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Proofs of the Lemmas in Section 2
Proof of Lemma 2.1

Recall that xi and xj are non-negative and let l and m be their respective rank orders, i.e., xi = x[l] and xj = x[m]; of
course, l < m, because xi = x[l] > x[m] = xj . Now let l + a and m − b be the rank orders of zi and zj , respectively,
i.e., xi − ε = zi = z[l+a] and xj + ε = zj = z[m−b]. Of course, it may happen that a or b (or both) are zero, if ε is
small enough not to change the rank orders of one (or both) of the affected components of x. Furthermore, the condition
ε < (xi − xj)/2 implies that xi − ε > xj + ε, thus l + a < m − b. A key observation is that x↓ and z↓ only differ in
positions l to l + a and m− b to m, thus we can write

Ωw(x)− Ωw(z) =

l+a∑
k=l

wk

(
x[k] − z[k]

)
+

m∑
k=m−b

wk

(
x[k] − z[k]

)
. (i)

In the range from l to l + a, the relationship between z↓ and x↓ is

z[l] = x[l+1], z[l+1] = x[l+2], . . . , z[l+a−1] = x[l+a], z[l+a] = x[l] − ε,

whereas in the range from m− b to m, we have

z[m−b] = x[m] + ε, z[m−b+1] = x[m−b], . . . , z[m] = x[m−1].

Plugging these equalities into (i) yields

Ωw(x)− Ωw(z) =

l+a−1∑
k=l

wk

(
x[k] − x[k+1]

)︸ ︷︷ ︸
≥0

+

m∑
k=m−b+1

wk

(
x[k] − x[k−1]

)︸ ︷︷ ︸
≤0

+wl+a

(
x[l+a] − x[l] + ε

)
+ wm−b

(
x[m−b] − x[m] − ε

)
(a)

≥ wl+a

l+a−1∑
k=l

(
x[k] − x[k+1]

)
+ wm−b

m∑
k=m−b+1

(
x[k] − x[k−1]

)
+wl+a

(
x[l+a] − x[l] + ε

)
+ wm−b

(
x[m−b] − x[m] − ε

)
= wl+a

(
l+a−1∑
k=l

(
x[k] − x[k+1]

)
+
(
x[l+a] − x[l] + ε

))

+wm−b

(
m∑

k=m−b+1

(
x[k] − x[k−1]

)
+
(
x[m−b] − x[m] − ε

))
(c)
= ε

(
wl+a − wm−b

) (c)

≥ ε∆w,
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where inequality (a) results from x[k]−x[k+1] ≥ 0, x[k]−x[k−1] ≤ 0, and the components of w forming a non-increasing
sequence, thuswl+a ≤ wk, for k = l, ..., l+a−1, andwm−b ≥ wk, for k = m−b+1, ...,m; equality (c) is a consequence
of the cancellation of the remains of the telescoping sums with the two other terms; inequality (c) results from the fact that
(see above) l + a < m− b and the definition of ∆w given in Section 1 of the paper.

Proof of Lemma 2.2

Let l and m be the rank orders of xi and xj , respectively, i.e., xi = x[l] and xj = x[m]; without loss of generality, assume
that m > l. Furthermore, let l + a and m + b be the rank orders of si and sj in s (i.e., si = s[l+a] and sj = s[m+b]);
naturally, a, b ≥ 0. Then,

Ωw(x)− Ωw(s) ≥ wl xi + wm xj − wl+a(xi − ε)− wm+b(xj − ε)
≥ (wl − wl+a)︸ ︷︷ ︸

≥0

xi + (wm − wm+b)︸ ︷︷ ︸
≥0

xj + (wl+a + wm+b)︸ ︷︷ ︸
≥∆w

ε ≥ ∆w ε,

where the inequality wl+a +wm+b ≥ ∆w results from the definition of ∆w, which implies that w1, ..., wp−1 ≥ ∆w (only
wp can be less than ∆w, maybe even zero).

Proof of Lemma 2.4

The proof is a direct consequence of the triangle inequality. Letting g = Ax− y, we have

L1(v)− L1(x) = ‖g − εai + εaj‖1 − ‖g‖1
≤ ‖g‖1 + |ε|‖ai − aj‖1 − ‖g‖1
= |ε|‖ai − aj‖1.

Proof of Theorem 3.2
The bound stated in Theorem 3.2 follows from the deviation inequality

E sup
u∈T

∣∣∣∣∣ 1n
n∑

i=1

|〈ai,u〉| −
√

2

π

(
uTCTCu

)1/2

∣∣∣∣∣ ≤ 4√
n
E sup

u∈T
|〈CTg,u〉| , (ii)

where ai denotes the ith row of A. To see this, note that the inequality holds if we replace the set T on the left hand side
by the smaller set Tε. For u ∈ Tε we have by assumption that

1

n

n∑
i=1

|〈ai,u〉| =
1

n
‖Au‖1 ≤ ε,

and the bound in the theorem follows by the triangle inequality.

To prove (ii), the first thing to note is that

E|〈ai,u〉| = E|〈CT bi,u〉| = E|〈bi,Cu〉| ,

where bi is the ith row of B. Because the Gaussian distribution of bi is rotationally invariant, it follows that

E|〈bi,Cu〉| =

√
2

π

(
uTCTCu

)1/2
.

Using the symmetrization and contraction inequalities from a proposition by Vershynin (2014, Proposition 5.2), we have
the bound

E sup
u∈T

∣∣∣∣∣ 1n
n∑

i=1

|〈ai,u〉| −
√

2

π

(
uTCTCu

)1/2

∣∣∣∣∣ ≤ 4E sup
u∈T

∣∣∣∣∣ 1n
n∑

i=1

εi〈bi,Cu〉

∣∣∣∣∣
= 4E sup

u∈T

∣∣∣∣∣
〈

1

n

n∑
i=1

εibi,Cu

〉∣∣∣∣∣ ,



where each εi independently takes values −1 and +1 with probabilities 1/2. Note that vector

g :=
1√
n

n∑
i=1

εibi ∼ N (0, Iq),

thus,

4E sup
u∈T

∣∣∣∣∣
〈

1

n

n∑
i=1

εibi,Cu

〉∣∣∣∣∣ =
4√
n
E sup

u∈T
|〈g,Cu〉| = 4√

n
E sup

u∈T
|〈CTg,u〉|,

which completes the proof.
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