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A Proof of Lemma 1

Proof. Let t be the first time when the condition in equation (2) is met, then at time ¢ — 1 we have that

which implies that

Ayy —2 Z Bi(t—1) <0,

ieUpV
and thus
1(f—_1)2
Z log SLCLES (2 D > Ay
2T;(t—1) — 2

ieUdV

Since the algorithm is selecting arms in U & V' using a round-robin strategy, at any time 7;(t) = 7} (t) & 1 for any pair of

arms 7, j. Thus, let j be the least pulled arm at round ¢ — 1 (i.e., j € argmin T;( — 1)), then the previous inequality can

be written as

4K (T—1)?

log % AV,U
2T;(t—-1) — 2 7

duv

which leads to the statement. O

B The Complexity in Equation (4) is Well-defined

In order to prove that our complexity measure in equation (4) is well-defined, we have to show that the max operator
actually returns a value, that is, that there exists at least one element in the argument of the max operator. This is done in
the following proposition.

Proposition 1. Let Q; be the set of the decision sets in the argument of the max operator in equation (4), i.e.,
Q:={UeC:icUasCy}. (10)

Then Q; # @ for all i in K.
Proof. We distinguish the following two cases:

Casel) i ¢ U*

According to the assumption we made in Section 2, there exists a decision set V' € C such that ¢ € V. Note that ¢ does not
necessarily belong to V' & Cy,. We construct a sequence of decision sets X = {X1,..., X} such that X; = V, for all
je{l,...,p—1},i€ X;and X;;; = Cx,,and i ¢ X,,.8 As aresult, setting U = X,_; and Cyy = X,, we have that
i€ U @ Cy, and thus, Q; # &.

Case2) i c U*

Let V = argmax puy. Then Cy exists, because i € U*. Moreover ¢ € Cy, as otherwise we obtain the contradiction

UeC :i¢U
Uy > py = v rélaXQUMU > uc, - Therefore, i € Cy/\V, sothat V € Q; and Q; # @. O
eC:1i

8Note that X is not only finite but also contains a decision set X, such that i ¢ X,. The first claim comes from the definition of
complement that gives us px;,, > px;, Vj € {1,...,p — 1}, and the fact that C is finite. For the second claim note that as ¢ ¢ U™,
X has at least two elements.
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C Useful Properties of the Complexity /1y
In this appendix, we prove several useful properties of the complexity Hy; i later, particularly in the proof that our com-
plexity measure is not higher than the measure used by Chen et al. [2014].

The first proposition shows that the distance dr7 v between two decision sets U and V' follows a triangle inequality.

Proposition 2. For any three distinct decision sets U,V,W € C, we have, U®V C (U e W)U (W @& V) and dy,y <
dU,W + dW,V- Moreover, lf(U (S¥) W) N (W @b V) =thenU @&V = (U ©® W) @] (W ©® V) and dU,V = dU,W + dW7\/.

Proof. To prove the statements for U & V, we first prove that
U\V = ((U\V)\W) U ((U\V) N W)

= (@WN(@\W) 1 (AW)) U (VN (WAV) N (D)) ) ()
C (U\W)U (W\V). (12)

Similar to (12), we may prove
V\U C (V\W)U(W\D). (13)

Taking the union of (12) and (13) gives
(UD\VYU (V\U) C (U\W)U (W\V)U (V\W)U (W\U),

and the first claim of the proposition
UaoVCUaW)u(WaV). (14)

follows by definition of @. The second claim is straightforward from (14) and the definition of symmetric distance d, i.e.,
duyv <dvw +dwy.

To prove the second part of the proposition, we start from (11), that is,

X Y s z
0\ = (W) () n (1 Aw) ) u (W) (M) n ) ),
A B
from which by our assumption (U & W) N (W @ V) = & we obtain
Uvow wav
——
AUB=(XUSN(XUZ)NnYusS nYuZzZ)=g = A= and B=2. (15)
%)

From (15), (C) may be written as

U\V = (U\W) U (W\V). (16)
Similarly, one can show that

VAU = (VAW) U (W\U). 17)

Taking union from both sides of (16) and (17), we obtain
UaV=UoW)uWaV),

and as a result EU,V = EU,W + EW,V, which completes the proof of the second part of the proposition. O
The next proposition proves useful properties for the complexity of two decision sets.
Proposition 3. For any three decision sets U, V,W € C with uy < py < pw, we have

Hyw <max (Hyyv,Hv,w) . (18)
Furthermore, if U® V)N (V@& W) = &, then

Hyw > min (Hyv,Hy,w), (19)

and finally, the above two inequalities are strict if Hy v # Hy,w.
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Proof. We write
Awy = pw — pu = pw — pv + pv — pu = Awy + Avy. (20)

By assumption, we have py > py and py > pgr, and thus, Ay > 0 and Ay > 0. As a result, we may write

dvw @ dyy +dyw © <dU,V dy,w )
< < max )
Awu — Awyv +Avy

, 21
Avy Awyv @D

where (a) follows from Proposition 2 and (20), and (b) follows from the fact that for any positive a, b, c,d > 0, it holds
that % < max (2, 2).° From (21), we get

-2 —2 -2
dy,w < max dyy dyw
Ao AVy Ay )
which gives us (18).

The second statement is similarly proved as

duw (@ dyyv+dvw © (dU,V dv,w)

= > min ,
Avy Awy

0 2 22)
Awy  Awyv +Avy (

where (a) is true under the assumption that (V @ U) N (V @ W) = & from Proposition 2, and (b) follows from the fact

that for any positive a, b, ¢, d > 0, it holds that min (%, %) < %.10 From (22) it follows that

—2 —2 —2
dyw > min dyyv dyw
2 = 2 A2 )
AW,U AV,U AW,v

which gives us (19).

The proof of the very last statement, the strict inequalities, comes directly from the fact that when ¢ # g, the two

inequalities at step (b) of (21) and (22) become strict. O]

In the last proposition of this section, we show that the complexity of discriminating between a decision set U # U* and
its complement V' = CY; is less than the complexity of discriminating between V' = Cy and its complement W = Cy =
Cc,, . provided that the complement of U is not the best decision set U*, i.e., V = Cyy # U™.

Proposition 4. For any decision set U # U* withV = Cy # U* and W = Cy = C¢y,, it holds that Hy v < Hy w.

Proof. We prove the statement by contradiction. Let us assume that Hy )y > Hyw. Since V' # U* and by definition
of complement, we have uy < py < pw. Asaresult, Hyw < max (Hy,v, Hy,w) from Proposition 3. Note that this
inequality is strict, whenever Hy v # Hy, w, again according to Proposition 3, and since we assumed that Hy v > Hy
we have Hy w < Hy,v. This gives us

Hyyv =Hyc,=_min Hyz < Hyw < Hyy,
ZeCipz>pu

which leads to the contradiction that Hy v < Hy v . O]

D Equivalence of the Different Notions of Arm Complexity

In this section, we give two alternative notions of complexity of an arm that are equivalent to the original definition H; of
equation 4. In the analysis of the algorithms (see Appendices G and H) we will use the definition of the complexity that
is the most handy. The equivalence proof requires the results of Appendix C, especially Proposition 4. We start with the
definition of the alternative complexity notions and two intermediate results that will be needed for the equivalence proof
given at the end of this section.

