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A Proof of Lemma 1

Proof. Let t̄ be the first time when the condition in equation (2) is met, then at time t̄− 1 we have that

�ΔV,U (t̄− 1)−
�

i∈U⊕V

βi(t̄− 1) ≤ 0,

which implies that

ΔV,U − 2
�

i∈U⊕V

βi(t̄− 1) ≤ 0,

and thus

�

i∈U⊕V

�
log 4K�(t̄−1)2

δ

2Ti(t̄− 1)
≥ ΔV,U

2
.

Since the algorithm is selecting arms in U ⊕ V using a round-robin strategy, at any time Ti(t) = Tj(t)± 1 for any pair of
arms i, j. Thus, let j be the least pulled arm at round t̄ − 1 (i.e., j ∈ argminTi(t̄ − 1)), then the previous inequality can
be written as

dU,V

�
log 4K�(t̄−1)2

δ

2Tj(t̄− 1)
≥ ΔV,U

2
,

which leads to the statement.

B The Complexity in Equation (4) is Well-defined

In order to prove that our complexity measure in equation (4) is well-defined, we have to show that the max operator
actually returns a value, that is, that there exists at least one element in the argument of the max operator. This is done in
the following proposition.

Proposition 1. Let Qi be the set of the decision sets in the argument of the max operator in equation (4), i.e.,

Qi = {U ∈ C : i ∈ U ⊕ CU} . (10)

Then Qi �= ∅ for all i in K.

Proof. We distinguish the following two cases:

Case 1) i /∈ U∗

According to the assumption we made in Section 2, there exists a decision set V ∈ C such that i ∈ V . Note that i does not
necessarily belong to V ⊕ CV . We construct a sequence of decision sets X = {X1, . . . , Xp} such that X1 = V , for all
j ∈ {1, . . . , p − 1}, i ∈ Xj and Xj+1 = CXj , and i /∈ Xp.8 As a result, setting U = Xp−1 and CU = Xp, we have that
i ∈ U ⊕ CU , and thus, Qi �= ∅.

Case 2) i ∈ U∗

Let V = argmax
U∈C : i/∈U

µU . Then CV exists, because i ∈ U∗. Moreover i ∈ CV , as otherwise we obtain the contradiction

µCV
> µV = max

U∈C : i/∈U
µU ≥ µCV

. Therefore, i ∈ CV \V , so that V ∈ Qi and Qi �= ∅.

8Note that X is not only finite but also contains a decision set Xp, such that i /∈ Xp. The first claim comes from the definition of
complement that gives us µXj+1 > µXj , ∀j ∈ {1, . . . , p − 1}, and the fact that C is finite. For the second claim note that as i /∈ U∗,
X has at least two elements.



Victor Gabillon, Alessandro Lazaric, Mohammad Ghavamzadeh, Ronald Ortner, Peter Bartlett

C Useful Properties of the Complexity HU,V

In this appendix, we prove several useful properties of the complexity HU,V later, particularly in the proof that our com-
plexity measure is not higher than the measure used by Chen et al. [2014].

The first proposition shows that the distance dU,V between two decision sets U and V follows a triangle inequality.
Proposition 2. For any three distinct decision sets U, V,W ∈ C, we have, U ⊕ V ⊆ (U ⊕W ) ∪ (W ⊕ V ) and dU,V ≤
dU,W + dW,V . Moreover, if (U ⊕W ) ∩ (W ⊕ V ) = ∅ then U ⊕ V = (U ⊕W ) ∪ (W ⊕ V ) and dU,V = dU,W + dW,V .

Proof. To prove the statements for U ⊕ V , we first prove that

U\V =
�
(U\V )\W

�
∪
�
(U\V ) ∩W

�

=
�
(U\W )\

�
(U\W ) ∩ (V \W )

��
∪
�
(W\V )\

�
(W\V ) ∩ (W\U)

��
(11)

⊆ (U\W ) ∪ (W\V ). (12)

Similar to (12), we may prove
V \U ⊆ (V \W ) ∪ (W\U). (13)

Taking the union of (12) and (13) gives

(U\V ) ∪ (V \U) ⊆ (U\W ) ∪ (W\V ) ∪ (V \W ) ∪ (W\U),

and the first claim of the proposition
U ⊕ V ⊆ (U ⊕W ) ∪ (W ⊕ V ). (14)

follows by definition of ⊕. The second claim is straightforward from (14) and the definition of symmetric distance d, i.e.,

dU,V ≤ dU,W + dW,V .

