2}} \log \frac{4 K L}{\delta \Delta_{2}}
$$

where $\delta=2 \delta_{1}$, and $D=\max D_{\theta}$.

7.7 Theorem 4

Proof. To build a decision tree of depth D_{θ}, any greedy algorithm needs to solve $\sum_{d<D_{\theta}} 2^{d}=2^{D_{\theta}}$ variable selection problems (one per node), and $2^{D_{\theta}}$ action selection problems (one per leaf). Then, using Lemma 2 and Lemma 4, any greedy algorithm needs a sample complexity of at least:

$$
t^{*} \geq \Omega\left(2^{D}\left[\frac{1}{\Delta_{1}^{2}}+\frac{1}{\Delta_{2}^{2}}\right] K \log \frac{1}{\delta}\right)
$$

7.8 Additional experimental results

We provide below (see Table 3) the classification rates to compare the asymptotical performances of each algorithm, and the processing times.

References

Chu, J. T.: On bounds for the normal integral. Biometrika 42:263-265, 1955.
Mousavi, N.: How tight is Chernoff bound ?
https://ece.uwaterloo.ca/ nmousavi/Papers/Chernoff-Tightness.pdf
Slud, E. V.: Distribution Inequalities for the Binomial Law. Ann. Probab.,5(3):404-412, 1977.

Table 3: Summary of results on the datasets played in a loop. The regret against the optimal random forest is evaluated on ten trials. Each trial corresponds to a random starting point in the dataset. The confidence interval is given with a probability 95%. The classification rate is evaluated on the last 100000 contexts. The mean running time was evaluated on a simple computer with a quad core processor and 6 GB of RAM.

Algorithm	Regret	Classification rate	Running time
Forest Cover Type, action: Cover Type (7 types)			
BANDITRON	$1.9910^{6} \pm 10^{5}$	49.1%	10 min
LINUCB	$1.2310^{6} \pm 10^{3}$	60%	360 min
NEURALBANDIT	$0.56710^{6} \pm 2.10^{4}$	68%	150 min
BANDIT TREE $D=8$	$0.84310^{6} \pm 2.10^{5}$	64.2%	5 min
BANDIT FOREST			
D10 - 18	$0.74210^{6} \pm 5.10^{4}$	65.8%	500 min

Adult, action: occupation (14 types)

BANDITRON	$1.9410^{6} \pm 3.10^{4}$	21.1%	20 min
LINUCB	$1.5110^{6} \pm 4.10^{4}$	25.7%	400 min
NEURALBANDIT	$1.210^{6} \pm 10^{5}$	29.6%	140 min
BANDIT TREE $D=8$	$1.3310^{6} \pm 10^{5}$	27.9%	4 min
BANDIT FOREST			
$D 10-18$	$1.1210^{6} \pm 7.10^{4}$	31%	400 min

Census1990, action: Yearsch (18 types)

BANDITRON	$2.0710^{6} \pm 2.10^{5}$	27%	26 min
LINUCB	$0.7710^{6} \pm 5.10^{4}$	40.3%	1080 min
NEURALBANDIT	$0.83810^{6} \pm 10^{5}$	41.7%	300 min
BANDIT TREE $D=8$	$0.7810^{6} \pm 2.10^{5}$	41%	10 min
BANDIT FOREST			
$D 10-18$	$0.68610^{6} \pm 5.10^{4}$	43.2%	1000 min