“Here is the proof: Assume without loss of generality that 2 < %. Then ‘ZT*; < % = Zgiﬁﬁ)) = % = max (%, %)
'0The proof is analogous to the previous footnote: Assume without loss of generality that 2 < g. Then ‘C’IZ > “tj_‘fj/ £ — ‘C‘((j;;‘fllg =

= min (2.5,
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Definition 7. Our two notions of complexity for an arm i € K, H' and H?, are defined as

max  Hyc, ifi¢U” max H, if i ¢ U*

M — UecC:ieU\Cy v ’ g2 _ ] vecicu vey ifigU”,

! max Hyc, ifieU*”. ! max Hyc, ifieU”.
UeC:ieCy\U UeC:igU

The following proposition plays an important role in proving the equivalence H} = H;,Vi € K. It shows that if i €
(U D CU), then /Hll > HUch.

Proposition 5. For any decision set U € C such that U # U*, and any arm i € (U & Cy), we have H} > Hy.c,,.

Proof. We consider the following two cases for a fixed arm i € (U @ Cy):
Casel) i c U*

If i € Cyy\U, the result follows directly from the definition of H}. If i € U\Cy, similar to the proof of Proposition 1 in
Appendix B, we construct a sequence of decision sets {X1,...,X,} suchthat X1 = U, forallj € {2,...,p—1},i1 ¢ X;

and X1 = Cx,,and i € X,. Note that {X5,..., X} is a sequence of decision sets and their complements that do not
contain arm ¢ until a set X, is generated that contains .1 From Proposition 4, we have that H X; X1 = Hx;_, x;,V] €
{2,...,p — 1}. Now starting from the definition of #}, we may write
L @
H; = Z:irélgf\z Hzc, > Hx,_,x, > Hx, x, = Hucy,

which proves the claim of the proposition. Note that (a) comes from the fact that i € Cx,_,\X,_1 by definition of the
sequence.

Case2) i ¢ U*

If i € U\Cy, the result follows directly from the definition of 7-[11 When ¢ € Cyy\U, we construct a sequence of decision
sets {X1,...,X,} suchthat X; = U, forall j € {2,...,p—1},i € X;and X, = Cx,,and i ¢ X,,. This is a sequence
of decision sets and their complements that contain arm ¢ until a set X, is generated that does not contain 7. As a result
i € Xp_1\Cx,_,. From Proposition 4, we have that Hx, x,,, > Hx, , x;,Vj € {2,...,p — 1}. Now starting from the
definition of H}, we may write

H = zf?%)\(cz Hzc, > Hx, , x, > Hx, x, = Hucy, (23)
which proves the claim of the proposition. O

Proposition 6. For any decision set U € C such that U # U*, and any arm i € (U & U*), we have H} > Hy c,,.

Proof. Let us construct a sequence of decision sets {X,..., X, } suchthat X, = U, forall j € {2,...,p— 1}, X;;1 =
Cx;,and X, = U*. This sequence is well-defined and has at least two elements, since U # U™ and U™ is unique. If we
prove that for any j € {2,...,p}, we have that for all i € (X; & X;), H} > Hx, x,, then j = p will gives us the proof
of the proposition. Now let us prove this statement. The proof is by induction on j.

Base Step: j = 2. In this case, the claim follows directly from Proposition 5.

Inductive Step: Here we assume that for j = 5/, we have that H} > Hx, x,,Vi € (X; & X;/), and we want to
show that ”H} > Hx, x,,Vi € (X1 X j/+1). From Proposition 5 and the construction of the sequence, we have
HE > Hx, x,.,,Vi € (Xj,Xj41). By repeated application of Proposition 4, we can show that Vi € (X1 & X;/) U
(Xj @ Xji41), we have H} > min(HXl’Xj,,HXj,,Xj,H) > Hx, x,. Moreover, from Proposition 2, we know that
X1® X141 C (X190 X)) U (X @ Xjr41), and thus, we obtain Vi € (X; @ X;/11) that H} > Hy, x,, which proves
the inductive step. O

We are now ready to prove the main result of this section, the equivalence of the different notions of arm complexity.
Lemma 3. For any armi € K, we have H; = H} = H?2.

""Note that such a sequence is finite, because by the definition of complement of a decision set, we have X;41 > HX;, the number
of decision sets is finite, and 1 € U™.



Improved Learning Complexity in Combinatorial Pure Exploration Bandits

Proof. Step 1: We first prove that H; = H},Vi € K.

i
From the definition of 7-[1-1, it is immediate to see that 7—[} < . Cmagc c Hyc, = H;, and from Proposition 5, we may
eCieUdCy
write H; = max H < H!. These together prove Step 1.
U7 Uecicvac, T OCv = Th & P P
Step 2: We now want to prove H} = H? Vi € K.

From the definitions of 7} and H?, it is immediate to write H} < H?Z. To prove the reverse, we consider the following
two cases:

Casel) i ¢ U*
In this case, we may write

(@)

H? = max Hyc, = max Hyc, < H!
' vecdeu Y vecieUeury Y T Y
where (a) is from Proposition 6.
Case2) ic U™
In this case, we may write
2 @ 1
H; = max Hyc, = max Hyc, <H;,s
UeC:ig¢U UeC:ie(UpU~)

where (a) is from Proposition 6.

The two cases together prove Step 2. O

E Proof of Lemma 2

Let U € C be a decision set with complement Cy;. Let b be an exchange set that satisfies constraints (b)—(e) of Definition 2
for the decision set pair (U, Cyy). Let V' = U =+ b be the decision set resulted from applying the transformation b to U. We
now define the exchange set d = (Cy\V, V\Cly) as the exchange set that completes the transformation of U to Cy after
applying b to U. It is easy to show that d = ((Cy/\U)\b+, (U\Cr)\b-). We now prove the following two propositions
that are used in the proof of Lemma 2.