To prove the second part of the proposition, we start from (11), that is,

U\V =
�
(U\W )\

�
X� �� �

(U\W )∩
Y� �� �

(V \W )
�

� �� �
A

�
∪
�
(W\V )\

�
S� �� �

(W\V )∩
Z� �� �

(W\U)
�

� �� �
B

�
,

from which by our assumption (U ⊕W ) ∩ (W ⊕ V ) = ∅ we obtain

A ∪B = (X ∪ S) ∩
U⊕W� �� �

(X ∪ Z)∩
W⊕V� �� �

(Y ∪ S)� �� �
∅

∩(Y ∪ Z) = ∅ =⇒ A = ∅ and B = ∅. (15)

From (15), (C) may be written as
U\V = (U\W ) ∪ (W\V ). (16)

Similarly, one can show that
V \U = (V \W ) ∪ (W\U). (17)

Taking union from both sides of (16) and (17), we obtain

U ⊕ V = (U ⊕W ) ∪ (W ⊕ V ),

and as a result dU,V = dU,W + dW,V , which completes the proof of the second part of the proposition.

The next proposition proves useful properties for the complexity of two decision sets.
Proposition 3. For any three decision sets U, V,W ∈ C with µU < µV < µW , we have

HU,W ≤ max (HU,V , HV,W ) . (18)

Furthermore, if (U ⊕ V ) ∩ (V ⊕W ) = ∅, then

HU,W ≥ min (HU,V , HV,W ) , (19)

and finally, the above two inequalities are strict if HU,V �= HV,W .
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Proof. We write
ΔW,U = µW − µU = µW − µV + µV − µU = ΔW,V +ΔV,U . (20)

By assumption, we have µW > µV and µV > µU , and thus, ΔW,V > 0 and ΔV,U > 0. As a result, we may write

dU,W

ΔW,U

(a)

≤ dU,V + dV,W
ΔW,V +ΔV,U

(b)

≤ max

�
dU,V

ΔV,U
,
dV,W
ΔW,V

�
, (21)

where (a) follows from Proposition 2 and (20), and (b) follows from the fact that for any positive a, b, c, d ≥ 0, it holds
that a+b

c+d ≤ max
�
a
c ,

b
d

�
.9 From (21), we get

d
2

U,W

Δ2
W,U

≤ max

�
d
2

U,V

Δ2
V,U

,
d
2

V,W

Δ2
W,V

�
,

which gives us (18).

The second statement is similarly proved as

dU,W

ΔW,U

(a)
=

dU,V + dV,W
ΔW,V +ΔV,U

(b)

≥ min

�
dU,V

ΔV,U
,
dV,W
ΔW,V

�
, (22)

where (a) is true under the assumption that (V ⊕ U) ∩ (V ⊕W ) = ∅ from Proposition 2, and (b) follows from the fact
that for any positive a, b, c, d ≥ 0, it holds that min

�
a
c ,

b
d

�
≤ a+b

c+d .10 From (22) it follows that

d
2

U,W

Δ2
W,U

≥ min

�
d
2

U,V

Δ2
V,U

,
d
2

V,W

Δ2
W,V

�
,

which gives us (19).

The proof of the very last statement, the strict inequalities, comes directly from the fact that when a
c �= b

d , the two
inequalities at step (b) of (21) and (22) become strict.

In the last proposition of this section, we show that the complexity of discriminating between a decision set U �= U∗ and
its complement V = CU is less than the complexity of discriminating between V = CU and its complement W = CV =
CCU

, provided that the complement of U is not the best decision set U∗, i.e., V = CU �= U∗.

Proposition 4. For any decision set U �= U∗ with V = CU �= U∗ and W = CV = CCU
, it holds that HU,V ≤ HV,W .

