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Abstract

This paper studies the ordered weighted `1
(OWL) family of regularizers for sparse lin-
ear regression with strongly correlated covari-
ates. We prove sufficient conditions for cluster-
ing correlated covariates, extending and qualita-
tively strengthening previous results for a partic-
ular member of the OWL family: OSCAR (oc-
tagonal shrinkage and clustering algorithm for
regression). We derive error bounds for OWL
with correlated Gaussian covariates: for cases in
which clusters of covariates are strongly (even
perfectly) correlated, but covariates in different
clusters are uncorrelated, we show that if the
true p-dimensional signal involves only s clus-
ters, thenO(s log p) samples suffice to accurately
estimate it, regardless of the number of coeffi-
cients within the clusters. Since the estimation of
s-sparse signals with completely independent co-
variates also requires O(s log p) measurements,
this shows that by using OWL regularization, we
pay no price (in the number of measurements) for
the presence of strongly correlated covariates.

1 Introduction

In high-dimensional linear regression problems, it is likely
that several covariates (also referred to as predictors or
variables) are highly correlated; e.g., in gene expression
data, it is common to find groups of highly co-regulated
genes. Using standard sparsity-inducing regularization (`1,
also known as LASSO (Tibshirani, 1996)) in such scenar-
ios is known to be unsatisfactory, as it leads to the selec-
tion of one of a set of highly correlated covariates, or an
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arbitrary convex combination thereof. For engineering pur-
poses and/or scientific interpretability, it is often desirable
to explicitly identify all of the covariates that are relevant
for modelling the data, rather than just a subset thereof.
Several approaches have been proposed to deal with this
type of problems (Bühlmann et al., 2013; Genovese et al.,
2012; Jia and Yu, 2010; Meinshausen and Bülhmann, 2010;
Shah and Samworth, 2013; Shen and Huang, 2010; Zou
and Hastie, 2005), the best known of which is arguably the
elastic net (EN) introduced by Zou and Hastie (2005).

This paper is motivated by the OSCAR (octagonal shrink-
age and clustering algorithm for regression), proposed by
Bondell and Reich (2007) to address regression problems
with correlated covariates, which has been shown to per-
form well in practice, but lacks a theoretical characteriza-
tion of its error performance. The regularizer underlying
OSCAR was recently shown to belong to the more general
family of the ordered weighted `1 (OWL) norms (Bogdan
et al., 2013; Zeng and Figueiredo, 2014a), which also in-
cludes the `1 and `∞ norms. The goal of this paper is to
provide a theoretical characterization of linear regression
under OWL regularization, in the presence of highly corre-
lated covariates. Our main contributions are the following.

a) We prove sufficient conditions for exact covariate clus-
tering, considerably extending the results by Bondell
and Reich (2007). In particular, for the squared error
loss, our result holds for the general OWL family and,
more importantly, under qualitatively weaker conditions:
whereas our result shows that OWL can cluster groups
of more than 2 covariates, the proof by Bondell and Re-
ich (2007) explicitly excludes that case. Furthermore, we
also give clustering conditions under the absolute error
loss, which we believe are novel.

b) We derive error bounds for OWL regularization with cor-
related Gaussian covariates. For cases in which clusters
of covariates are strongly (even perfectly) correlated, but
covariates in different clusters are uncorrelated, we show
that if the true p-dimensional signal involves only s clus-
ters, then O(s log p) samples suffice to accurately esti-
mate it, regardless of the number of coefficients within
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clusters. Since estimating s-sparse vectors with indepen-
dent variables requires just as many measurements, this
shows that by using OWL regularization no price is paid
(in terms of the number of measurements) for the pres-
ence of those strongly correlated covariates.

This paper includes no experimental results, as its goal is to
theoretically charaterize OWL regularization. The particu-
lar case of OSCAR was experimentally studied by Bon-
dell and Reich (2007) and Zhong and Kwok (2012); the
main conclusion from their experiments is not that OSCAR
clearly outperforms EN in terms of accuracy, but that while
typically requiring fewer degrees of freedom due to its ex-
act clustering behavior, it is still competitive with EN. In
other words, their claim is not that OSCAR achieves higher
accuracy, but that its ability to identify clusters of correlated
covariates improves interpretability. In very recent work
on machine translation, Clark (2015) found that the ability
of OSCAR to cluster coefficients brings a significant per-
formance gain. This paper provides theoretical support to
these experimental observations.

Notation
We denote (column) vectors by lower-case bold letters, e.g.,
x, y, their transposes by xT , yT , the corresponding i-th
and j-th components as xi and yj , and matrices by upper
case bold letters, e.g.,A,B. A vector with all components
equal to 1 is written as 1, and |x| is the vector with the ab-
solute values of the components of x. For x ∈ Rp, x[i] is
its i-th largest component (i.e., x[1] ≥ x[2] ≥ · · · ≥ x[p]),
and x↓ is the vector obtained by sorting the components
of x in non-increasing order. Finally, given w ∈ Rp+, such
thatw1 ≥ w2 ≥ ... ≥ wp ≥ 0, ∆w = min{wl−wl+1, l =
1, ..., p−1} is the minimum gap between consecutive com-
ponents of w and w̄ = ‖w‖1/p is their average.

