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7 Appendix

7.1 Notations

In order to facilitate the reading of the paper, we provide below (see Table 2) the list of notations.

Table 2: Notations
notation description

K number of actions
M number of contextual variables
Dθ maximum depth of the tree θ
L number of trees
T time horizon
A set of actions
V set of variables
S set of remaining variables
x context vector x = (x1, . . . , xM )
y reward vector y = (y1, . . . , yK)
kt action chosen at time t
cθ context path the tree θ, cθ = (xi1 , vi1), ..., (xidθ , vidθ )

dθ current depth of the context path cθ
µk expected reward of action k, µk = EDy [yk]
µik|v expected reward of action k conditioned to xi = v, µik|v = EDy [yk · 1xi=v]
µik,v expected reward of action k and xi = v, µik,v = EDx,y [yk · 1xi=v]
µi expected reward for the use of the variable xi to select the best actions
δ probability of error
ε approximation error
∆1 minimum of difference with the expected reward of the best action µk∗

and the expected reward of a given action k: ∆1 = mink 6=k∗(µk∗ − µk)
∆2 minimum of difference with the best variable expected reward µi

∗

and the expected reward for other variables: ∆2 = mini 6=i∗(µ
i∗ − µi)

t∗ sample complexity of the decision stump

7.2 Lemma 1

Proof. We cannot use directly Hoeffding inequality (see Hoeffding (1963)) to bound the estimated gains of the use of
variables. The proof of Lemma 1 overcomes this difficulty by bounding each estimated gain µi by the sum of the bounds
over the values of the expected reward of the best action µik∗,v (inequality 7). From Hoeffding’s inequality, at time t we
have:

P
(∣∣µ̂ik,v − µik,v∣∣ ≥ αtk) ≤ 2 exp(−2α2

tk
tk) =

δ

2KMt2k
,

where αtk =
√

1
2tk

log
4KMt2k

δ .

Using Hoeffding’s inequality on each time tk, applying the union bound and then
∑

1/t2k = π2/6, the following inequality
holds for any time t with a probability 1− δπ2

12KM :

µ̂ik,v − αtk ≤ µik,v ≤ µ̂ik,v + αtk (5)
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If the inequality (5) holds for the actions k′ = arg maxk µ̂
i
k,v , and k∗ = arg maxk µ

i
k,v , we have:

µ̂ik′,v − αtk ≤ µik′,v ≤ µik∗,v ≤ µ̂ik∗,v + αtk ≤ µ̂ik′,v + αtk

⇒ µ̂ik′,v − αtk ≤ µik∗,v ≤ µ̂ik′,v + αtk
(6)

If the previous inequality (6) holds for all values v of the variable xi, we have:

∑
v∈{0,1}

(
µ̂ik′,v − αtk

)
≤

∑
v∈{0,1}

µik∗,v ≤
∑

v∈{0,1}

(
µ̂ik′,v + αtk

)
⇔ µ̂i − 2αtk ≤ µi ≤ µ̂i + 2αtk

(7)

If the previous inequality holds for i′ = arg maxi µ̂
i, we have:

µ̂i
′
− 2αtk ≤ µi

′
≤ µi

∗
(8)

As a consequence, the variable xi cannot be the best one when:

µ̂i + 2αtk ≤ µ̂i
′
− 2αtk , (9)

Using the union bound, the probability of making an error about the selection on the next variable by eliminating each
variable xi when the inequality (9) holds is bounded by the sum for each variable xi and each value v that the inequality 6
does not hold for k′ and k∗:

P (i∗ 6= i′) ≤
∑
i∈V

Kδπ2

12KM
≤
∑
i∈V

δ

M
≤ δ (10)

Now, we have to consider t∗k, the number of steps needed to select the optimal variable. If the best variable has not been
eliminated (probability 1− δ), the last variable xi is eliminated when:

µ̂i
∗
− µ̂i ≥ 4αt∗k

The difference between the expected reward of a variable xi and the best next variable is defined by:

∆i = µi
∗
− µi

Assume that:
∆i ≥ 4αtk (11)

The following inequality holds for the variable xi with a probability 1− δ
KM :

µ̂i − 2αtk ≤ µi ≤ µ̂i + 2αtk

Then, using the previous inequality in the inequality (11), we obtain:

(µ̂i
∗

+ 2αtk)− (µ̂i + 2αtk) ≥ µi
∗
− µi ≥ 4αtk

Hence, we have:
µ̂i
∗
− µ̂i ≥ 4αtk

The condition ∆i ≥ 4αtk implies the elimination of the variable xi. Then, we have:

∆i ≥ 4αtk
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⇒ ∆2
i ≥

8

tk
log

4KMt2k
δ

(12)

The time t∗k, where all non optimal variables have been eliminated, is reached when the variable corresponding to the
minimum of ∆2

i is eliminated.