Proof. We prove the statement by contradiction. Let us assume that HU,V > HV,W . Since V �= U∗ and by definition
of complement, we have µU < µV < µW . As a result, HU,W ≤ max (HU,V , HV,W ) from Proposition 3. Note that this
inequality is strict, whenever HU,V �= HV,W , again according to Proposition 3, and since we assumed that HU,V > HV,W ,
we have HU,W < HU,V . This gives us

HU,V = HU,CU
= min

Z∈C:µZ>µU

HU,Z ≤ HU,W < HU,V ,

which leads to the contradiction that HU,V < HU,V .

D Equivalence of the Different Notions of Arm Complexity

In this section, we give two alternative notions of complexity of an arm that are equivalent to the original definition Hi of
equation 4. In the analysis of the algorithms (see Appendices G and H) we will use the definition of the complexity that
is the most handy. The equivalence proof requires the results of Appendix C, especially Proposition 4. We start with the
definition of the alternative complexity notions and two intermediate results that will be needed for the equivalence proof
given at the end of this section.

9Here is the proof: Assume without loss of generality that a
c
≤ b

d
. Then a+b

c+d
≤ bc/d+b

c+d
= b(c/d+1)

d(c/d+1)
= b

d
= max

�
a
c
, b
d

�
.

10The proof is analogous to the previous footnote: Assume without loss of generality that a
c
≤ b

d
. Then a+b

c+d
≥ a+da/c

c+d
= a(d/c+1)

c(d/c+1)
=

a
c
= min

�
a
c
, b
d

�
.
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Definition 7. Our two notions of complexity for an arm i ∈ K, H1 and H2, are defined as

H1
i =





max
U∈C:i∈U\CU

HU,CU
if i /∈ U∗,

max
U∈C:i∈CU\U

HU,CU
if i ∈ U∗.

H2
i =





max
U∈C:i∈U

HU,CU
if i /∈ U∗,

max
U∈C:i/∈U

HU,CU
if i ∈ U∗.

The following proposition plays an important role in proving the equivalence H1
i = Hi, ∀i ∈ K. It shows that if i ∈

(U ⊕ CU ), then H1
i ≥ HU,CU

.

Proposition 5. For any decision set U ∈ C such that U �= U∗, and any arm i ∈ (U ⊕ CU ), we have H1
i ≥ HU,CU

.

Proof. We consider the following two cases for a fixed arm i ∈ (U ⊕ CU ):

Case 1) i ∈ U∗

If i ∈ CU\U , the result follows directly from the definition of H1
i . If i ∈ U\CU , similar to the proof of Proposition 1 in

Appendix B, we construct a sequence of decision sets {X1, . . . , Xp} such that X1 = U , for all j ∈ {2, . . . , p− 1}, i /∈ Xj

and Xj+1 = CXj
, and i ∈ Xp. Note that {X2, . . . , Xp} is a sequence of decision sets and their complements that do not

contain arm i until a set Xp is generated that contains i.11 From Proposition 4, we have that HXj ,Xj+1
≥ HXj−1,Xj

, ∀j ∈
{2, . . . , p− 1}. Now starting from the definition of H1

i , we may write

H1
i = max

Z:i∈CZ\Z
HZ,CZ

(a)
≥ HXp−1,Xp

≥ HX1,X2
= HU,CU

,

which proves the claim of the proposition. Note that (a) comes from the fact that i ∈ CXp−1\Xp−1 by definition of the
sequence.

Case 2) i /∈ U∗

If i ∈ U\CU , the result follows directly from the definition of H1
i . When i ∈ CU\U , we construct a sequence of decision

sets {X1, . . . , Xp} such that X1 = U , for all j ∈ {2, . . . , p−1}, i ∈ Xj and Xj+1 = CXj , and i /∈ Xp. This is a sequence
of decision sets and their complements that contain arm i until a set Xp is generated that does not contain i. As a result
i ∈ Xp−1\CXp−1

. From Proposition 4, we have that HXj ,Xj+1
≥ HXj−1,Xj

, ∀j ∈ {2, . . . , p− 1}. Now starting from the
definition of H1

i , we may write

H1
i = max

Z:i∈Z\CZ

HZ,CZ
≥ HXp−1,Xp ≥ HX1,X2 = HU,CU

, (23)

which proves the claim of the proposition.