1.1 Definitions and Problem Formulation

The OWL norm (Bogdan et al., 2014; Zeng and Figueiredo,
2014a), is defined as

Ωw(x) =

p∑

i=1

wi |x|[i] = wT |x|↓, (1)

where w ∈ Rp+ is a vector of weights, such that w1 ≥
w2 ≥ · · · ≥ wp ≥ 0 and w1 > 0. Clearly, Ωw satisfies
w1‖x‖∞ ≤ Ωw(x) ≤ w1‖x‖1 (with equalities if w2 =
· · · = wp = 0 or w1 = w2 = · · · = wp, respectively). It is
also easy to show (using Chebyshev’s sum inequality) that
Ωw(x) ≥ w̄ ‖x‖1. The OSCAR regularizer (Bondell and
Reich, 2007) is a special case of Ωw, obtained by setting
wi = λ1 + λ2 (p− i), where λ1, λ2 ≥ 0.

This paper studies OWL-regularized linear regression un-
der the squared error and absolute error losses. We consider
the classical unconstrained formulations

min
x∈Rp

1

2
‖Ax− y‖22 + λΩw(x), (2)

min
x∈Rp

‖Ax− y‖1 + λΩw(x), (3)

where A ∈ Rn×p is the design matrix, as well as the fol-
lowing constrained formulations:

min
x∈Rp

Ωw(x) s.t.
1

n
‖Ax− y‖22 ≤ ε2, (4)

min
x∈Rp

Ωw(x) s.t.
1

n
‖Ax− y‖1 ≤ ε. (5)

Notice that (since all the involved functions are convex) the
constrained and unconstrained formulations are equivalent
in the following sense (Lorenz and Worliczek, 2013): given
a (non-zero) solution x̂ of (4) (respectively, of (5)), there is
a choice of λ that makes x̂ also a solution of (2) (respec-
tively, of (3)). Conversely, if x̂ is the unique solution of
(2) (respectively, of (3)), then x̂ also solves (4) (respec-
tively, (5)), with ε2 = 1

n‖Ax̂ − y‖22 (respectively, with
ε = 1

n‖Ax̂− y‖1). Regardless of these equivalences, cer-
tain angles of analysis are more convenient in the uncon-
strained formulations (2)–(3), while others are more con-
venient in the constrained form (4)–(5). The equivalences
mentioned above mean that results concerning the solutions
of (2) and (3) are, in principle, translatable to results about
the solutions of (4) and (5), and vice-versa.

On the algorithmic side, the key tool for solving regular-
ization problems involving the OWL norm (such as (2) –
(5)) is its Moreau proximity operator, which can be com-
puted in O(p log p) operations (Bogdan et al., 2014; Zeng
and Figueiredo, 2014b), the same being true about the Eu-
clidean projection onto an OWL norm ball (Davis, 2015).

1.2 Preview of the Main Results and Related Work

The first of our two main results (detailed in Section 2)
gives sufficient conditions for OWL regularization to clus-
ter strongly correlated covariates, in the sense that the coef-
ficient estimates associated with such covariates are exactly
equal (in magnitude). Our result for the squared error loss
significantly extends and strengthens the main theorem for
OSCAR presented by Bondell and Reich (2007), since our
proof involves qualitatively weaker conditions and applies
to the general OWL family. Furthermore, the result for the
absolute error loss is, as far as we know, novel.

Our second main result (presented in Section 3) is a finite
sample bound for formulations (4)–(5). To the best of our
knowledge, these are the first finite sample error bounds for
sparse regression with strongly correlated columns in the
design matrix. To preview this result, consider the follow-
ing special case (generalized below): assume we observe

y = Ax? + ν , (6)

where x? ∈ Rp is s-sparse (i.e., at most s nonzero com-
ponents) and ν ∈ Rn is the measurement error, with
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‖ν‖1/n ≤ ε, and about which we make no other as-
sumptions. The design matrix A is Gaussian distributed;
for the purposes of this introduction, assume the entries in
each column of A are i.i.d. N (0, 1), but different columns
may be strongly correlated. Specifically, assume there are
groups of identical columns, but those in different groups
are uncorrelated; this models scenarios where groups of co-
variates are perfectly correlated, but uncorrelated with all
others. Since certain columns ofA are identical, in general
there may be many sparse vectors x such thatAx = Ax?.
Among these, let x̄? denote the vector with identical coef-
ficients for replicated columns (i.e., if two columns of A
are identical, so are the corresponding coefficients in x̄?).

Theorem 1.1 below states that the sufficient number of
measurements n to estimate an s-sparse signal, at a given
precision, grows like n ∼ s log p, agreeing with well-
known bounds for sparse recovery under stronger condi-
tions on A, e.g., restricted isometry property, incoherence,
or fully i.i.d. measurements (Candès et al., 2006; Donoho,
2006; Haupt and Nowak, 2006; Vershynin, 2014). This
also shows that, by using OWL, we pay no price (in terms
of number of measurements) for the colinearity of some
columns ofA.

