Loss Bounds and Time Complexity for Speed Priors:
Supplementary Material

Daniel Filan

Jan Leike

Marcus Hutter

College of Engineering and Computer Science, Australian National University

Similar definitions for Sg.s¢ and Sk

Proposition 3.

9-
SFast<x) = Z n

Proof. First, we note that for each program p and
string x, if p —; x, then for all j > i, p —; . Now,

ZQ*J’ x 271Pl = 9 x 971 » o~ IPl

=i
= ig*i Z 9—lpl X ig*i Z P (14)
=1 pP—iT i=1 P—riT

pFri—1T
since all of the contributions to Sgast(z) from program
p in phases j > ¢ add up to twice the contribution from
p in PHASE 4 alone.
Next, suppose p —; x. Then, by the definition of FAST,
t(p,x) < 2717
& logt(p,) <i—|p]
& [p| +logt(p,z) < i
Also, if p 4,-1 x, then either |p| > ¢ — 1, implying
Ip| + logt(p,z) > i — 1, or t(p,x) > 2°-17IPl also
implying |p| + logt(p,x) > i — 1. Therefore, if p —; x
and p 4;_1 x, then
i—1<|p|+logt(p,z) <i
implying
—Ip| —logt(p,x) — 1 < —i < —|p| — logt(p,x) (15)
Subtracting |p| and exponentiating yields

—2|p|—-1 -2
2—2|p| < g-i-lpl < 9—2|p|
tp,x) ~ ~ tp @)

giving

9—i—lp| X
t(p,x)

Therefore,
I IERED Pt T
et 2 tp, @)
p7L>z 1
which, together with equation (14), proves the proposi-
tion. O

Note that in (14) equality actually holds up to a factor
af 2, and the sides of (16) are within a factor of two of
each other, meaning that Swast () is actually within a
factor of 4 of 37, 272Pl/t(p, x).

Proposition 4.

Sri(x 22— Y1

pP—ix

Proof. Using equation (15), we have that if p —; = and
P /-1 x, then

9—Ipl—1) 9—Ipl
<27 <
t(p,x) t(p,x)
o)
Six 2-Inl
t(p, z)

Summing over all programs p such that p —; = and
p /i1 x, we have

IRE

Z 9—Ipl
P, P, t(p, l)
pArio1x pAri1x

Then, summing over all phases 7, we have
2 |p|
Z 27
P,
pAri1T p—m

Now, as noted in the proof of Proposition 3, if ¢ —; «,
then ¢ —; « for all 7 > 4. Similarly to the start of that
proof, we note that

(17)

ZZ’jx1:2x2’ix1

Daniel Filan, Jan Leike, Marcus Hutter

The left hand side is the contribution of ¢ to the sum

22121

pP—ix

and the right hand 81de is twice the contribution of ¢
to the sum

NP

P—iT,
pAri—1x
Therefore,
(oo} oo
220 1= 2 3
i=1 pP—iT P,
pAri—1x

which, together with (17), proves the proposition.
O

Again, the two sides of the ‘equation’ established in
this proposition are within a factor of 4 of each other.

Skt is a speed prior

Proposition 6. Let x1..o € B> be such that that there
exists a program p* € B* which outputs x1., in f(n)
steps for allm € N. Let g(n) grow faster than f(n), i.e.
lim,, o0 f(n)/g(n) =0. Then,

Zp—>11:n 2_|p|/t(pa T1:n)

>g(n)

lim =0
n— 00

P 7Tlin 2—|P|/t(p, xl:n)
<f(n)

where p <—> x iff program p computes string x in no
t

more than t steps.

Proof.
Z pP——>T1.n 2- ‘p‘/t(mel n)
lim o)
n—oo Zp_>zl: 2—\P‘/t(p7q;lm)
<f(n)
Vi)
< 1 >g(n
S T) (18)
9—Ipl
< lim f(n) ZPHII n (19)
n—00 g(n) 2*\1’ |
1
< lim fn) — (20)
n—oo g(n) 2—p=|

=0

Equation (18) comes from increasing 1/t(p, z1.,) to
1/g(n) in the numerator, and decreasing the denomina-
tor by throwing out all terms of the sum except that of
p®, which takes f(n) time to compute z1.,. Equation
(19) takes f(n)/g(n) out of the fraction, and increases
the numerator by adding contributions from all pro-
grams that compute z1.,. Equation (20) uses the Kraft

inequality to bound Zp e 27 Pl from above by 1. Fi-
nally, we use the fact that lim,, .o f(n)/g(n)=0. O

Time complexity: Upper bounds

Theorem 14 (S computable in doubly-exponential
time). For any € > 0, there exists an approzimation
S5 of Sk such that |S%./Skt — 1| < € and S%, is
computable in time doubly-exponential in |z|.