Proposition 6. For any decision set U ∈ C such that U �= U∗, and any arm i ∈ (U ⊕ U∗), we have H1
i ≥ HU,CU

.

Proof. Let us construct a sequence of decision sets {X1, . . . , Xp} such that X1 = U , for all j ∈ {2, . . . , p− 1}, Xj+1 =
CXj

, and Xp = U∗. This sequence is well-defined and has at least two elements, since U �= U∗ and U∗ is unique. If we
prove that for any j ∈ {2, . . . , p}, we have that for all i ∈ (X1 ⊕Xj), H1

i ≥ HX1,X2
, then j = p will gives us the proof

of the proposition. Now let us prove this statement. The proof is by induction on j.

Base Step: j = 2. In this case, the claim follows directly from Proposition 5.

Inductive Step: Here we assume that for j = j�, we have that H1
i ≥ HX1,X2

, ∀i ∈ (X1 ⊕ Xj�), and we want to
show that H1

i ≥ HX1,X2
, ∀i ∈ (X1 ⊕ Xj�+1). From Proposition 5 and the construction of the sequence, we have

H1
i ≥ HXj� ,Xj�+1

, ∀i ∈ (Xj� , Xj�+1). By repeated application of Proposition 4, we can show that ∀i ∈ (X1 ⊕ Xj�) ∪
(Xj� ⊕ Xj�+1), we have H1

i ≥ min(HX1,Xj� , HXj� ,Xj�+1
) ≥ HX1,X2

. Moreover, from Proposition 2, we know that
X1 ⊕Xj�+1 ⊆ (X1 ⊕Xj�) ∪ (Xj� ⊕Xj�+1), and thus, we obtain ∀i ∈ (X1 ⊕Xj�+1) that H1

i ≥ HX1,X2
, which proves

the inductive step.

We are now ready to prove the main result of this section, the equivalence of the different notions of arm complexity.

Lemma 3. For any arm i ∈ K, we have Hi = H1
i = H2

i .
11Note that such a sequence is finite, because by the definition of complement of a decision set, we have µXj+1 > µXj , the number

of decision sets is finite, and i ∈ U∗.
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Proof. Step 1: We first prove that Hi = H1
i , ∀i ∈ K.

From the definition of H1
i , it is immediate to see that H1

i ≤ max
U∈C:i∈U⊕CU

HU,CU
= Hi, and from Proposition 5, we may

write Hi = max
U∈C:i∈U⊕CU

HU,CU
≤ H1

i . These together prove Step 1.

Step 2: We now want to prove H1
i = H2

i , ∀i ∈ K.

From the definitions of H1
i and H2

i , it is immediate to write H1
i ≤ H2

i . To prove the reverse, we consider the following
two cases:

Case 1) i /∈ U∗

In this case, we may write

H2
i = max

U∈C:i∈U
HU,CU

= max
U∈C:i∈(U⊕U∗)

HU,CU

(a)
≤ H1

i ,

where (a) is from Proposition 6.

Case 2) i ∈ U∗

In this case, we may write

H2
i = max

U∈C:i/∈U
HU,CU

= max
U∈C:i∈(U⊕U∗)

HU,CU

(a)
≤ H1

i ,

where (a) is from Proposition 6.

The two cases together prove Step 2.

E Proof of Lemma 2

Let U ∈ C be a decision set with complement CU . Let b be an exchange set that satisfies constraints (b)–(e) of Definition 2
for the decision set pair (U,CU ). Let V = U ± b be the decision set resulted from applying the transformation b to U . We
now define the exchange set d = (CU\V, V \CU ) as the exchange set that completes the transformation of U to CU after
applying b to U . It is easy to show that d =

�
(CU\U)\b+, (U\CU )\b−

�
. We now prove the following two propositions

that are used in the proof of Lemma 2.
Proposition 7. For any decision set U ∈ C, any exchange set b that satisfies constraints (b)–(e) of Definition 2 for the
decision set pair (U,CU ), and any exchange set d that completes the transformation of U to CU after applying b to U ,
i.e., d =

�
(CU\U)\b+, (U\CU )\b−

�
, we have

ΔCU ,U = Δb+,b− +Δd+,d− > 0, (24)

dU,CU
= db+,b− + dd+,d− , (25)

so that HU,CU
=

(db+,b−+dd+,d− )2

(Δb+,b−+Δd+,d− )2 .