Theorem 1.1. Let y, A, x?,w, and ∆w be as defined
above and assume ∆w > 0. Let x̂ be a solution to either
of the two problems (4) or (5). Then,

(i) for every pair of columns such that ai = aj (respec-
tively, ai = −aj), we have x̂i = x̂j (respectively,
x̂i = −x̂j);

(ii) the solution x̂ satisfies (where the expectation is w.r.t.
the randomA):

E ‖x̂− x̄?‖2 ≤
√

8π
(√

32 ‖x?‖2
w1

w̄

√
s log p

n
+ ε
)
.

(7)

Theorem 1.1 (i) shows that OWL regularization automati-
cally identifies and groups the colinear columns in A. As
mentioned above, in general there may be many sparse x
yielding the sameAx. This is where OWL becomes impor-
tant: its solution includes all the colinear columns associ-
ated with the model, rather than an arbitrary subset thereof.
This result is proved in Section 2, and generalized to cases
where columns are not necessarily identical, but correlated
enough.

Part (ii) of Theorem 1.1 is proved in Section 3, and also
generalized to strongly correlated (rather than identical) co-
variates. (Notice that the factor w1/w̄ in (7) is typically
small; e.g., for OSCAR, w̄ = λ1 + λ2 (p − 1)/2 and
w1/w̄ ≤ 2, whereas for `1, w1/w̄ = 1.)

It is worth mentioning that these bounds for OWL are fun-
damentally different than those obtained for the LASSO
with correlated Gaussian designs (Raskutti et al., 2010),

which do not cover the case of exactly replicated columns,
and essentially require a full-rank design matrix.

Although OWL does bear similarity to the elastic net (EN),
in the sense that they both aim at handling highly correlated
covariates, OWL yields exact covariate clustering, whereas
EN does not. In terms of theoretical analysis, the consis-
tency results for the EN proved by Jia and Yu (2010) are
asymptotic, not finite sample bounds, and require the so-
called elastic irrepresentability condition (EIC), which is
stronger than our assumptions. We are not aware of finite
sample error bounds for EN that come close to those for
OWL that we prove in this paper. Finally, although our
bounds are for Gaussian designs, generalization to the sub-
Gaussian case can be obtained using the tools proposed by
Vershynin (2014). We thus feel that our assumptions are
less restrictive and more relevant than the EIC.

It is also interesting to observe that the error bound in (7) is
essentially the same holding for group-LASSO (Rao et al.,
2012), assuming the groups are known a priori rather than
automatically identified.

Finally, a particular member of the OWL family (for a spe-
cific choice of the weightsw) was recently studied, namely
in in terms of false discovery rate (FDR) control, adaptiv-
ity, and asymptotic minimaxity (Bogdan et al., 2013, 2014;
Su and Candès, 2015); however, these results are only for
orthogonal or uncorrelated covariates, which is not the sce-
nario to which this paper is devoted.

We conclude this section with a simple toy example (Fig. 1)
illustrating the qualitatively different behaviour of OWL
and LASSO regularization. In this example, p = 100,
n = 10, and x? has 20 non-zero components in 2 groups of
size 10, with the corresponding columns ofA being highly
correlated. Clearly, n = 10 is insufficient to allow LASSO
to recover x?, which is 20-sparse, while OWL successfully
recovers its structure.

2 OWL Clustering

This section studies the clustering behaviour of OWL, ex-
tending the results of Bondell and Reich (2007) in several
ways: for the squared error loss, our results apply to the
more general case of OWL and, more importantly, hold un-
der qualitatively weaker conditions; the result for the abso-
lute error case is novel.

2.1 Squared Error Loss

The following theorem shows that criterion (2) clusters
(i.e., yields coefficient estimates of equal magnitude) the
columns that are correlated enough.

Theorem 2.1. Let x̂ be a solution of (2), and ai and aj be

932



Ordered Weighted `1 Regularized Regression

Figure 1: Toy example illustrating the qualitatively different behaviour of OWL and LASSO.

two columns ofA. Then,

(a) ‖ai − aj‖2 < ∆w/‖y‖2 ⇒ x̂i = x̂j (8)
(b) ‖ai + aj‖2 < ∆w/‖y‖2 ⇒ x̂i = −x̂j . (9)

Clearly, part (b) of the theorem is a simple corollary of
part (a), which results from flipping the signs of either
ai or aj and the corresponding coefficient. Notice that
if two columns are identical, ai = aj , or symmetrical,
ai = −aj , any ∆w > 0 is sufficient to guarantee that
these two columns are clustered, i.e., the corresponding co-
efficient estimates are equal in magnitude.

The following corollary addresses the case where the
columns of A have zero mean and unit norm (as is com-
mon practice), and results from denoting ρij = aTi aj as
the sample correlation between the i-th and j-th covariates,
in which case ‖ai ± bj‖2 =

√
2± 2ρij .

