
Loss Bounds and Time Complexity for Speed Priors:
Supplementary Material

Daniel Filan Jan Leike Marcus Hutter
College of Engineering and Computer Science, Australian National University

Similar definitions for SFast and SKt

Proposition 3.

SFast(x) ×=
∑
p→x

2−2|p|

t(p, x)

Proof. First, we note that for each program p and
string x, if p→i x, then for all j ≥ i, p→j x. Now,

∞∑
j=i

2−j × 2−|p| = 2× 2−i × 2−|p|

⇒
∞∑
i=1

2−i
∑
p→ix

2−|p| ×=

∞∑
i=1

2−i
∑
p→ix

p 6→i−1x

2−|p| (14)

since all of the contributions to SFast(x) from program
p in phases j ≥ i add up to twice the contribution from
p in phase i alone.

Next, suppose p→i x. Then, by the definition of fast,

t(p, x) ≤ 2i−|p|

⇔ log t(p, x) ≤ i− |p|
⇔ |p|+ log t(p, x) ≤ i

Also, if p 6→i−1 x, then either |p| > i − 1, implying
|p| + log t(p, x) > i − 1, or t(p, x) > 2i−1−|p|, also
implying |p|+ log t(p, x) > i− 1. Therefore, if p→i x
and p 6→i−1 x, then

i− 1 < |p|+ log t(p, x) ≤ i
implying

−|p| − log t(p, x)− 1 < −i ≤ −|p| − log t(p, x) (15)

Subtracting |p| and exponentiating yields

2−2|p|−1

t(p, x)
≤ 2−i−|p| ≤ 2−2|p|

t(p, x)

giving

2−i−|p| ×=
2−2|p|

t(p, x)

Therefore,
∞∑
i=1

2−i
∑
p→ix

p 6→i−1x

2−|p| ×=
∑
p→x

1

t(p, x)
2−2|p| (16)

which, together with equation (14), proves the proposi-
tion.

Note that in (14) equality actually holds up to a factor
af 2, and the sides of (16) are within a factor of two of
each other, meaning that SFast(x) is actually within a
factor of 4 of

∑
p→x 2−2|p|/t(p, x).

Proposition 4.

SKt(x) ×=

∞∑
i=1

2−i
∑
p→ix

1

Proof. Using equation (15), we have that if p→i x and
p 6→i−1 x, then

2−|p|−1

t(p, x)
≤ 2−i ≤ 2−|p|

t(p, x)
so

2−i ×=
2−|p|

t(p, x)

Summing over all programs p such that p →i x and
p 6→i−1 x, we have

2−i
∑

p→ix,
p 6→i−1x

1 ×=
∑

p→ix,
p 6→i−1x

2−|p|

t(p, x)

Then, summing over all phases i, we have
∞∑
i=1

2−i
∑

p→ix,
p 6→i−1x

1 ×=
∑
p→x

2−|p|

t(p, x)
(17)

Now, as noted in the proof of Proposition 3, if q →i x,
then q →j x for all j ≥ i. Similarly to the start of that
proof, we note that

∞∑
i=j

2−j × 1 = 2× 2−i × 1

Daniel Filan, Jan Leike, Marcus Hutter

The left hand side is the contribution of q to the sum
∞∑
i=1

2−i
∑
p→ix

1

and the right hand side is twice the contribution of q
to the sum

∞∑
i=1

2−i
∑

p→ix,
p 6→i−1x

1

Therefore,
∞∑
i=1

2−i
∑
p→ix

1 ×=

∞∑
i=1

2−i
∑

p→ix,
p 6→i−1x

1

which, together with (17), proves the proposition.

Again, the two sides of the ‘equation’ established in
this proposition are within a factor of 4 of each other.

SKt is a speed prior

Proposition 6. Let x1:∞ ∈ B∞ be such that that there
exists a program px ∈ B∗ which outputs x1:n in f(n)
steps for all n ∈ N. Let g(n) grow faster than f(n), i.e.
limn→∞ f(n)/g(n) = 0. Then,

lim
n→∞

∑
p−−−−→
≥g(n)

x1:n
2−|p|/t(p, x1:n)∑

p−−−−→
≤f(n)

x1:n
2−|p|/t(p, x1:n)

= 0

where p −−→
≤t

x iff program p computes string x in no

more than t steps.

Proof.

lim
n→∞

∑
p−−−−→
≥g(n)

x1:n
2−|p|/t(p, x1:n)∑

p−−−−→
≤f(n)

x1:n
2−|p|/t(p, x1:n)

≤ lim
n→∞

∑
p−−−−→
≥g(n)

x1:n
2−|p|/g(n)

2−|px|/f(n)
(18)

≤ lim
n→∞

f(n)

g(n)

∑
p→x1:n

2−|p|

2−|px| (19)

≤ lim
n→∞

f(n)

g(n)

1

2−|px| (20)

= 0

Equation (18) comes from increasing 1/t(p, x1:n) to
1/g(n) in the numerator, and decreasing the denomina-
tor by throwing out all terms of the sum except that of
px, which takes f(n) time to compute x1:n. Equation
(19) takes f(n)/g(n) out of the fraction, and increases
the numerator by adding contributions from all pro-
grams that compute x1:n. Equation (20) uses the Kraft

inequality to bound
∑

p→x1:n
2−|p| from above by 1. Fi-

nally, we use the fact that limn→∞ f(n)/g(n) = 0.