Proof. We begin with the proof of (24). By definition of CU , µCU
> µU , so that Δb+,b− and Δd+,d− cannot be both

negative. Now to prove the equality, first note that µd+ = µCU\U − µb+ and µd− = µU\CU
− µb− from the definition of d

and the fact that b+ ⊆ CU\U . Further we have b− ⊆ U\CU from constraints (b) and (c) of Definition 2. Therefore,

ΔCU ,U = µCU
− µU = µCU\U − µU\CU

= (µCU\U − µb+)� �� �
µd+

+µb+ − (µU\CU
− µb−)� �� �

µd−

−µb− = Δb+,b− +Δd+,d− ,

which proves (24).

Now let us turn to showing (25):

db+,b− + dd+,d− = |b+ ⊕ b−|+ |d+ ⊕ d−| (a)
= |b+|+ |b−|+ |d+|+ |d−|
(b)
= |b+|+ |b−|+ |CU\U\b+|+ |U\CU\b−|
(c)
= |b+|+ |b−|+ |CU\U |− |b+|+ |U\CU |− |b−| = |U ⊕ CU | = dU,CU

,
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where (a) comes from the fact that b+∩b− = d+∩d− = ∅, (b) is from the definition of d, and (c) follows from constraints
(b) and (c) of Definition 2.

We are now ready to prove Lemma 2.

Proof of Lemma 2. The proof is by contradiction. Suppose U �⊥ CU . Since independence is symmetric, we also have
CU �⊥ U . This means that there exists a non-empty exchange set b = (b+, b−), different than the independent exchange
set (CU\U,U\CU ) of (U,CU ), that satisfies constraints (b)–(e) of Definition 2. From the exchange set b, we define the
exchange set d that completes the transformation of U to CU after applying b to U as d =

�
(CU\U)\b+, (U\CU )\b−

�
.

Since b satisfies constraints (b) and (c), we may write

µCU∓b = µCU
− µb+ + µb− = µCU

−Δb+,b− ,

which gives
ΔCU∓b,U = µCU∓b − µU = ΔCU ,U −Δb+,b− . (26)

Since b is not empty, CU ∓ b is closer to U than CU , and hence, dU,CU∓b < dU,CU
. Now consider the following three cases

(note that as shown in Proposition 7, Δb+,b− and Δd+,d− cannot be both negative):

Case 1) Δb+,b− ≤ 0

In this case, by (26) we may write

HU,CU∓b =
d
2

U,CU∓b

Δ2
U,CU∓b

=
d
2

U,CU∓b

(ΔU,CU
−Δb+,b−)

2
≤ d

2

U,CU∓b

Δ2
U,CU

(a)
<

d
2

U,CU

Δ2
U,CU

(b)
= min

V ∈C:µV >µU

HU,V , (27)

where (a) comes from the fact that dU,CU∓b < dU,CU
and (b) is from the definition of the complement CU . Moreover, in

this case, from (26), we have ΔCU ,U ≤ ΔCU∓b,U , which gives us µCU
≤ µCU∓b. Since µU < µCU

by definition, we have
that (CU ∓ b) ∈ {V ∈ C : µV > µU} and hence HU,CU∓b ≥ HU,CU

by definition of CU , which contradicts equation (27).

Case 2) Δb+,b− > 0 and Δd+,d− ≤ 0

Here we first show that
µU±b = µU\b−∪b+

(a)
= µU − µb− + µb+ = µU +Δb+,b− ,

where (a) comes from constraints (b) and (c) of Definition 2, which gives us

ΔU±b,U = µU±b − µU = Δb+,b− . (28)

It is also straightforward to see that
dU,U±b = |U ⊕ U ± b| = db+,b− . (29)

Now similar to (27), we may write

HU,U±b =
d
2

U,U±b

Δ2
U,U±b

(a)
=

d
2

b+,b−

Δ2
b+,b−

(b)
<

(db+,b− + dd+,d−)
2

(Δb+,b− +Δd+,d−)
2

(c)
= HU,CU

= min
V ∈C:µV >µU

HU,V , (30)

where (a) comes from (28) and (29), (b) is from the fact that dd+,d− > 0 and Δd+,d− ≤ 0, and finally (c) is from
Proposition 7. Moreover, since Δb+,b− > 0, from (28) we have µU < µU±b, which means that (U ± b) ∈ {V ∈ C : µV >
µU}, and thus, HU,U±b should be bigger than or equal to HU,CU

, which contradicts equation (30).