Corollary 2.1. Let the columns of A satisfy 1Tak = 0
and ‖ak‖2 = 1, for k = 1, ..., p. Denote ρij = aTi aj ∈
[−1, 1]. Then,

(a)
√

2− 2 ρij < ∆w/‖y‖2 ⇒ x̂i = x̂j (10)

(b)
√

2 + 2 ρij < ∆w/‖y‖2 ⇒ x̂i = −x̂j . (11)

Corollary 2.1 recovers the main theorem of Bondell and
Reich (2007), since in the case of OSCAR, ∆w = λ2.
However, our result holds under qualitatively weaker con-
ditions: unlike in their proof, we do not require that both
x̂i and x̂j are different from zero and from all other x̂k, for
k 6= i, j, neither that A is such that x̂k ≥ 0, for all k. Fur-
thermore, our results apply to the general family of OWL
regularizers, of which OSCAR is only a particular case.

2.2 Absolute Error Loss

The following theorem parallels Theorem 2.1, now for ab-
solute error loss regression (eq. (3)).

Theorem 2.2. Let x̂ be a solution of (3). Then

(a) ‖ai − aj‖1 < ∆w ⇒ x̂i = x̂j (12)
(b) ‖ai + aj‖1 < ∆w ⇒ x̂i = −x̂j (13)

As above, part (b) of the theorem results directly from part
(a). Under the normalization assumptions used in Corollary

2.1, another (weaker) sufficient condition can be obtained,
which depends on the sample correlations, as stated in the
following corollary (the proof of which simply amounts to
using the well-known inequality ‖a‖1 ≤

√
n‖a‖2 together

with the assumed column normalization):

Corollary 2.2. Let x̂ be any minimizer of the objective
function in (3) and assume the columns of A are normal-
ized, that is, 1Tak = 0 and ‖ak‖2 = 1, for i = k, ..., p. As
above, let ρij = aTi aj . Then,

(a)
√
n(2− 2 ρij) < ∆w ⇒ x̂i = x̂j (14)

(b)
√
n(2 + 2 ρij) < ∆w ⇒ x̂i = −x̂j . (15)

2.3 Proofs of Theorems 2.1 and 2.2

The proofs of Theorems 2.1 and 2.2 are based on the fol-
lowing two new lemmas about the OWL norm (the proofs
of which are provided in the supplementary material).

Lemma 2.1. Consider a vector x ∈ Rp+ and two of its
components xi and xj , such that xi > xj (if they exist). Let
z ∈ Rp+ be obtained by applying to x a so-called Pigou-
Dalton1 transfer of size ε ∈

(
0, (xi−xj)/2

)
, that is: zi =

xi − ε, zj = xj + ε, and zk = xk, for k 6= i, j. Then,

Ωw(x)− Ωw(z) ≥ ∆w ε. (16)

Lemma 2.2. Consider a vector x ∈ Rp+ and two of its non-
zero components xi and xj (if they exist). Let now z ∈ Rp+
be obtained by subtracting ε ∈

(
0, min{xi, xj}

)
from xi

and xj , that is: zi = xi− ε, zj = xj − ε, and zk = xk, for
k 6= i, j. Then, (16) also holds.

It is worth pointing out that what Lemma 2.1 states about
the OWL norm Ωw can be seen as a property of strong
Schur convexity, which, as far as we know, didn’t exist in
the literature on majorization theory and Schur convexity
(Marshall et al., 2011). For more details about this obser-
vation, which is tangential to the topic of this paper, but
potentially useful in other contexts, see Appendix A.

The proof of Theorem 2.1 also uses a basic result in convex
analysis relating minimizers of a convex function with its

1The Pigou-Dalton (a.k.a. Robin Hood) transfer is a funda-
mental quantity used in the mathematical study of economic in-
equality (Dalton, 1920; Pigou, 1912).
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directional derivatives (Rockafellar, 1970). Given a proper
function f , its directional derivative at x ∈ dom(f) (i.e.,
f(x) 6=∞), in the direction u, is defined as

f ′(x;u) = lim
α→0+

(
f(x+ αu)− f(x)

)
/α.

Lemma 2.3. Let f be a real-valued, proper, convex func-
tion, and x ∈ dom(f). Then, x ∈ arg min f , if and only if
f ′(x;u) ≥ 0, for any u.

Proof. (of Theorem 2.1) Let L2(x) = 1
2‖Ax − y‖22 and

f(x) = L2(x) + Ωw(x) (i.e., the objective function in
(2)). Assume that the condition ‖y‖2 ‖ai − aj‖2 < ∆w

is satisfied for some pair of columns and consider some x̂
such that x̂i 6= x̂j (w.l.o.g., let x̂i > x̂j). The directional
derivative of L2 at x̂, in the direction u, where ui = −1,
uj = 1, and uk = 0, for k 6= i, j, is

L′2(x̂;u)

= lim
α→0+

‖y −Ax̂+ α(ai − aj)‖22 − ‖y −Ax̂‖22
2α

= gT (ai − aj), (17)

where g = y −Ax̂. Consider now the directional deriva-
tive of Ωw at x̂, in the same direction u:

Ω′w(x̂;u) = lim
α→0+

Ωw(x̂+ αu)− Ωw(x̂)

α
.