Proof. We again use the general strategy of computing
k PHASEs of FAST, and adding up all the contributions
to Sk¢(x) we find. Once we have done this, the other
contributions come from computations with Kt-cost >
k. Therefore, the programs making these contributions
either have a program of length > k, or take time > 2F
(or both).

First, we bound the contribution to Sk:(x) by compu-
tations of time > 2%:
Z 9-lpl < i
- 2k

Z 92—l
p——rx (p—x
>2k

Next, we bound the contribution by computations with
programs of length |p| > k. We note that since we
are dealing with monotone machines, the worst case
is that all programs have length k£ + 1, and the time
taken is only k+1 (since, by the definition of monotone
machines, we need at least enough time to read the
input). Then, the contribution from these programs is
2FL x (1/(k+1)) x 27%=1 = 1/(k + 1), meaning that
the total remaining contribution after k& PHASES is no
more than 27F +1/(k+1) < 2/(k +1).

So, in order for our contributions to add up to > 1 —¢
of the total, it suffices to use k such that

k= |2(eSke(2)] (21)
Now, again since A is finitely computable in polynomial
time, we substitute it into equation (5) to obtain
1

X

(22)

Substituting equation (22) into equation (21), we get

k< O(|e|9W2l) /e (23)
So, substituting equation (23) into equation (10), we
finally obtain

O(1)9|x
4 steps < 20(=l?217) /e (O(|$| @2l |)> +2
€

o(l=])
< 2?

Therefore, S5, is computable in doubly-exponential
time. O

Daniel Filan, Jan Leike, Marcus Hutter

Computability along polynomial time
computable sequences

Theorem 19 (Sp,s: computable in polynomial time
on polynomial time computable sequence). If x1.00 is
computable in polynomial time, then S%,.(x1.,0) and
S5ust(T1:n1) are also computable in polynomial time.

Proof. Suppose some program p® prints 1., in time
f(n), where f is a polynomial. Then,

9—2[p"|

f(n)
Substituting this into equation (11), we learn that to

compute S%._ . (£1.n), we need to compute FAST for k
PHASEs where

k< |10g(220" f(n) /) |
Substituting this into equation (10) gives
steps < glog(2°17" £ (n)/2) (log(22P"1 f(n)/e) — 1) + 2
= O(f(n)log f(n)) = O(f(n)logn)
Therefore, we only require a polynomial number of
steps of the FAST algorithm to compute S§, . (%1:n). To
prove that it only takes a polynomial number of steps

to compute Sf, . (21:,0) for any b € B requires some
more careful analysis.

SFast (Ilzn) Z

Let (n) be a prefix-free coding of the natural numbers
in 2logn bits. Then, if b € B, then there is some
program prefix p® such that p®(n)q runs program g until
it prints n symbols on the output tape, after which it
stops running ¢, prints b, and then halts. In addition to
running ¢ (possibly slowed down by a constant factor),
it must run some sort of timer to count down to n.
This involves reading and writing the integers 1 to n,
which takes O(nlogn) time. Therefore, p®(n)p® prints
Z1.,b in time O(f(n)) + O(nlogn), so

9-2|p"(n)p”|
Srua18) 2 G070+ Otrtog
1 1
- O(f(n)) + O(nlogn) n422Ip°|+2lp"|
1
9(n)

for some polynomial g of degree 4 greater than the de-
gree of f. Using equations (11) and (10) therefore gives
that we only need O(g(n)logg(n)) = O(g(n)logn)
timesteps to compute S§, . (z1.,0). Therefore, both
S5t (£1:0,0) and Sg, (%1.,1) are computable in poly-
nomial time. O

Note that the above proof easily generalises to the case
where f is not a polynomial.

Theorem 20 (Sk; computable in exponential time

on polynomial time computable sequence). If x1.00 is
computable in polynomial time, then S5, (x1.,0) and

S5 (x1:n1) are computable in time on?®

Proof. The proof is almost identical to the proof of
Theorem 19: supposing that p® prints z;., in time
f(n) for some polynomial f, we have
2—Ip"|

(n)
The difference is that we substitute this into equation
(21), getting

SKt(xlzn) 2

k< [2'?””\“ f(n)/eJ
and substitution into equation (10) now gives
steps < 92" 1T s(n)/e (2‘pw|+1f(n)/€ - 1) +2
— 90(f(n))
The other difference is that when we bound

Skt(x1.,0) > 1/g(n), the degree of g is only 2 greater

than that of the degree of f. Therefore, we can compute
Stt(21:,0) and Sge,(21:,1) in time on® O