⇒ ∆2 ≥ 8

t∗k
log

4KMt∗k
2

δ
, (13)

where ∆ = mini 6=i∗ ∆i.

The inequality (13) holds for all variables xi with a probability 1− δ for:

t∗k =
64

∆2
log

4KM

δ.∆
(14)

Indeed, if we replace the value of t∗k in the right term of the inequality (12), we obtain:

∆2

8 log 4KM
δ.∆

(
log

4KM

δ
+ 2 log

64

∆2
+ 2 log log

4KM

δ.∆

)
=

∆2

8 log 4KM
δ.∆

(
log

4KM

δ
− 4 log ∆ + 12 log 2 + 2 log log

4KM

δ.∆

)
≤

∆2

8 log 4KM
δ.∆

(
4 log

4KM

δ.∆
+ 12 log 2 + 2 log log

4KM

δ.∆

)

For x ≥ 13, we have:
12 log 2 + 2 log log x < 4 log x

Hence, for 8KM ≥ 13, we have:

∆2

8 log 4KM
δ.∆

(
4 log

4KM

δ.∆
+ 12 log 2 + 2 log log

4KM

δ.∆

)
≤

∆2

8 log 4KM
δ.∆

8 log
4KM

δ.∆
= ∆2

Hence, we obtain:

t∗k =
64

∆2
log

4KM

δ
, with a probability 1− δ

As the actions are chosen the same number of times (Round-robin function), we have t = Ktk, and thus:

t∗ =
64K

∆2
log

4KM

δ
, with a probability 1− δ

7.3 Lemma 2

Proof. Let yik,v be a bounded random variable corresponding to the reward of the action k when the value v of the variable
i is observed. Let yi be a random variable such that:

yi = max
k

yik,v
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We have:
EDx,y [yi] = µi

Each yi is updated each step tk when each action has been played once. Let Θ be the sum of the binary random variables
θ1, ..., θtk , ..., θt∗k such that θtk = 1yi(tk)≥yj(tk). Let pij be the probability that the use of variable i leads to more rewards
than the use of variable j. We have:

pij =
1

2
−∆ij , where ∆ij = µi − µj .

Slud’s inequality (see Slud (1977)) states that when p ≤ 1/2 and t∗k ≤ x ≤ t∗k.(1− p), we have:

P (Θ ≥ x) ≥ P

(
Z ≥ x− t∗k.p√

t∗k.p(1− p)

)
, (15)

where Z is a normal N (0, 1) random variable.

To choose the best variable between i and j, one needs to find the time t∗k where P (Θ ≥ t∗k/2) ≥ δ. To state the number of
trials t∗k needed to estimate ∆ij , we recall and adapt the arguments developed in Mousavi (2010). Using Slud’s inequality
(see equation 15), we have:

P (Θ ≥ t∗k/2) ≥ P

(
Z ≥ t∗k.∆ij√

t∗k.pij(1− pij)

)
, (16)

Then, we use the lower bound of the error function (see Chu (1955)):

P (Z ≥ z) ≥ 1−

√
1− exp

(
−z

2

2

)

Therefore, we have:

P (Θ ≥ t∗k/2) ≥ 1−

√√√√1− exp

(
−

t∗k.∆
2
ij

2pij(1− pij)

)

≥ 1−

√√√√1− exp

(
−
t∗k.∆

2
ij

pij

)

≥ 1

2
exp

(
−
t∗k.∆

2
ij

pij

)

As pij = 1/2−∆ij , we have:

log δ = log
1

2
−

t∗k.∆
2
ij

1/2−∆ij
≥ log

1

2
− 2t∗k.∆

2
ij

Hence, we have:

t∗k = Ω

(
1

∆2
ij

log
1

δ

)
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Then, we need to use the fact that as all the values of all the variables are observed when one action is played: the
M(M − 1)/2 estimations of bias are solved in parallel. In worst case, minij ∆ij = minj ∆i∗j = ∆. Thus any algorithm
needs at least a sample complexity t∗, where:

t∗ = K.t∗k = Ω

(
K

∆2
log

1

δ

)

7.4 Theorem 1

Proof. Lemma 1 states that the sample complexity needed to find the best variable is:

t∗1 =
64K

∆2
1

log
4KM

δ∆1
, where ∆1 = min

i6=i∗
(µi
∗
− µi)

Lemma 3 states that the sample complexity needed to find the optimal action for a value v of the best variable is:

t∗2,v =
64K

∆2
2,v

log
4K

δ∆2,v
, where ∆2,v = min

k 6=k∗
(µi
∗

k∗,v − µi
∗

k,v).