If x̂i and x̂j are both non-negative or non-positive, |x̂+αu|
corresponds to a Pigou-Dalton transfer of size α applied to
|x̂|, thus Lemma 2.1 (recalling Ωw(v) = Ωw(|v|)) guar-
antees that

Ω′w(x̂;u) = lim
α→0+

Ωw(|x̂+ αu|)− Ωw(|x̂|)
α

(18)

≤ lim
α→0+

−∆w α

α
= −∆w. (19)

If sign(x̂i) sign(x̂j) = −1, then |x̂ + αu| corresponds to
subtracting α from both |x̂i| and |x̂j |, thus Lemma 2.2 also
yields (19). Finally, adding (17) and (19), and using the
Cauchy-Schwarz inequality,

f ′(x;u) ≤ gT (ai − aj)−∆w

≤ ‖g‖2‖ai − aj‖2 −∆w

≤ ‖y‖2‖ai − aj‖2 −∆w < 0,

(after noticing ‖g‖2 ≤ ‖y‖2), showing that x̂ is not a min-
imizer.

The following lemma (proved in the supplementary mate-
rial) will be used in proving Theorem 2.2.

Lemma 2.4. LetL1(x) = ‖Ax−y‖1, consider any x and
two of its components, xi and xj , and define v according
to vi = xi − ε, vj = xj + ε, for some ε ∈ R, and vk = xk,
for k 6= i, j. Then, L1(v)− L1(x) ≤ |ε| ‖ai − aj‖1.

Proof. (of Theorem 2.2) Assume the condition ∆w >
‖ai − aj‖1 is satisfied, and that x̂ is a solution of (3). To
prove that sign(x̂i) = sign(x̂j), suppose that sign(x̂i) 6=
sign(x̂j), which implies that at least one of x̂i or x̂j is non-
zero; without loss of generality, let x̂i > 0, thus x̂j ≤ 0.
We need to consider two cases: x̂j < 0 and x̂j = 0.

• If x̂j < 0, take an alternative solution v, with vi = x̂i−ε,
vj = x̂j+ε, where ε ∈ (0,min{x̂i,−x̂j}), and vk = x̂k,
for k 6= i, j. Since x̂i > 0 and x̂j < 0, we have |vi| =
|x̂i| − ε and |vj | = |x̂j | − ε, thus Lemma 2.2 yields

Ωw(x̂)−Ωw(v) = Ωw(|x̂|)−Ωw(|v|) ≥ ∆w ε. (20)

Combining this inequality with Lemma 2.4 contradicts
the optimality of x̂, since

L1(v) + Ωw(v)−
(
L1(x̂) + Ωw(x̂)

)

≤
(
‖ai − aj‖1 −∆w

)
ε < 0. (21)

• If x̂j = 0, follow the same argument with ε ∈ (0, xi/2),
i.e., vi = x̂i − ε and vj = x̂j + ε = ε. Since, in this
case, |vi| = |x̂i| − ε and |vj | = |x̂j |+ ε, Lemma 2.1 also
yields inequality (20), which combined with Lemma 2.4
contradicts again the optimality of x̂.

Knowing sign(x̂i) = sign(x̂j), let x̂ be a solution of (3)
such that x̂i 6= x̂j ; without loss of generality, consider
that both x̂i and x̂j are non-negative, and that x̂i > x̂j .
Consider an alternative solution u such that ui = x̂i − ε,
uj = x̂j + ε, for some ε ∈ (0, (xi − xj)/2), and uk = x̂k,
for k 6= i, j. Combining Lemmas 2.1 and 2.4, yields pre-
cisely the same inequality as in (21), contradicting the op-
timality of x̂, thus concluding the proof.

3 OWL Error Bounds

Consider the observation model in (6) and the other as-
sumptions about x and ν made in Section 1.1. Moreover,
assume that x? ∈ Rp satisfies ‖x?‖1 ≤

√
s ‖x?‖2; this is

true, e.g., if x? is s-sparse. At the heart of our analysis is
the following model for correlated measurement matrices.
Assume that the rows ofA ∈ Rn×p are i.i.d. N (0,CTC),
i.e., its columns are not necessarily independent. Let ma-
trix C be r × p, with n ≤ r ≤ p, so that rank(C) ≤ r.
Note thatA can be written asA = BC, whereB ∈ Rn×r
has i.i.d. N (0, 1) entries. The role of C is to mix, or even
replicate, columns of B. Figure 2 illustrates this in a case
where every column is one of three identical replicates.

