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S1 The 1/k ensemble

As stated in section 2, the 1/k ensemble is constructed
to put roughly equal probability on all value of the en-
tropy. This can be understood by the following argu-
ment. For most systems the entropy is increasing fast

with E. We can transform the k(E) ≡
∫ E
−∞ g(E′) dE′

to an integral over entropy and use that the entropy is
growing fast with energy to make the approximation

k(E) =

∫ s(E)

0

(
dS

dE

)−1
exp(s) ds

≈
(
dS(E)

dE

)−1
exp s(E) ∆s ,

(S1)

where ∆s is the appropriate scale of s. Transforming
the distribution of p(E|w), equation (6), to the distri-
bution over the entropy

p(s|w) =

(
ds

dE

)−1
exp(w(E) + s(E)) (S2)

and inserting the approximation derived into w(E) =
− log k(E), we arrive at a flat distribution in entropy.

S2 The Wang–Landau algorithm

Arguably, the most successful GE learning algorithm
having a similar domain of application as BayesGE is
the Wang–Landau (WL) algorithm (Wang and Lan-
dau 2001). In this method, a flat histogram in P (E|w)
is enforced by increasing the entropy estimate ŝ by a
constant modification factor log f > 0 each time an
energy bin is visited, using a predefined binning pro-
cedure. This modification procedure is repeated un-
til the accumulated histogram satisfy some prescribed
flatness criterion, which is periodically checked. At
this point, the histogram is reset and a new iteration
t+ 1 is started with a reduced parameter f according
to the recipe ft+1 =

√
ft. This means that ft → 0 as

t → ∞, and the weights w = −ŝ will reproduce the
multicanonical ensemble. Partition functions are then
estimated using equation (8).

S3 The generalised multi-histogram
equations

The maximum likelihood estimate (MLE) of the en-
tropy ŝ = arg maxs P (N |W, s), c.f. equation (17), can
be found using the generalised multi-histogram (GMH)
equations (S3) and (S4) (Ferkinghoff-Borg 2002). Ex-
pressed in terms of the density of states ĝ = exp ŝ, we
have

ĝj =

∑t
τ=1 n

(τ)
j∑t

τ=1 χ
(τ)
j ν(τ)Z−1

w(τ) expw
(τ)
j

, (S3)

where χ
(τ)
j = 1 if j ∈ S̃(τ) and otherwise χ

(τ)
j = 0. S̃(τ)

and ν(τ) are defined in section 3.2. The partition func-
tions {Zw(τ)}tτ=1 must be estimated self-consistently
from equation (S3). This can be formulated as the
roots of t nonlinear equations ∑

j∈S̃(τ′)

∑t
τ=1 n

(τ)
j∑t

τ=1 χ
(τ)
j ν(τ)

Z
w(τ′)
Z

w(τ)
exp(w

(τ)
j − w

(τ ′)
j )

− 1 = 0


t

τ ′=1

.

(S4)

These can be solved effectively w.r.t. the t un-
knowns {Zw(τ)}tτ=1 using the iterative Newton–
Raphson method (Ferkinghoff-Borg 2012). Inserting
the solution of these equations into equation (S3) leads
to an estimate of the density of states.

Variants of these equations are also known as the mul-
tihistogram or WHAM-equations used for calculating
respectively entropies of free energies for thermal en-
sembles, see Ferkinghoff-Borg (2012) for further de-
tails.

S4 Details on posterior inference

The prior and likelihood function only depends on s up
to an additive constant. The translation invariance of
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the likelihood function reflects the fact partition func-
tions can only be estimated in a relative sense in the
MCMC procedure, as discussed in section 2. We cir-
cumvent this invariance by conditioning the likelihood
on so = 0 at a point Eo, where the entropy is large
and thus easy to generate states from. It is straight
forward to subsequently renomalise the results accord-
ing to a known Z0 (e.g. Z0 = 1).