Proposition 7. For any decision set U € C, any exchange set b that satisfies constraints (b)—(e) of Definition 2 for the
decision set pair (U, Cy), and any exchange set d that completes the transformation of U to Cy after applying b to U,
ie, d= ((Cu\U)\by, (U\Cy)\b-), we have

Acyu =Aby o +AD4a,q. >0, 24
ducy =do, o +da, a_, (25)

(Eb+,b_ +Ed+,d_ )?

so that Hy ¢, = Bor o 1B )

Proof. We begin with the proof of (24). By definition of Cy, pc,, > py, so that Ay, and Ag, g cannot be both
negative. Now to prove the equality, first note that j1q, = po,\v — pv, and pg_ = pg\c,, — po_ from the definition of d
and the fact that b, C Cy\U. Further we have b_ C U\Cy from constraints (b) and (c) of Definition 2. Therefore,
Acy,u = poy — Bu = Hop\U — oy = (Bep\u — Moy ) Hib, — (Boney — o) —Ho- = Doy b +Aay a s
— —
Hd Hd _
which proves (24).
Now let us turn to showing (25):
= = @
Ao, b +da,a = by ®b_|+|dy ©d_| = [by| +[b-| + [dy|+ |d-|

®)
= [b4| + [b-| + [Cu\UNb4| + [U\CU\D_|

Doy |+ [b_| + |Co\U| = [by| + [U\Cu| = [b_| = |U @ Cy| = du,cy »
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where (a) comes from the fact that b4 Nb_ = dy Nd_ = &, (b) is from the definition of d, and (¢) follows from constraints
(b) and (c) of Definition 2. O

We are now ready to prove Lemma 2.

Proof of Lemma 2. The proof is by contradiction. Suppose U Y Cy. Since independence is symmetric, we also have
Cy L U. This means that there exists a non-empty exchange set b = (b, b_), different than the independent exchange
set (Cy\U,U\Cy) of (U, Cy), that satisfies constraints (b)—(e) of Definition 2. From the exchange set b, we define the
exchange set d that completes the transformation of U to Cy after applying bto U as d = ((Cy\U)\bs4, (U\Cu)\b-).

Since b satisfies constraints (b) and (c), we may write

Koy Fb = Hey — Pby + Mo = iy, — Doy b,
which gives
Acysb,u = tepsb — Hu = Acyu — Db, b (26)

Since b is not empty, Cy F b is closer to U than Cy, and hence, EU,CU:FZ, < EU,CU. Now consider the following three cases
(note that as shown in Proposition 7, A, b and Ay +,d_ cannot be both negative):

Casel) Ay, ;, <0

In this case, by (26) we may write

a a a a

U,Cu¥b U,Cu¥b UcuFb @ Gucy b .

Hucoze = 33 (A Ay s )P = A2 A2 vedin, Huv, @7)
U,CuFb (Av,cy — Dby b)) U,Cu Uvcy VECmuv>uu

where (a) comes from the fact that EU_’chFb < EUch and (b) is from the definition of the complement C;. Moreover, in
this case, from (26), we have Ac, v < Ac, 3,0, which gives us e, < peoy, 7. Since py < pc,, by definition, we have
that (Cy F¥b) € {V € C: pv > pu} and hence Hy ¢\, 1 > Hy,c,, by definition of Cy, which contradicts equation (27).

Case 2) Ab+7b7 > 0 and Ad+7d7 <0

Here we first show that ®
a
HU+b = [U\b_Uby = MU — Bb_ + Hb, = pu + Do, b,

where (a) comes from constraints (b) and (c) of Definition 2, which gives us

Aptp,u = pu+s — o = Dy p_- (28)

It is also straightforward to see that B B
dU,U:i:b = |U@U:|:b| :db+,b_- 29)

Now similar to (27), we may write
—2 —2 - - 5
dyvss @ opp ® (dojp_ +da,a )? ©

=Hyco, = _min  Hyy (30)
A?],Uib A§+,b, (Ap, b + A4, a )2 U T vechysuy Y

Hyyyy =

where (a) comes from (28) and (29), (b) is from the fact that d .d_ > 0and Ay 4 < 0, and finally (c) is from
Proposition 7. Moreover, since A, ,_ > 0, from (28) we have py < juy+p, which means that (U £0) € {V € C: py >
po '}, and thus, Hy, 74y should be bigger than or equal to Hy, ¢, , which contradicts equation (30).

Case3) Ay, ,_ >0and Ay, 4 >0
From Proposition 7, we have

—=2 —=2
dp o g, a_

2 ’ 2
Ab+,b, Ad+,d,

d +d 2 @
( by b d+,d,) 3 min
Ab+,b_ + Ad.,_,d-)

Hyc, = ( =min(Hy, »_,Hq, q_), 31

where (a) comes from footnote 10 Appendix C. The inequality in (31) is strict whenever Hj, ,_ # Hgq, q4_. We now

consider the following three cases that all end up contradicting that Cy = argmin Hyy.
VeC:puy>py
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Case3.1) Hy, » < Hg, 4

From equation 31, we have Hy ¢, > Hp, 5 @ Hyr4p,u, where (a) is from (28) and (29). At the same time we have
Hyc, = argmin Hyy (2 Hyr 44,17, which leads to a contradiction. Note that (b) holds because Ay, ;_ > 0, and thus,
s < s sy from (29).

Case3.2) Hy, p,_ > Hy, q_

From equation 31, we have Hy, ¢, > Hy, ,q_. Since d_ C U and dy N U = & from the definition of d, we may write

Avytd,u = Hutd — pU = pu — Pd_ + fdy, — pu = Da; d_,

and
dy+a,u = da, a_,
which gives us Hy,c, > Hg, 4. = Hy+qu. Atthe same time Hy ¢, = argmin Hyy < Hy4q .y, which leads to a
Vipy >pu
contradiction.

Case3.3) Hy, »_ = Ha, q_

From equation 31, we have Hy,c,, > Hy, . If the inequality is strict, then we obtain the contradiction as in Case 3.1.
Thus let us assume that Hy, ¢, = Hp, _. From (28) and (29), we have Hy ¢, = Hy, »,. = Hy,uy+s, and from (28)
and the fact that A, ;_ > 0, we have uy+p > py, and from (25) and (29), we have 8Uib,U < gU’CU. This creates a
contradiction because in case Hy ¢, = Hy,u+p, according to Definition 4, the tie should be broken in favor of the set with
the smaller symmetric distance, and thus, Cy; should be U + b. ]

F Proof of Theorem 3

We begin this section with the definition of the *-complement of a decision set. For this, let Q(U) be the set of decision
sets V such that U | V and the exchange set b = (V\U, U\ V) satisfies constraints (b)—(e) of Definition 2 for the pair of
decision sets (U, U*).!2

Definition 8. The x-complement of a decision set U € C with U # U*, denoted by Cy;, is defined as

Cy =argmin Hy y.
VeQ(U)

We have to show that the argument of the argmin in Definition 8 is not empty, i.e., Q(U) # @. For this purpose, we
build a sequence of decision sets {V4,...,V,} such that V4, ..., V,_; are all not independent of U and U L V,, that is,
we stop the sequence as soon as we reach a decision set V), independent from U. To construct such a sequence, we start
with V; = U* and for k € {1,...,p — 1}, we generate V11 = U =+ bi41, where by = (b1 4+,b1,—) = (U\U,U\U")
and b1 = (bgy1,4,bk+1,—) C br = (bk,4,bk,—) is an exchange set that satisfies constraints (b)-(e) of Definition 2
for the pair of decision sets (U, V). Note that by exists by definition as V}, is not independent of U and this is why
we can build iteratively the sequence {V4,...,V,} until we find V,, with U L V},. Since Vi1 = U = by41, we have
[Vit1 @ U| = |(br+ @ bi—)| < |Vi @ UJ, which means that the size of the exchange sets by, is decreasing, and thus, the
sequence eventually has to end. From the construction of the by,’s, it is clear that they are all subsets of by = (U*\U,U\U™),
and thus, (V,\U, U\V,) satisfies constraints (b)—(e) of Definition 2 for the pair of decision sets (U, U*). This proves that
Q # @ and the argument of the argmin in Definition 8 is not empty. Also, note that uc: > py as intuitively Cjisa
decision set made by replacing parts of U by parts of U*.