Case 3) Δb+,b− > 0 and Δd+,d− > 0

From Proposition 7, we have

HU,CU
=

(db+,b− + dd+,d−)
2

(Δb+,b− +Δd+,d−)
2

(a)
≥ min


 d

2

b+,b−

Δ2
b+,b−

,
d
2

d+,d−

Δ2
d+,d−


 = min(Hb+,b− , Hd+,d−), (31)

where (a) comes from footnote 10 Appendix C. The inequality in (31) is strict whenever Hb+,b− �= Hd+,d− . We now
consider the following three cases that all end up contradicting that CU = argmin

V ∈C:µV >µu

HU,V .
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Case 3.1) Hb+,b− < Hd+,d−

From equation 31, we have HU,CU
> Hb+,b−

(a)
= HU±b,U , where (a) is from (28) and (29). At the same time we have

HU,CU
= argmin

V :µV >µU

HU,V

(b)
≤ HU±b,U , which leads to a contradiction. Note that (b) holds because Δb+,b− > 0, and thus,

µU < µU±b from (28).

Case 3.2) Hb+,b− > Hd+,d−

From equation 31, we have HU,CU
> Hd+,d− . Since d− ⊆ U and d+ ∩ U = ∅ from the definition of d, we may write

ΔU±d,U = µU±d − µU = µU − µd− + µd+ − µU = Δd+,d− ,

and
dU±d,U = dd+,d− ,

which gives us HU,CU
> Hd+,d− = HU±d,U . At the same time HU,CU

= argmin
V :µV >µU

HU,V ≤ HU±d,U , which leads to a

contradiction.

Case 3.3) Hb+,b− = Hd+,d−

From equation 31, we have HU,CU
≥ Hb+,b− . If the inequality is strict, then we obtain the contradiction as in Case 3.1.

Thus let us assume that HU,CU
= Hb+,b− . From (28) and (29), we have HU,CU

= Hb+,b− = HU,U±b, and from (28)
and the fact that Δb+,b− > 0, we have µU±b > µU , and from (25) and (29), we have dU±b,U < dU,CU

. This creates a
contradiction because in case HU,CU

= HU,U±b, according to Definition 4, the tie should be broken in favor of the set with
the smaller symmetric distance, and thus, CU should be U ± b.

F Proof of Theorem 3

We begin this section with the definition of the ∗-complement of a decision set. For this, let Q(U) be the set of decision
sets V such that U ⊥ V and the exchange set b = (V \U,U\V ) satisfies constraints (b)–(e) of Definition 2 for the pair of
decision sets (U,U∗).12

Definition 8. The ∗-complement of a decision set U ∈ C with U �= U∗, denoted by C∗
U , is defined as

C∗
U = argmin

V ∈Q(U)

HU,V .

We have to show that the argument of the argmin in Definition 8 is not empty, i.e., Q(U) �= ∅. For this purpose, we
build a sequence of decision sets {V1, . . . , Vp} such that V1, . . . , Vp−1 are all not independent of U and U ⊥ Vp, that is,
we stop the sequence as soon as we reach a decision set Vp independent from U . To construct such a sequence, we start
with V1 = U∗ and for k ∈ {1, . . . , p − 1}, we generate Vk+1 = U ± bk+1, where b1 = (b1,+, b1,−) = (U∗\U,U\U∗)
and bk+1 = (bk+1,+, bk+1,−) ⊂ bk = (bk,+, bk,−) is an exchange set that satisfies constraints (b)-(e) of Definition 2
for the pair of decision sets (U, Vk). Note that bk+1 exists by definition as Vk is not independent of U and this is why
we can build iteratively the sequence {V1, . . . , Vp} until we find Vp with U ⊥ Vp. Since Vk+1 = U ± bk+1, we have
|Vk+1 ⊕ U | = |(bk+ ⊕ bk−)| < |Vk ⊕ U |, which means that the size of the exchange sets bk is decreasing, and thus, the
sequence eventually has to end. From the construction of the bk’s, it is clear that they are all subsets of b1 = (U∗\U,U\U∗),
and thus, (Vp\U,U\Vp) satisfies constraints (b)–(e) of Definition 2 for the pair of decision sets (U,U∗). This proves that
Q �= ∅ and the argument of the argmin in Definition 8 is not empty. Also, note that µC∗