The sample complexity of decision stump algorithm is bounded by the sum of the sample complexities of variable selection
and action elimination algorithms:

t∗ = t∗1 + t∗2 , where t∗2 = max
v

t∗2,v .

7.5 Theorem 2

Proof. In worst case, all the values of variables have different best actions, and K = 2M . If an action is suppressed
before the best variable is selected, the estimation of the mean reward of one variable is underestimated. In worst case this
variable is the best one, and a sub-optimal variable is selected. Thus, the best variable has to be selected before an action
be eliminated. The lower bound of the decision stump problem is the sum of variable selection and best arm identification
lower bounds, stated respectively in Lemma 2 and Lemma 4.

7.6 Theorem 3

Proof. The proof of Theorem 3 uses Lemma 1 and Lemma 3. Using the slight modification of the variable elimination
inequality proposed in section 3, Lemma 1 states that for each decision stump, we have:

P
(
i∗dθ |cθ 6= i′dθ |cθ

)
≤ δ1
DθL

Then, from the union bound, we have for each path cθ:

P(cθ 6= c∗θ) ≤P (i∗1 6= i′1) + P (i∗2|xi1(t) 6= i′2|xi1(t)) + ...

+ P
(
i∗Dθ |(xi1(t), ..., xiDθ−1

(t)) 6= i′Dθ |(xi1(t), ..., xiDθ−1
(t))
)
≤ δ1
L

For the action corresponding to the path cθ, Lemma 3 states that:

P(k 6= k∗) ≤ δ1
L
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From the union bound, we have for any path cθ:

P(cθ 6= c∗θ) ≤ δ1 and P(k 6= k∗) ≤ δ1

Using Lemma 1 and Lemma 3, and summing the sample complexity of each 2Dθ variable selection tasks and the sample
complexity of each 2Dθ action selection tasks, we bound the sample complexity of any tree θ by:

t∗ ≤ 2D
64K

∆2
1

log
4KMDL

δ∆1
+ 2D

64K

∆2
2

log
4KL

δ∆2
,

where δ = 2δ1, and D = maxDθ.

7.7 Theorem 4

Proof. To build a decision tree of depth Dθ, any greedy algorithm needs to solve
∑
d<Dθ

2d = 2Dθ variable selection
problems (one per node), and 2Dθ action selection problems (one per leaf). Then, using Lemma 2 and Lemma 4, any
greedy algorithm needs a sample complexity of at least:

t∗ ≥ Ω

(
2D
[

1

∆2
1

+
1

∆2
2

]
K log

1

δ

)

7.8 Additional experimental results

We provide below (see Table 3) the classification rates to compare the asymptotical performances of each algorithm, and
the processing times.
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Table 3: Summary of results on the datasets played in a loop. The regret against the optimal random forest is evaluated
on ten trials. Each trial corresponds to a random starting point in the dataset. The confidence interval is given with a
probability 95%. The classification rate is evaluated on the last 100000 contexts. The mean running time was evaluated on
a simple computer with a quad core processor and 6 GB of RAM.

Algorithm Regret Classification rate Running time
Forest Cover Type, action: Cover Type (7 types)

BANDITRON 1.99 106 ±105 49.1% 10 min
LINUCB 1.23 106 ±103 60% 360 min

NEURALBANDIT 0.567 106 ±2.104 68% 150 min
BANDIT TREE D = 8 0.843 106 ±2.105 64.2% 5 min

BANDIT FOREST
D10− 18 0.742 106 ±5.104 65.8% 500 min

Adult, action: occupation (14 types)
BANDITRON 1.94 106 ±3.104 21.1% 20 min

LINUCB 1.51 106 ±4.104 25.7% 400 min
NEURALBANDIT 1.2 106 ±105 29.6% 140 min

BANDIT TREE D = 8 1.33 106 ±105 27.9% 4 min
BANDIT FOREST

D10− 18 1.12 106 ±7.104 31% 400 min
Census1990, action: Yearsch (18 types)

BANDITRON 2.07 106 ±2.105 27% 26 min
LINUCB 0.77 106 ±5.104 40.3% 1080 min

NEURALBANDIT 0.838 106 ±105 41.7% 300 min
BANDIT TREE D = 8 0.78 106 ±2.105 41% 10 min

BANDIT FOREST
D10− 18 0.686 106 ±5.104 43.2% 1000 min