We are now ready to give the proof of Theorem 3.

Proof of Theorem 3. We only consider the case where i ¢ U* in detail, the case i € U* is symmetric. Let Hx; and Hx*?
be defined as H; and H?, respectively, but using the x-complement Cj; of Definition 8 instead of C;. Then similar to
Lemma 3 one can show the equivalence of the *-complement complexities, i.e., H*? = Hx;.

"2Note that since U L V, the exchange set b = (V\U, U\ V') is the only non-empty exchange set that satisfies constraints (b)—(e) of
Definition 2 for the pair of decision sets (U, Cy/).
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Therefore, we have the following series of inequalities

(c)
Hi i ’Hf (: max HU,CU < max HU,C’{J = max HU,CZ‘] Q HU“VN

UeC:ieU UecC:ieU UeC:ieU\Cy,

—~
=
=
—
=

where (a) holds by Lemma 3, (b) uses the definition of 7—[22, (¢) uses Hy ¢, = argmin Hyy < HU,C;} as pcy > fw,
Vipy >pu
(d) uses the equivalence of complexity based on the x-complement, (e) introduces U; to denote the decision set attaining

the maximum in the above equation and V; = C*Ui. By the definition of the *-complement, b’ = (V;\U;, U;\V;) satisfies
constraints (b)-(e) of Definition 2 for the pair of decision sets (U, U*). As aresult, U* Fb € Cand i € U* F V' (see
constraint (e) in Definition 2 and ¢ € b’_). By the definition of &', we have py, = py, + o, = My s and thus, we may write

A = P , = F = * s+ ’ :A* * />minA*
ViU = ey, — My = R0 (00— ) UnUrFt = gaer VU

where the last inequality follows from the fact that 7 € U* Fb’. We note that for any independent pair of sets such as V;, U;,
any well defined exchange class B should include the (unique) exchange set b’ = (V;\U;, U;\V;) that allows to move from
one set to another. As a result for any exchange class B, width(B) = max,, »_)ep |by|+[b—| > [V |+ |V_| = [Us@Vi| =
dy,,v,. Therefore, width(C) = mingegxchange(c) Width(B) > du, v, which together with Ay, , > Jmin Ay, leads to

the desired outcome

dy; v, width(C)?
Hy < -Su% < = (2> = HP.
JAN min A *
Ve guyev —UnU

G Fixed Budget Results: Proof of Theorem 1

In this section, we provide a proof of Theorem 1. In the following, we will mainly work with the complexity H? (and the
corresponding simplicity &) as defined in equation (7). Recall that this formulation is equivalent to H;. In the following,

we use [N] to denote the set {1,2,..., N}. We also introduce two numerical constants 0 < ¢; < 1and 0 < ¢z < 1/2
such that cg > 1_%02 > co , whose exact values will be chosen later. Finally, we consider a permutation 7 of the arms that

orders the arms with respect to the values G, that is, Gﬁ(l) > Gﬂ@) > ... G,,( k). To simplify notation, in the following,
we will simply write G(;) instead of G ;).

We now introduce a high-probability event which serves as a basis for the proof of the correctness of the algorithm. This

event states that at the end of each phase & the estimated values of the arms will differ from their real values by at most

G(k).

Lemmad. Let G(1) > G(2) > ... > G (k) be an ordering of arms by decreasing complexity 13, The event € defined as
E={VieK kelK], |[mk)—p|<aGu} (32)

holds with probability

P(&) > 1 —2K?exp (-W) .

Proof. By Hoeffding’s inequality and a union bound, the probability of the complementary event £ of ¢ can be bounded as

"*Notice that the 4-th simplest arm is the (K + 1 — ¢)-th most complex arm.
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Parameters: number of rounds n, set of arms K, decision set C, and cumulative pulls scheme ng, n1, ..., nK.
Let 1=K, k=1,and J, = &
while |[ICi,| > 1 do
Pull each arm i € Ky, for nxy — nx—_1 rounds.
Compute U* (k) = arg maxyec fiv (k).
Find j, = max;ex, @z(k)
it j. € U* (k) then
The arm jy, is accepted and J,, = Jpn U {ji }.
end if
Deactivate arms jg, i.e., set Krp+1 = K\ Jjk-
k+—k+1
end while
Return J,,

Figure 5: The modified fixed budget algorithm.

follows, provided we use the proposed pulls scheme 1 = [m—‘ , kek:

K
Y P (lik) = gl > e1Gy)
e

L& 2¢2(n — K)
: ZZ?EXP (bg(K)(K +1- k)H(KJrlk)))

20
< 2K?%exp (—QCl(nK)) .
log(K)H

O

For the proof of Theorem 1 we analyze a slightly modified algorithm described in Figure 5, where for each arm that is
deactivated it is immediately (and not only after all arms have been deactivated) decided, whether it shall be contained in
the set returned by the algorithm at the end. On the event &, the correctness of both algorithms is the same, which can be
deduced from statement (ii) of the induction hypothesis in Definition 9 below.

We will now prove Theorem 1 by showing that on event &, the optimal set U* is identified at the end of the phases. That
is, the algorithm neither accepts an arm not in U™, nor is any arm in U™ rejected.

G.1 The Induction Hypothesis

The proof proceeds by induction over the phases of the algorithm. We first introduce the induction hypothesis.

Definition 9. The induction hypothesis is defined by the two following properties. At the beginning of phase k we have:

(1) All accepted arms belong to the optimal set, i.e., J,,(k — 1) C U*, and all rejected arms (i.e., arms which have been
deactivated but never accepted) do not belong to the optimal set, i.e., (Ki\Jn(k —1))NU* = @.

(1) Ifarmi & Ky, and it has been deactivated during phase | € [k — 1], then G; > (1 — 2c2)G ).

Statement (i) is the classical desired property, while statement (ii) is specific to our approach and implies that by having
been pulled n; times the arm ¢ has been sampled sufficiently often w.r.t. its complexity. Indeed, recall that a set is not
necessarily compared to the optimal set U* whose arms most probably belongs to K. Therefore we need to show that an
arm % contained in a set V' that is likely to be used as a complement set by some “active” set U has been sampled often
enough (i.e., proportionally to its complexity H;), especially if it has been removed in a previous phase | < k.