3.1 General OWL Error Bound

The main result of this section is stated in the following
theorem, the proof of which is based on the techniques in-
troduced by Vershynin (2014). We also present a corollary
for the particular case where C simply replicates columns
of B, i.e., if A includes groups of identical columns; this
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Figure 2: Matrix A = BC with 10 groups of 3 identical
replicates and the corresponding covariance matrix CTC.

corollary is shown to imply part (ii) of Theorem 1.1. All
expectations are with respect to the Gaussian distribution
of the design matrixA.

Theorem 3.1. Let y,A, x?, ε, andw be as defined above,
and let x̂ be a solution to one of the optimization problems
(4) or (5). Then,

E
√

(x̂− x?)TCTC(x̂− x?) (22)

≤
√

8π
(

4
√

2 min
`=1,2

‖C‖` ‖x?‖2
w1

w̄

√
s log p

n
+ ε
)
,

where (recall) w̄ = p−1‖w‖1 and min`=1,2 ‖C‖` is the
min of the matrix 1-norm and 2-norm of C.

To help understand this bound, consider a special case re-
covering known results. If r = p and C = I , matrix A is
i.i.d. N (0, 1), which corresponds to the well known com-
pressive sensing case. The bound (22) recovers the usual
type of result in this situation (Vershynin, 2014), i.e.,

E‖x̂− x?‖2 = O
(
‖x?‖2

√
s log p

n

)
.

Notably, in this setting the OWL error bound is the same
(up to small constant factors) as that of LASSO. Slightly
more generally, if C 6= I , but has full rank, and λmax and
λmin > 0 are its largest and smallest singular values, then
using the ‖C‖2 factor in (22) yields bounds similar to those
proved by Raskutti et al. (2010):

E‖x̂− x?‖2 = O
(λmax

λmin
‖x?‖2

√
s log p

n

)
,

Since for w1 = w2 = · · · = wp, Ωw(x) = w1‖x‖1, (22)
also holds for the LASSO.

The bound in (22) is more novel and interesting ifC is rank
deficient. Consider r < p, with C leading to exactly repli-
cated columns, as in Fig. 2. In this case, the covariance
CTC has a block diagonal structure (Fig. 2), with each

block, corresponding to a group of replicated columns, be-
ing equal to a rank-1 matrix with all entries equal. In this
case, (x̂−x?)TCTC(x̂−x?) is the sum of squared errors
between the averages of x̂ and x? within each group. This
is very reasonable because bothAx̂ andAx? are functions
of only these averages, since the columns corresponding to
the groups are identical. Recall that Theorems 2.1 and 2.2
imply that x̂ is constant-valued in each group of replicated
columns. Also, in this case ‖C‖1 = 1, whereas ‖C‖2 is
equal to the square-root of the the largest group size. The-
orem 1.1 follows directly from these observations.

Proof. (Theorem 1.1 (ii)) Recall that x̄? satisfies Ax̄? =
Ax? and that if two columns of A are identical, then so
are the corresponding components of x̄?. Because of the
group structure of x? and x̂ (assuming strictly decreasing
weights), and the special form of C in the case of exactly
replicated columns,

‖x̂− x̄?‖22 ≤ (x̂− x̄?)TCTC(x̂− x̄?) ,

from which (7) results.

More generally, if C is approximately like that of Fig. 2
(each column is approximately 1-sparse), then the same
reasoning and interpretation apply approximately. For ex-
ample, if each column of C is sufficiently close to one
of the canonical unit vectors, then Theorems 2.1–2.2 im-
ply that x̂ is constant on each group of (nearly) replicated
columns, effectively averaging the corresponding columns
in the prediction Ax̂, helping to mitigate the effects of
noise in these features and improving prediction.

The bound (22) in Theorem 3.1 holds for both (4) and (5).
In fact, since 1

n‖Ax− y‖22 ≤ ε2 implies 1
n‖Ax−y‖1 ≤ ε,

the `1 constraint is less restrictive. In both cases, Theo-
rem 3.1 shows that the number of samples sufficient to es-
timate an s-sparse signal with a given precision grows like
n ∼ s log p; this agrees with well-known sample com-
plexity bounds for sparse recovery under stronger assump-
tions, such as the restricted isometry property or i.i.d. mea-
surements (Candès et al., 2006; Donoho, 2006; Haupt and
Nowak, 2006; Vershynin, 2014). In the case of groups of
(nearly) replicated columns, the number of samples grows
linearly with the number of nonzero groups, rather than
the total number of nonzero components in x̄?. This is
where OWL regularization becomes important, by select-
ing all colinear columns associated with the model; i.e., if
the columns are colinear (or correlated enough), the OWL
solution selects a representation including all the columns
associated with the sparse model, rather than a subset.

3.2 Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the approach de-
veloped by Vershynin (2014). The key ingredient is the
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so-called general M∗ bound (Vershynin, 2014, Theorem
5.1), which applies to the case where A is i.i.d. Gaussian
(C = I , in our set-up). The following theorem extends
that bound to cover our modelA = BC, for general C.