Time complexity: Upper bounds

Theorem 14 (SKt computable in doubly-exponential
time). For any ε > 0, there exists an approximation
Sε
Kt of SKt such that |Sε

Kt/SKt − 1| ≤ ε and Sε
Kt is

computable in time doubly-exponential in |x|.

Proof. We again use the general strategy of computing
k phases of fast, and adding up all the contributions
to SKt(x) we find. Once we have done this, the other
contributions come from computations with Kt-cost >
k. Therefore, the programs making these contributions
either have a program of length > k, or take time > 2k

(or both).

First, we bound the contribution to SKt(x) by compu-
tations of time > 2k:∑

p−−→
>2k

x

2−|p|

t(p, x)
<

1

2k

∑
p→x

2−|p| ≤ 1

2k

Next, we bound the contribution by computations with
programs of length |p| > k. We note that since we
are dealing with monotone machines, the worst case
is that all programs have length k + 1, and the time
taken is only k+1 (since, by the definition of monotone
machines, we need at least enough time to read the
input). Then, the contribution from these programs is
2k+1 × (1/(k + 1))× 2−k−1 = 1/(k + 1), meaning that
the total remaining contribution after k phases is no
more than 2−k + 1/(k + 1) ≤ 2/(k + 1).

So, in order for our contributions to add up to ≥ 1− ε
of the total, it suffices to use k such that

k =
⌊
2(εSKt(x))−1

⌋
(21)

Now, again since λ is finitely computable in polynomial
time, we substitute it into equation (5) to obtain

SKt(x)
×
≥ 1

|x|O(1)2|x|
(22)

Substituting equation (22) into equation (21), we get

k ≤ O(|x|O(1)2|x|)/ε (23)

So, substituting equation (23) into equation (10), we
finally obtain

steps ≤ 2O(|x|O(1)2|x|)/ε

(
O(|x|O(1)2|x|)

ε

)
+ 2

≤ 22
O(|x|)

Therefore, Sε
Kt is computable in doubly-exponential

time.

Daniel Filan, Jan Leike, Marcus Hutter

Computability along polynomial time
computable sequences

Theorem 19 (SFast computable in polynomial time
on polynomial time computable sequence). If x1:∞ is
computable in polynomial time, then Sε

Fast(x1:n0) and
Sε
Fast(x1:n1) are also computable in polynomial time.

Proof. Suppose some program px prints x1:∞ in time
f(n), where f is a polynomial. Then,

SFast(x1:n) ≥ 2−2|p
x|

f(n)

Substituting this into equation (11), we learn that to
compute Sε

Fast(x1:n), we need to compute fast for k
phases where

k ≤
⌊
log(22|p

x|f(n)/ε)
⌋

Substituting this into equation (10) gives

steps ≤ 2log(2
2|px|f(n)/ε)(log(22|p

x|f(n)/ε)− 1) + 2

= O(f(n) log f(n)) = O(f(n) log n)

Therefore, we only require a polynomial number of
steps of the fast algorithm to compute Sε

Fast(x1:n). To
prove that it only takes a polynomial number of steps
to compute Sε

Fast(x1:nb) for any b ∈ B requires some
more careful analysis.

Let 〈n〉 be a prefix-free coding of the natural numbers
in 2 log n bits. Then, if b ∈ B, then there is some
program prefix pb such that pb〈n〉q runs program q until
it prints n symbols on the output tape, after which it
stops running q, prints b, and then halts. In addition to
running q (possibly slowed down by a constant factor),
it must run some sort of timer to count down to n.
This involves reading and writing the integers 1 to n,
which takes O(n log n) time. Therefore, pb〈n〉px prints
x1:nb in time O(f(n)) +O(n log n), so

SFast(x1:nb) ≥
2−2|p

b〈n〉px|

O(f(n)) +O(n log n)

=
1

O(f(n)) +O(n log n)

1

n422|pb|+2|px|

=
1

g(n)

for some polynomial g of degree 4 greater than the de-
gree of f . Using equations (11) and (10) therefore gives
that we only need O(g(n) log g(n)) = O(g(n) log n)
timesteps to compute Sε

Fast(x1:nb). Therefore, both
Sε
Fast(x1:n0) and Sε

Fast(x1:n1) are computable in poly-
nomial time.

Note that the above proof easily generalises to the case
where f is not a polynomial.

Theorem 20 (SKt computable in exponential time

on polynomial time computable sequence). If x1:∞ is
computable in polynomial time, then Sε

Kt(x1:n0) and

Sε
Kt(x1:n1) are computable in time 2n

O(1)

.

Proof. The proof is almost identical to the proof of
Theorem 19: supposing that px prints x1:n in time
f(n) for some polynomial f , we have

SKt(x1:n) ≥ 2−|p
x|

f(n)

The difference is that we substitute this into equation
(21), getting

k ≤
⌊
2|p

x|+1f(n)/ε
⌋

and substitution into equation (10) now gives

steps ≤ 22
|px|+1f(n)/ε

(
2|p

x|+1f(n)/ε− 1
)

+ 2

= 2O(f(n))

The other difference is that when we bound
SKt(x1:nb) ≥ 1/g(n), the degree of g is only 2 greater
than that of the degree of f . Therefore, we can compute

Sε
Kt(x1:n0) and Sε

Kt(x1:n1) in time 2n
O(1)

.