We continue with a few properties implied by the induction hypothesis together with the high-probability event ¢ of
Lemma 4. We start with concentration inequalities on event & for i, A, and G.
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Proposition 8. Assume that the induction hypothesis (Definition 9) at the beginning of phase k as well as event & hold.
(33)

G;
__202,Chk)}.

Then for any arm i € IC,
) — gl < cxmac{ ¢

Furthermore for any pair (U, V) € C? such that V = Cyy we have
‘Evy(k‘) - AV,U‘ < cody,y max{Gv,u, G}

and ‘GV,U(k) - GV,U‘ § Co IMax {GV,Ua G(k)} .

where 3V7U(k:) and éV’U(k) are the gaps and the simplicity computed at the end of the phase k. Finally, for the special

case of pairs (U*,U),
IKU*,U(IC) - AU*,U‘ < cody,u- max{Gv,u, G}

Cll’ld ‘@U*,U(kﬁ) — GU*,U‘ S C2 maX{GwU, G(k)},

with V = Cy.
Proof. First note that if i € K, then on event & we have |fi;(k) — ;| < c1G(y. Thus, let us assume that i ¢ Ky. Let [ be

the phase at which arm ¢ has been deactivated, with [ € {1,...,k — 1}. We have
(a) ®) e
i (k) — pil < < Gi,
|1i (k) M\,c¢%>f1_2@

where (a) is implied by the event £ and the fact that i;(k) = [;(1), (b) uses property (i) of the induction hypothesis.

Summarizing, independent of whether ¢ € IC],C or not, we have for any )
|A (k‘) | < max Gl G
i — s C1 ma; y s
12 H B (k)

which shows the first claim. Let us now focus on a pair of sets U, V such thati € U @ V and V = Cy or V= U*. Then

G;
—2¢y’ G(’f)}

by the previous inequality,
(k) — o] < ex o {
(@)
< max {Csz‘, ch(k)}

(b)
< comax {Gv,u, Gy}
. For (b) we use Proposition 5 for V' = Cy, the

Cc1

- 17262

where (a) follows from the choice of the constants such that c; >
definition of Gy, the fact that Ay ; > 0 as well as ¢; < co. As a result we obtain
Rvulk) - Avu| < 3 1th) - il
ieUuaVv
< cdy,u max{Gv,u, G )},

A Avu(k
G (k) = “20

which proves the first part of the second statement. The second part then simply follows from
©) AV,U — CQ&V,U maX{GuU, G(k)}

dvy

= Gyy — camax{Gv,uy, G},

where (c) follows from the first statement. The missing inequality to conclude the second part of the second statement can
O

be obtained analogously. Finally, the last statement follows along the same lines, only replacing Proposition 5 in step (b)

above by Proposition 6.
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The following Proposition shows that at the beginning of each phase £ there is an arm a which has a larger simplicity
than the k-th largest simplicity. In the remaining proof this arm will serve as a reference arm, as this is the arm that should
be deactivated at the end of phase k.

Proposition 9. Let

ar = argmin H; = argmax G;
1ELK 1ELK

be the simplest arm among those left at the beginning of phase k. Then G, > G ).

Proof. At the beginning of phase k, only K — || = k — 1 arms have been deactivated, i.e., || = K + 1 — k. Hence
the simplest arm left in [Cj;, (i.e., aj) cannot be more difficult than the arm that would be left if all the k¥ — 1 simpler arms
were deactivated (i.e., G y)), which gives the claimed G () < G, . O

The following Proposition shows that at the end of each phase k, the reference arm a; belongs to U* if and only if it
actually belongs to U*. This allows us to show that the simplicity of a; can be well estimated at the end of phase k.

Proposition 10. Assume that the induction hypothesis (Definition 9) at the beginning of phase k as well as event § hold.
Then ay, € U* if and only if a, € U*(k), where U* (k) is the estimated optimal set at the end of phase k.

Proof. We prove in detail that aj, ¢ U* implies aj, ¢ U* (k). The reverse can be shown along a similar line of arguments.
The proof is by contradiction. Thus, let us assume that a;, ¢ U* and a, € U* (k). Note that this implies that U* (k) # U*.
Let W = Cp. (k) be the complement of the estimated optimal set (note that W exists, since U* (k) is not optimal). We have

~ (a) _
A=) (k) 2 By o) = 2w 0+ 1) maX{GW,ﬁ*(k)7G(k)}

= dy - k) (Gwﬁ*(k) — C2max {GWﬁ*(k)’ G(M}) )
where (a) uses Proposition 8. We consider two cases.

Case 1) GW,ﬁ*(k) > G(k)

In this case,

AW,[’]\*(/C) (k) Z anﬁ*(k) (GW,ﬁ*(k) - CQGW,[’J\'*(]@))
8W,l7*(lc)GW,[7*(/§)(1 —c2) >0,

where the last inequality follows from the fact that 0 < ¢ < 1 and G )y > 0 by definition of W. It follows that

w,0* (k
e (k) (k) < fiw (k), which contradicts that U* (k) is the empirical best set.
Case 2) GW,ﬁ*(k) < G(k))

We write

Awﬁ*(k)(k) 2 EW,ﬁ*(k) (Gw,ﬁ*(k) - C2G(k))
2 aW,U*(k-) (Gak - C2G(k))
> dyy ey Gy (1 = €2) > 0,

where (b) holds since a;, € lAf*(k) sothat G, = Umin max Gyy < max G

= G, 5.0, Concern-
ap €U V:NV>UIU V:NV>M[7*(1€) (k‘) w,U (k‘)

v, 0+

ing (¢), this holds by Proposition 9, as G, = G k). Similar as before we obtain the contradiction fig. (k) <pw(k). O

The following Proposition gives a lower bound on the estimated simplicity of the reference arm a;, at the end of phase &
depending on G(k). This will be used later to show that the algorithm does not remove other arms than ay, in each phase k.
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Proposition 11. Assume that the induction hypothesis (Definition 9) at the beginning of phase k as well as event £ hold.
Then Gg, (k) > (1 — c2)G(r).

Proof. We give a detailed proof for the case where ay, ¢ U (k). The other case follows from symmetric arguments. Let
Uy, be a set that defines the estimated simplicity of ay, that is

Uy € arg UrélkuelU GEU(k),U(k)’

and let Wj, = Cy, . Note that W, is well-defined because Uy, # U*: Indeed, from Proposition 10, since ay ¢ U*(kz), also
ar, ¢ U™, so that because ay, € Uy, we have U, # U™,

Then we have

éak (k) = éfu(k),Uk (k)

= max év‘U,C (k)
Vv (k)>Hu, (k)

> ékaUk (k)

(a)
> Gw, U, — c2max {GWk,Uka G(k)} )

where (a) follows from Proposition 8. We have, as aj, ¢ U™, that

Go, = min G <G .
ak UsanelU Cu,U = UW, Uy
Furthermore, from Proposition 9 we have that Gy < G, and thus G(;) < Gw, v,. Thus the previous expression
simplifies to

Gy (k) > Gw, v, — c2Gwy v, > (1 — c2)G 1.