Theorem 3.2 (extended general M∗ bound). Let T be a
bounded subset of Rp, B ∈ Rn×r an i.i.d. Gaussian ma-
trix,C ∈ Rr×p a fixed matrix, andA = BC ∈ Rn×p. Fix
ε ≥ 0 and consider the set

Tε :=
{
u ∈ T : ‖Au‖1/n ≤ ε

}
. (23)

Then, with g ∼ N (0, I) being a standard Gaussian random
vector in Rq ,

E sup
u∈Tε

(
uTCTCu

)1/2

≤
√

8π

n
E sup

u∈T
|〈CTg,u〉| + ε

√
π

2
. (24)

The proof (in the supplementary materials) is based on
symmetrization and contraction inequalities, modifying the
proof by Vershynin (2014) to account for C. Theorem 3.2
can be used to derive error bounds for estimating signals
known to belong to some subset (sparsity is a special case
considered below). Let K ⊂ Rp be given and suppose that
we observe y = Ax? + ν, with 1

n‖ν‖1 ≤ ε, where
x? ∈ K. Recall the Minkowski gauge of K, defined as

‖x‖K = inf{λ > 0 : λ−1x ∈ K},

which is a norm if K is a compact and origin-symmetric
convex set with non-empty interior (Rockafellar, 1970).
The following theorem, which extends one by Vershynin
(2014, Theorem 6.2), is then used to prove Theorem 3.1.

Theorem 3.3. Let x̂ ∈ arg minx ‖x‖K, subject to
1
n‖Ax− y‖1 ≤ ε, then

E sup
x?∈K

{
(x̂− x?)TCTC(x̂− x?)

}1/2

≤
√

8π
(E supu∈K−K |〈CTg,u〉|√

n
+ ε
)
. (25)

Proof. The constraint guarantees that 1
n‖Ax̂ − y‖1 ≤ ε,

whereas by assumption, 1
n‖Ax? − y‖1 = 1

n‖ν‖1 ≤ ε.
Thus, ‖x̂‖K ≤ ‖x?‖K ≤ 1 , since x? ∈ K. The inequal-
ity ‖x̂‖K ≤ 1 implies that x̂ ∈ K.

Next, apply Theorem 3.2 to the set T = K − K, with 2ε
instead of ε, yielding

E sup
u∈T2ε

(
uTCTCu

)1/2

≤
√

2π/nE sup
u∈T
|〈CTg,u〉| +

√
8πε ,

From here, all we need to show is that for any x? ∈ K,
x̂ − x? ∈ T2ε. To see this, simply note that x̂,x? ∈ K, so
x̂− x? ∈ K −K = T . By the triangle inequality,

1

n
‖A(x̂− x?)‖1 =

1

n
‖Ax̂− y + ν‖1

≤ 1

n
‖Ax̂− y‖1 +

1

n
‖ν‖1 ≤ 2 ε,

showing that u = x̂− x? ∈ T2ε (see (23)).

Proof. (Theorem 3.1) Since x? is assumed to satisfy
‖x?‖1 ≤

√
s‖x?‖2, we first need to construct an OWL

ball that contains all x ∈ Rp with ‖x‖1 ≤
√
s‖x?‖2. Let

K = {x ∈ Rp : Ωw(x) ≤ w1

√
s‖x?‖2}.

Because Ωw(x) ≤ w1‖x‖1, all vectors satisfying ‖x‖1 ≤√
s‖x?‖2 belong to K. Also, because Ωw(x) is a norm,

and K a ball thereof, ‖x‖K is proportional to Ωw(x).

The quantity E supu∈K−K |〈CTg,u〉| in (25) is called the
width of K and satisfies

E sup
u∈K−K

|〈CTg,u〉| = E sup
u∈K−K

|〈g,Cu〉|.

Noting that ‖Cu‖1 ≤ ‖C‖1‖u‖1 ≤ ‖C‖1 Ωw(u)/w̄
(see the first paragraph of Subsection 1.1), and the fact that
the triangle inequality and the definition of K imply that,
for any u ∈ K −K, Ωw(u) ≤ 2w1

√
s‖x?‖2, yields

‖Cu‖1 ≤ 2 ‖C‖1
w1

w̄

√
s ‖x?‖2 =: ρ . (26)

The width can be then bounded as

E sup
u∈K−K

|〈g,Cu〉| ≤ E sup
{v : ‖v‖1≤ρ}

|〈g,v〉|

≤ ρ E max
i=1,...,r

|gi|, (27)

where the second inequality results from the fact that the
v achieving the supremum places all its mass ρ on the
largest component of g (in magnitude). The classical
Gaussian tail bound2 together with the union bound yield
P(maxi=1,...,r |gi| > t) ≤ re−t2/2; consequently,

E max
i=1,...,r

|gi| =

∫ ∞

0

P
(

max
i=1,...,r

|gi| > t
)
dt

≤
√

2 log r + r

∫ ∞
√
2 log r

e−t
2/2 dt

≤
√

2 log r +
√
π/2

< 2
√

2 log r, (28)

where the second inequality results from applying the
Gaussian tail bound2, and the third from assuming r > 2.
Plugging ρ (as defined in (26)) back in, leads to

E sup
u∈K−K

|〈g,Cu〉| ≤ 4
√

2 ‖C‖1
w1

w̄
‖x?‖2

√
s log r.