S5 Derivation of the closed form
expression for setting the weights

To derive the closed form expression for the weights
in (25), we expand the argument on the rhs. of equa-
tion (24) in terms of δs = s − s̄. To this end, let
zj = zj(wj) = exp(wj + s̄j). Without loss of general-

ity we may assume that Zw(s̄) =
∑J
j=1 exp(wj+ s̄j) =∑J

j=1 zj = 1, so zj is of the order of 1/L where L = |S̃|
is the number of observed energies. To first order in
δs we then have

− log (Zw(δs)) = − log

 J∑
j=1

exp(zj + δsj)


≈ −z · δs

(S5)

and

〈P (Ej |w)〉P (s|N,W )

≈ 〈exp (log(zj) + δsj − z · δs)〉P (s|N,W )

= zj exp

(
1

2
Vjj +

1

2
zᵀ · V · z

)
,

(S6)

where V is the posterior covariance matrix. Since V
is diagonally dominant and z ∼ O( 1

L ), the exponent is
typically dominated by the first term. Consequently,
we see that for both the multicanonical and 1/k en-
semble we obtain the desired expectation values of
P (Ej |w(t+1)) under the posterior, by simply setting

w̃(t+1) = w̄(t+1) − 1

2
diag(V ) , (S7)

where w̄(t+1) are the weights defined in equations (22)
to (23).

S6 Simulation details

For all BayesGE simulations we used the default ini-
tial simulation time ν(1) = 5000 and increasment fac-
tor γ = 21/10. The weights was updated using the
uncertainty approximation from equation (25). For
BayesGE with multicanonical weights we used the in-
dex set S̃ restricted to the observed support when cal-
culating the MLE ŝ and the negative Hessian H. For

BayesGE with 1/k weights we used we used the full in-
dex set S when calculating ŝ and the restricted index
set S̃ for when calculating H.

In AIS we used a linear cooling schedule for β and
performed a cooling step in each Monte Carlo step.
For AIS, simulations was run at different lengths in
batches of 50 simulations. The WL algorithm was run
using the modification factor log ft = 2−t for the t’th
level of random walk and a flatness criterion of 80%.
For nested sampling we used MCMC to sample from
the likelihood constrained prior, and the plots were
produced by increasing the number of particles. The
number of MCMC step used to draw a sample from
the constrained prior was keep fixed for each model
and selected optimal by trail-and-error, see figure S5.
For each number of particles, nested sampling was run
for 2ÑH̃ steps, where Ñ is the number of particles and
H̃ is the logarithm of the fraction of prior mass that
count the bulk of the posterior mass (Skilling 2006).
H̃ was estimated by an initial set of simulations using
the maximal number of particles for the given number
of MCMC steps.

S7 Estimation of the partition
function of a binary restricted
Boltzmann machine

As a proof-of-principle we have compared the perfor-
mance of BayesGE and AIS with respect to estimat-
ing the partition function of a binary restricted Boltz-
mann machine (RBM). The purpose of these simula-
tions is to demonstrate the application of BayesGE to
more computationally intensive models involving semi-
continuous energies and to verify the discussion in sec-
tion 3.6 regarding the computational overhead of the
algorithm.

The RBM consists of 784 visible units and 500 hid-
den units trained on the MNIST dataset (LeCun et al.
1998) using persistent contrastive divergence (Tiele-
man 2008). We estimate the partition function for
β = 1, and for sake of consistency with Grosse et al.
(2013), we have chosen the natural counting measure
for p0, equation (1), implying that that Z0 = 2784+500.
We used the model PCD(500) trained by Grosse et al.
(2013) and for which accurate estimates of the parti-
tion function have been obtained based on extensive
AIS simulations. We have used the estimate with the
largest effective sample size, logZβ=1 = 418.26, as the
reference for the comparison of the two methods.

We ran BayesGE with 1/k weights using standard set-
tings and divided the energy range [−500; 5000] uni-
formly into 1024 bins. As for the spins systems we
used a linear cooling schedule for β in AIS. For both
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algorithms we use a single bit flip Metropolis proposal.

Figure S6 shows logZβ=1 and the RMSE of logZβ=1

as a function of MC steps. These results indicate that
BayesGE performs comparable to AIS in terms of con-
vergence and that the binning in a semi-continuous
model does not pose any principle problems to our
method. After 109 MC steps BayesGE is seen to otain
a better estimate of logZβ=1 on average but has a
higher variance than AIS. Here two observations are
of particular interest. First, the BayesGE average es-
timate displays a plateau from ∼ 1·108 to ∼ 4·108 MC
step which is also mirrored in the RMSE. Secondly, on
average the AIS estimate seems to converge slower to
the reference value than the BayesGE at longer simu-
lation times. We believe both observations are related
to the inherent difficulties in sampling across the co-
operative transition from unordered images to digits
in the RBM model using the single flip Monte Carlo
simulation setup. In particular the latter observation
tentatively demonstrates the merits of BayesGE com-
pared to tempering methods with respect to such type
of transition. We aim to study these aspects in more
details in a forthcoming publication.