O

The following lemma is rather technical. It shows that if the estimated simplicity of a sub-optimal decision Uy, is defined
with respect to Vj, then this estimated simplicity will be larger than the true simplicity of the decision set V. The proof
shows that if the estimated simplicity of U, were smaller than the true simplicity of V}, then it would surely be also smaller
than the estimated simplicity of Vj; defined with respect to Wy, leading to a contradiction. For notational convenience,
in the following we will drop the dependency of the estimated quantities on the phase k (e.g., write Gy, v, instead of

éVk Uk (k))

Proposition 12. Assume that the induction hypothesis (Definition 9) at the beginning of phase k as well as event § hold.
Further assume that Uy, Vi, Wy, € C such that Uy, # U*(k), Vi, = Cy, (k) # U*, Wi, = Cy,, and Gw, v, > G (1. Then
G (k) 2 (1 = 2)Gw, ;.-

Proof. We start by showing that fiy, < fiv, < fiw,. First, fiy, < fiy, comes from the definition of Vj, as the (estimated)
complement of Uy,. Furthermore,

—~ (a) _

Aw, vi > Awy v — c2dwy, v, max{Gw, v, Gy }
(©] _
> AWka - chWthGkaVk

© Aw, vi, — c2Aw, v, > 0,
where (a) follows from Proposition 8 and the fact that Ayy, v, > 0 (since W}, is the (exact) complement of V), (b) follows

from the assumption that Gy, v, > G(k), and (c¢) is obtained from the definition of simplicity Gy, v, and the fact that
0 < ¢o < 1. This completes the proof of the claim that iy, < fiv, < fw,-
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Next, we show that éWk v, < (A?Vk,Uk. First note that by Proposition 3'* we obtain from [y, < fiv, < [w, that
GWk U, > min {ka,vavk Uk} where the inequality is strict whenever @Wk v, # @Vk .- Now if we assume that

ka Vi > Gvk v, the previous inequality becomes strict as G Wi, Uy > G Vvi.,Us,- Then we would obtain the contradiction

Gvov, = max Gy, > Gwev, > Gvivgs
Vv >y

thus implying the claimed éWIka < @V,“Uk.

‘We now can conclude with

éVk7Uk > éW)ka
(a)
> Gw,.,vi, — C2 ma‘X{Gkavk’G(k)}

®)
Z GWk,Vk - CQGW;C,VIN

where (a) follows from Proposition 8 and the fact that Ay, v, > 0 and (b) holds due to the assumption that Gy, v, >
Gr)- O

G.2 The Induction Step

We now move on to prove the induction step. We do this in two separate lemmas, one for each property in the induction
hypothesis.

Lemma 5. Assume that the induction hypothesis at the beginning of phase k as well as event £ hold. Then property (i) of
Definition 9 holds at phase k + 1 as well.

Proof. Property (%) states that no error is made until the beginning of phase k. To prove that this is still true at the beginning
of phase k + 1 we need to prove that during phase k no error is made. An error occurs when either the algorithm deactivates
and rejects an arm ji, € U™, or the algorithm deactivates and accepts an arm jj, ¢ U*. We show by contradiction that both
cases cannot happen.

We give a detailed proof for the case where j;, € U* is rejected. The argument for the second source of error, when j ¢ U*
is accepted, is similar.

The strategy of the proof will be to compare the estimated simplicity of the rejected arm to the simplicity of the arm ay,
that is, the arm with the highest simplicity at the end of phase %k, and which should be the targeted arm to be deactivated.
Using Proposition 11, we know that the simplicity of ay, is of order of G'(;). Therefore it remains to prove that G, is
smaller than G (1.

As jj, is rejected, ji ¢ U *(k) and hence, U* # U*. Furthermore, ay # j, as otherwise Proposition 10 would imply that
Jx € U*, a contradiction to the assumption that arm jy, is rejected.
As ji has been deactivated during phase k, we have G > (@, , since the algorithm deactivates the arm with the largest
s1mphclty, that is, j, = arg max;ex, G Let Vi, = CU* be the estimated complement of the optimal set (which exists, as
U* #+ U *) and W}, = Cy;, be the (exact) complement of V4. Then

é; = min max GVU
Tk UGeU vy Shu

(@) ~
< GVImU*

(b)
< Gy v+ + comax {Gw, v,, G }

(©)
< comax {Gw,,vi,, G }

where (a) is because j; € U* and V}, is the (estimated) complement of U*, (b) holds by the last statement of Proposition §,
and (c) follows from py, < p*, whence Ay, y» < 0and Gy, y+ < 0.

“More precisely, we rely on an equivalent version based on estimated values and estimated simplicity.
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We now show by contradiction that G, v, < G(x). Thus, assume that Gy, v, > G(). Then by Proposition 12,
évk,U* > (1 — ¢2)Gw,,v, - Together with the previous inequality this gives

(1 =c2)Gw,,vi <Gy u- < comax{Gw, v,,Gy} < 2Gw, vi,

which is a contradiction, since ca < 1/2, and we conclude that Gy, v, < G (k)

Now using inequality (c) from before, we get éjk < c2G(y,). Using Proposition 11, for a;, we have that éak > (1=c2)Gpy.
Since ¢ < 1/2, it holds that @jk <eGr < (1 —e2)Gyy < @ak. As a result éjk < @ak, which contradicts the fact
that j; would be the deactivated arm during phase k£, as by definition of j, = arg max;cx, éz Thus we can conclude that

the algorithm does not reject any arm from U*.
O

Lemma 6. Assume that the induction hypothesis at the beginning of phase k as well as event £ hold. Then property (ii) of
Definition 9 holds at phase k + 1 as well.

Proof. Let ji be the arm which is deactivated at the end of phase k, i.e., jp = argmax;ck, (A?l(k) Again, we only
consider the case where j, ¢ U™, as the proof for the case j, € U™ is symmetrical. We have to show that jj satisfies
Gy, > (1 = 2¢2)G ), which will be done in five steps.

Step 1. We first notice that Lemma 5 implies that no error is made during phase k, since property (7) still holds at the

beginning of phase k& + 1. As a result, we have that j, € U™ if and only if j). € U* which means in our current case that
jrk ¢ U*. Let Uy, and Vj, be the sets which define the (exact) simplicity of ji, that is,

Uk:ar min GC U
gU:jkeU v

and V;, = Cy,, so that G, = G, v, . Further, let W}, = 6Uk, noting that Wy, is well defined since Uy, # U Indeed,
jk ¢ U* and ji, € Uy, whence Uy, # U*.

We claim that Gw, v, < Gj,. Indeed, if uw, < py, then we trivially have Gw, v, < 0 < Gj,. Furthermore, if
pw, > My, we have by definition of Uy and Vj,

Gw,u, < max Gwy, =Gy, v, = Gy,
Wipw >pu,

which proves our claim Gy, v, < Gj,.