2If g ∼ N (0, 1), then P(g > t) ≤ e−t2/2/2.
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We can also modify the argument above to obtain a differ-
ent bound, in terms of ‖C‖2 instead of ‖C‖1, which can
be tighter in certain cases. Recall that we must bound the
width E supu∈K−K |〈CTg,u〉| and that, as shown above
(at the very beginning of the proof),

‖u‖1 ≤ 2
w1

w̄

√
s ‖x?‖2 =: ρ′. (29)

Consequently,

E sup
u∈K−K

|〈CTg,u〉| ≤ E sup
v:‖v‖1≤ρ′

|〈CTg,v〉|

≤ ρ′ E max
i=1,...,p

|cTi g| ,

where ci is the i-th column of C; the second inequality
stems from the fact that the v achieving the supremum
places its total mass ρ′ on the largest component of CTg
(in magnitude). Note that cTi g ∼ N (0, ‖ci‖22) and that
‖ci‖2 ≤ ‖C‖2, since ci = Cei, where ei is a canonical
unit vector. From this and the bounding argument in (28),
it follows that

E max
i=1,...,p

|cTi g| ≤ ‖C‖2 E max
i=1,...,p

∣∣∣ c
T
i g

‖ci‖2

∣∣∣ ,

≤ 2 ‖C‖2
√

2 log p ,

where we assume p > 2. Plugging ρ′ (as defined in (29))
back in yields the bound

E sup
u∈K−K

|〈CTg,u〉| ≤ 4
√

2 ‖C‖2
w1

w̄
‖x?‖2

√
s log p.

Theorem 3.1 now follows directly from Theorem 3.3.

4 Conclusion

In this paper, we have studied sparse linear regression with
strongly correlated covariates under the recently proposed
ordered weighted `1 (OWL) regularization, which gener-
alizes the octagonal shrinkage and clustering algorithm
for regression (OSCAR) (Bondell and Reich, 2007). We
have proved sufficient conditions for OWL regularization
to cluster the coefficient estimates, extending and qualita-
tively strengthening a previous result by Bondell and Reich
(2007). We have also characterized the statistical perfor-
mance of OWL regularization for generative models with
clusters of strongly correlated covariates. Essentially, we
have shown that, by using OWL regularization, no price
is paid (in terms of the number of measurements) for the
presence of strongly correlated covariates.

Future work will include the experimental evaluation of
OWL regularization and its combination with other loss
functions, such as logistic and hinge. An important open
problem concerns the choice of the weight vectorw, in or-
der to fully exploit the flexibility of the OWL family.

Appendix A: Strong Schur Convexity of Ωw

This appendix briefly reviews the main concepts of ma-
jorization and Schur convexity (Marshall et al., 2011), and
introduces a new notion of strong Schur convexity, showing
that Lemma 2.1 is nothing but a statement about the strong
Schur convexity of Ωw.

Let x,y ∈ Rp. Vector y is said to majorize x (denoted
y � x) if

1Tx = 1Ty and
k∑

i=1

y[i] ≥
k∑

i=1

x[i], for k = 1, ..., p− 1.

Intuitively, y � x if the two vectors have the same sum,
and the components of x have a more homogenous distri-
bution than those of y. If y is a permutation of x, then
y � x and x � y. The majorization relation is a preorder
(i.e., it is reflexive and transitive).

Let A ⊆ Rp. Function φ : A → R is said to be Schur-
convex on A, if y � x ⇒ φ(y) ≥ φ(x). Furthermore,
if

(y � x)∧(y is not a permutation of x) ⇒ φ(y) > φ(x),

then φ is said to be strictly Schur-convex. Intuitively, Schur-
convex functions “prefer” (i.e., yield lower values) vector
arguments with more uniformly distributed components.

A definition of strong Schur convexity requires a measure
of “amount of majorization” of y with respect to x. A nat-
ural choice for this purpose is the so-called Pigou-Dalton
(a.k.a. Robin Hood) transfer (Dalton, 1920; Marshall et al.,
2011; Pigou, 1912). Specifically, given y, consider two of
its components yi and yj , such that yi > yj . We say that y
ε−majorizes x, denoted y �ε x, if x results from a Pigou-
Dalton transfer of size ε ∈ (0, (yi − yj)/2] applied to y,
i.e., xi = yi − ε, xj = yj + ε, and xk = yk, for k 6= i, j.

Based on the notion of ε−majorization introduced in the
previous paragraph, we propose the following definition of
strong Schur convexity. A function φ : A → R is said to be
δ−strongly Schur convex on A if

y �ε x ⇒ φ(y)− φ(x) ≥ δ ε.

Finally, given this definition of strong Schur convexity, it
is clear that what Lemma 2.1 shows is that the OWL norm
Ωw is ∆w-strongly Schur convex on Rp+. In contrast, it is
easy to show that neither the `1 norm nor the EN regularizer
are strongly Schur convex.
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