For both methods we measured the wall-clock simula-
tion time up to 108 MC steps. The simulations were
performed on a 2.5GHz AMD Opteron 6380 processor
and the BayesGE algorithm was allowed to use multi-
ple threads for the entropy inference step. Figure S7
shows the wall-clock simulation time as a function of
the number of MC steps. As expected, AIS scales lin-
early with time and BayesGE approaches the same
scaling behaviour within a small number of MC steps
compared to the total number of steps required for
convergence, c.f. section 3.6. After 108 steps the over-
head of BayesGE entropy inference step is less than
20% compared to AIS.
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Figure S1: The black line shows the analytically calculated (Beale 1996) entropy function s(E) for the 2D Ising
model of size 16× 16. The red curve shows the marginal distribution of the energy under a flat prior P0 = Pβ=0.
The blue curve shows the marginal distribution over the energy induced by Pβ=0.4(x). Note that these marginal
distributions can be calculated directly using equation (6) and wβ(E) = −βE.
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Figure S2: Examples of the posterior distribution of the entropy function s for BayesGE with 1/k weight at
three different simulations lengths (corresponding to 1, 10 and 20 histograms) for the 2D Ising model of size
16× 16. The orange line is the ground truth and the blue line is the posterior mean estimate s̄ with the shaded
area showing ± two standard deviations.
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Figure S3: The plots show the relative number of MC steps need to obtain a given relative RMSE on the 2D Ising
and Potts models with different sizes, number of colours (q) and values of β. The number of MC is measured
relative to how many steps BayesGE 1/k uses to obtain the same relative RMSE. A relative number of MC above
1 means that a given method uses more MC steps than BayesGE 1/k to obtain a given error. A relative number
of MC steps below 1 means that the method uses fewer MC steps.
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Figure S4: The log partition function logZβ as a function of the number Monte Carlo (MC) steps for simulations
on 2D Ising and Potts models with different sizes, number of colours (q) and values of β. For each method and
each model, the line shows the average value of logZβ over 50 independent simulations, and the shaded area
shows ± one standard deviations. The black line shows the reference value for logZβ . For the Ising models, the
reference value was calculated analytically (Beale 1996). For the Potts models the reference value was calculated
as the average logZβ over 50 independent WL simulations using 1010 MC steps.
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Figure S5: Illustration of the trial-and-error scheme used for selecting the number of MCMC steps used in nested
sampling to draw one sample from the likelihood constrained prior. The plots shows the relative root mean
square error (RMSE) of logZβ (over 50 independent simulations) as a function of the number Monte Carlo (MC)
steps for simulations on 2D Ising and Potts models with different sizes, number of colours (q) and values of β.
For each model we tested a number of different values for the number MCMC step used to draw one sample
from the constrained prior. The number of MCMC steps are expressed in terms of a factor times the number of
degrees of freedom ndof = L2 of the model. For each model, the optimal number of MCMC steps was selected
base on the (subjectively) optimal curve.



Supplementary material for: Bayesian generalised ensemble Markov chain Monte Carlo

0.0 0.2 0.4 0.6 0.8 1.0

MC steps ×109

410

415

420

425

lo
g
Z
β

=
1

Binary RBM

BayesGE 1/k

AIS

Reference

106 107 108 109

MC steps

10−3

10−2

10−1

100

101

R
e
l.

R
M

S
E

o
f

lo
g
Z
β

=
1

Binary RBM

BayesGE 1/k

AIS

∝ 1/
√
ν

Figure S6: Simulation results for the binary RBM PCD(500) (Grosse et al. 2013) with 784 visible units and
500 hidden units trained on the MNIST dataset. The left plot shows logZβ=1 as a function of the number
Monte Carlo (MC) steps and the right plot shows the RMSE of logZβ=1 as a function of MC steps. For each
algorithm the results are averaged over 50 independent simulations and the shaded area on the left plot shows
± one standard deviation. The reference value logZβ=1 = 418.26 is obtained from Grosse et al. (2013).
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Figure S7: The wall-clock simulation time (measured in seconds) as a function of the number Monte Carlo (MC)
steps for the binary RBM PCD(500) (Grosse et al. 2013) with 784 visible units and 500 hidden units trained on
the MNIST dataset.
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