Step 2. Next, we note that

< Gy, =G . 34
U:jreU Cu,U = ﬁ\I/rg%)E}k GV’Uk GWk’Uk ( )
Step 3. Here we show that G; < max{G},, Gz, w,} fori € W, & Ujy. We distinguish the following cases:

Case 1) i € Wi \Uy

Case 1.1) ¢ € U*: In this case ¢« € Uy @ U* and thus we can apply Proposition 6 to Uy and Cy;, = V} and obtain
G; < GVk7Uk = ij'

Case 1.2) i ¢ U*: Let Z, = Cyy, , noting that since 4 is in W}, but not in U*, we have W}, # U*. Then

G; = min Gc¢ < Gc =Gz,
LT el v, U = wy Wk kWi

where the first equality follows from the fact that < ¢ U™*, while the inequality is due to the fact that i € W,

Case 2) i € U \Wj
Case 2.1) i € U*: Let Z;, = Cyy,, noting that since 7 is in U* but not in Wy, it holds that W}, # U*. Then

G; = min Ge, v < Gey, wo. =Gz, w,
LT gagy vl = T ow W kWi
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where the first equality follows from the fact that ¢ € U*, while the inequality is due to the fact that ¢ ¢ W,
Case 2.2) i ¢ U*: In this case we have by definition that

G; = min GCU;U < GCU,Uk = GVk,Uk = ij’
U:ieU

which completes the proof that G; < max{G,,,Gz, w, } fori € Wy & Uy.

Step 4. Next, we are going to show that CAT']-k < Gj, + comax{Gj,, G}, a version of Proposition 8 for arm ji. We
distinguish two cases:

Casel) W, =U"*
In this case, we have

~ (&) o (b) (o)
G, < Gw, v, < Gw, v, + camax{Gv, v,, G} < Gj, +camax {G,, G},

where (a) is obtained from equation (34), (b) is a result of Proposition 8, and (¢) follows from G, v, < Gj, of Step 1.
Case2) Wy, AU*

Let Z;, = Cyy, . We prove by contradiction that Gz, w, < max {Gvy, v,/(1 —2c2),G } . Thus, assume that Gz, w, >
max {GVk,Uk/(l — 262), G(k) } Then

O 1 e
GWk,Uk < GWk:aUk‘, tei=s E max { 1— 92’ G(k)}
dUk@Wk €U Wy, -2

(b) G G
- 2 - 2

() Gz,.w
< Gy,u, + Cll_kiéc;

(d)
< Gyu, + Gz wy, (35)

where (a) is using for all ¢ € Uy & Wy, the Equation 33 in Proposition 8, (b) follows from Step 3, and (c) is obtained
by Gw,.uv, < Gj. = Gy, v, (Step 1) and the assumption on Gz, w,, finally (d) is obtained by 1_6502 < ¢3. By

Proposition 12, we have CAY'W,wU,c > (1 — c2)Gz, w,. which together with (35) gives

(1—c2)Gzw, < éWk,Uk < Gy, v, +c2Gz, . w, <c2Gz, w,,
which is a contradiction due to 0 < co < 1/2. This finishes the proof of Gz, w, < max{Gv, v, /(1 —2c2),G)}-
By (35) and the results of Steps 2 and 1, we finally get

~ ~ Gj. Gz,w
G <G <@ +ec max{ Ik LiMA
Je = U Wy, Uy = YWy, Uy 1 1_202’ 1— 2cy

,G(k)} < Gj, +e2 max{ij,G(k)}.

Step 5. From Proposition 11 and the fact that jy, is the deactivated arm (i.e., jr = arg max;ex, @i) we have
(1 — CQ)G(k) < éak < @jk < ij + co maX{ij,G(k)}.

We conclude by considering the two possible cases for the max term.
Casel) Gy, > G,
We have (1 — ¢2)G() < Gy, + c2Gj,. Since 172 > 1 — 2¢,, we get

1+co
1-— Co
Gj, > mG(k) >(1- ZCQ)G(k).

Case2) G, < G(k)
Here we have (1 — c2)G () < G, + c2G(x), whence

(1-— 202)G(k) <Gy,

which concludes the proof. O
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G.3 Proof of Theorem 1

With the results of the previous sections, the proof of Theorem 1 is immediate. First, assume that event £ holds. Note
that properties (i) and (ii) of the induction assumption hold for phase £ = 1. Lemmas 5 and 6 prove the induction step,
showing that properties (i) and (ii) hold for all phases k. It remains to consider the error probability for event £. This is

handled by Lemma 4, where we finally choose ¢; = 1/8,¢o = 1/4sothat0 < ¢; < 1,0 < cg < 1/2and ¢y > 13@. O

H Fixed Confidence Results: Proof of Theorem 2

We first introduce a high-probability event corresponding to the confidence bounds used by our algorithm.

Lemma 7. The event £ defined as
E=A{Vie KVt >0,[p(t) — ps| < Bi(t —1)} (36)

holds with probability 1 — 9, where

L Lo log 41§t2
s (t) = X; d Bi(t—1) =y —=—0_.
Ailt) = gy 2 X and Bt =1) =\ 7y

Proof. By Chernoff-Hoeffding’s inequality, the definition of the confidence intervals 3;(¢ — 1), and a union bound over all

Ti(t) € {0,...,t}, t=1,...,00. O
Recall that R B R
U, = {U YV e C,Aiv(t) > —dyv IVE?C(G%’U(t)/Q}
and R R R
Gt (t) = G{ () and (U, V;) = G, ().
(t) Ueg{lt’?\}/{ec v,U( ) and (U, V) UES;%T&%;#V V7U( )

The following lemma gives a lower bound on G (#).

Lemma 8. On the event &, for all time steps t, G+ (t) > %Gl(t).

Proof. First note that on event &, for any ¢ and any pair of decisions U, V' € C, we have AJ[}V (t) > Ay v and consequently

@JV > Gy,v. The proof proceeds by distinguishing two main cases. We show the details for the case when I(t) ¢ U*.
The case I(t) € U* can be dealt with using similar arguments.

Casel) I(t) € U;
We introduce W; = Cy;,, which exists since U; # U*, as I(t) ¢ U* and I(t) € U;. We have

~ N R 8_‘— ‘
GH(t)= max Gy, (t) =Gy, (1) = A

veu),vec dy, w,

(a)
>LW“U‘ >  min LCU’U ®

G,
- dUt,Wt - U:I(t)GU dU,CU I(t)

where (a) follows from the fact that W, = Cy, and I(t) € Uy, and (b) is due to I(t) ¢ U™ so that its complexity is defined
as the minimum over decisions U to which it belongs.

Case2) I(t) e V;
Let W; = Cy,, noting that W, is well-defined since V; # U*, as I(t) ¢ U* and I(t) € V4.
Case 2.1) V; € U]: Similar to Case 1, we have

. . @ Al (1)
GT(t) = Gt () > GF = VeVt /
( ) UE%%&EC V’U( ) o Wt’vt( ) th,Wf

A (®) A c
> SWeVe 5y Sl © Gr),

T dv,w, | UMEU dyc,
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where (a) holds by V; € U/ and the definition of (A}”r(t), (b) follows from W; = Cy, and our assumption I(t) € V;, and
(c) is due to I(¢t) ¢ U™ so that its complexity is defined as the minimum over decisions U to which it belongs.

Case 2.2) V; ¢ U;: In this case, by definition of U’'(t) there exists a decision set Z; such that @‘tt 2t <
-1 Iax @?}va (t). Therefore, we have
A+ 1 A+ L5y
Gy, 7,(t) < ~5 max Gy, () < *iGW,,,Vt (t) (37
1 1
< —§th,vt < —ng(t), (38)

where the last equality follows from the fact that I(t) ¢ U™ and the definition of G/ in that case. We now focus on the
three decision sets V;, Uy, Z; and define the value /i; associated to arms ¢ € V; U Uy U Z; as

. e itieu,
B0 i e (VU Z)\UL.

We also define Gzt,Uﬂ th_’Ut, Gzt,vt as well as AZt,Ut, AVt,Ut, AZth obtained by using fi; instead of p; in their
computation. Then we get

AZt,Vt (t) = Z ﬂz - Z ,[L’L' = Z ,UL + Z ,LL7, - Z ,lli — Z uz

1€Z:\ Vi 1€Vi\Z¢ 1€(Z \Vi)\Uy 1€(Z\Vy)NUy 1€(Ve\Z)\Us 1€(Vi\Z)NUy
= > @+ > mom- > moO- > m®
1€(Z:\Vi)\Us 1€(Z:\Vi)NUy 1€(Vi\Z)\Uy 1€(Vi\Z¢)NUy
=D DR O R DR () R D i O R SR 24 ()
1€(Z\Ve)\Us 1€(Z\Vi)NU 1€(Vi\Z)\Us 1€(Vi\Z)NU,
=- YoooEm+ Y mm- Y mm- Y &
i€(Ve\Z)\ Uy i€(Ve\Z)NUy 1€(Z \Vi)\Uy 1€(Z:\Vi)NUy
) )
Furthermore,
At (a) . o . )
GZt,Ut(t) = GZt,Ut 2 min (GZt,VuGVt,Ut) (40)
(© . ~
> min (Gz,,v,, G, 0, (1)) @1)
@ o _
> min (=G, 5, (), GY, 0, (1)) (42)

~

© /1
2 min <2Gl(t)aG;~/_t7Ut (t)) )

where (a) and (c) are obtained by the deﬁqition G, (b) follows from fiy, < fiv, < ftz, and an analogue of Proposition 3
with strict inequality in case of Gy, i, # Gz, v,, (d) uses equation (39), and (e) is by equation (37).

Now let us assume G (t) = (A;':}f v, () < 1G(1), from which we will derive a contradiction. From equation (37) and

by definition of G, we have @‘*(t) = @J‘Z}Ut (t) < %Gl(t) < Gztyt, so we have strict inequality in (b) of equation (40).
Consequently, we can derive from (40) the contradiction

~ N 1 ~ ~
G, v, (t) > min (Gﬁ,m (t), 2G1(t)> > Gy, (t) = max GV, (1),

which completes the proof of é+(t) > LG O

The following Lemma shows that any set U in U; also is in U;.
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Lemma 9. On the event &, for all time steps t, Uy C UJ.

Proof. Tt is obviously sufficient to show that the threshold —7y v (¢) < 0. On the event £, we have max G%U(t) >
c ,

G y(t) > Gu- v > 0. By definition of Tg7,y/(¢), this implies that — 7, (t) < 0. O

The following Lemma gives an upper bound on G+ (t).

Lemma 10. Assume that event § holds. Then 8311 (t — 1) > G (t) for all t.

Proof. First note that

~ (a) 1 ~ b 1~
Gt > —5max Gy, (0 © ~5GY, 1, (1), 43)

where (a) follows from U; € U] and the definition of ¢/, and (b) from the definition of U; and V;. Moreover, we have

~ (
ot dl]
ts

Z 5zt_1 G—ZZV,()

Vi ieU, oV,

Z Bi(t —1) + GVtUt()

dUtht €U dV;

(®)
<

where (a) is because A\Z,Uf, (t) + Aa’vt (t)y=2 UE: ” Bi(t — 1), and (b) is because of equation (43). Hence, we obtain
el dVy

GH(t) =G,y () < = > Bit-1). (44)

Ue,;Ve jeu, 0V,

Moreover, as we will demonstrate in the following, we have

1

> Bilt—1) <281yt —1). (45)

dU"’Vt €U oV;
We show this in detail for the case when I(t) € Uy, the case I(t) € V; is similar. For I(t) € U, wehave > B;(t—1) >

1€U\ Vi

> Bi(t — 1) and consequently,
1€Vi\U;

dooBE-1= D BE-D+ Y Bt-1)<2 Y BE-1).

€U dVy 1€U\V; 1€V \U, €U\ Vy

Since for I(t) € Uy, we have for all i € U;\V; that 3;(t — 1) < B1¢4)(t — 1), we therefore obtain

Z Bit—1) <2 Z Bi(t — 1) < 2du, v, Bru(t — 1)

€U dVy €U\ V

and consequently,

d
Do Bilt—1) S22 (t—1) < 2B (E - 1),

de,vf iUV, Ui Ve

which proves equation (45). Finally, combining (44) and (45) gives the claim of the lemma. L]

Finally, we are ready to give the proof of Theorem 2.
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Proof of Theorem 2. First note that by Lemma 9, on event £ we have U; C U], so the algorithm is well-defined, since as
long as || > 1 also |U]| > 1 and there is always an arm to be pulled.

Next, we show that with probability of at least 1 — 4, the algorithm returns the optimal set U™. Indeed, assume that § holds
and that U™ is rejected from U, at some step ¢. Then there exists a set V' such that 0 > A+*,V(t) = pg.(t) — py(t) >
pu+ — py > 0, which is a contradiction. Hence, the claim follows from Lemma 7.

Finally, let us consider the sample complexity of our algorithm. By Lemma 10 and Lemma 8 we have for any pulled arm ¢
that 83;(t) > G*(t) > 3G;. Summing over all arms ¢ € K, this gives for each ¢ that T;(t) < 128H;log(4Kt?/9).
Therefore,

> Ti(t) =t <> 128H;log(4Kt?/5) < 128H log(4Kt*/5).

i€k ick
Thus, as soon as t reaches t > 128 H log(4Kt%/§), the algorithm stops. Denoting this step by 7 and using Lemma 8
of Antos et al. [2010] in order to solve this equation gives 7 < O (H log(H K /9d)). O