U
> µU as intuitively C∗

U is a
decision set made by replacing parts of U by parts of U∗.

We are now ready to give the proof of Theorem 3.

Proof of Theorem 3. We only consider the case where i /∈ U∗ in detail, the case i ∈ U∗ is symmetric. Let H∗i and H∗2i
be defined as Hi and H2

i , respectively, but using the ∗-complement C∗
U of Definition 8 instead of CU . Then similar to

Lemma 3 one can show the equivalence of the ∗-complement complexities, i.e., H∗2i = H∗i.
12Note that since U ⊥ V , the exchange set b = (V \U,U\V ) is the only non-empty exchange set that satisfies constraints (b)–(e) of

Definition 2 for the pair of decision sets (U,CU ).
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Therefore, we have the following series of inequalities

Hi
(a)
= H2

i

(b)
= max

U∈C:i∈U
HU,CU

(c)

≤ max
U∈C:i∈U

HU,C∗
U

(d)
= max

U∈C:i∈U\C∗
U

HU,C∗
U

(e)
= HUi,Vi

,

where (a) holds by Lemma 3, (b) uses the definition of H2
i , (c) uses HU,CU

= argmin
V :µV >µU

HU,V ≤ HU,C∗
U

as µC∗
U
> µU ,

(d) uses the equivalence of complexity based on the ∗-complement, (e) introduces Ui to denote the decision set attaining
the maximum in the above equation and Vi = C∗

Ui
. By the definition of the ∗-complement, b� = (Vi\Ui, Ui\Vi) satisfies

constraints (b)-(e) of Definition 2 for the pair of decision sets (U,U∗). As a result, U∗ ∓ b� ∈ C and i ∈ U∗ ∓ b� (see
constraint (e) in Definition 2 and i ∈ b�−). By the definition of b�, we have µUi

= µVi
+µb�+

−µb�−
, and thus, we may write

ΔVi,Ui
= µb�+

− µb�−
= µ∗ − (µ∗ − µb�+

+ µb�−
) = ΔU∗,U∗∓b� ≥ min

U :i∈U
ΔU∗,U ,

where the last inequality follows from the fact that i ∈ U∗∓b�. We note that for any independent pair of sets such as Vi, Ui,
any well defined exchange class B should include the (unique) exchange set b� = (Vi\Ui, Ui\Vi) that allows to move from
one set to another. As a result for any exchange class B, width(B) = max(b+,b−)∈B |b+|+|b−| ≥ |b�+|+|b�−| = |Ui⊕Vi| =
dUi,Vi . Therefore, width(C) = minB∈Exchange(C) width(B) ≥ dUi,Vi , which together with ΔVi,Ui ≥ min

U :i∈U
ΔU∗,U leads to

the desired outcome

Hi ≤
d
2

Ui,Vi

Δ2
Vi,Ui

≤ width(C)2
min
U :i∈U

Δ2
U∗,U

= H�
i .

G Fixed Budget Results: Proof of Theorem 1

In this section, we provide a proof of Theorem 1. In the following, we will mainly work with the complexity H2
i (and the

corresponding simplicity G) as defined in equation (7). Recall that this formulation is equivalent to Hi. In the following,
we use [N ] to denote the set {1, 2, . . . , N}. We also introduce two numerical constants 0 < c1 < 1 and 0 < c2 < 1/2
such that c2 ≥ c1

1−2c2
≥ c2 , whose exact values will be chosen later. Finally, we consider a permutation π of the arms that

orders the arms with respect to the values Gi, that is, Gπ(1) ≥ Gπ(2) ≥ . . . Gπ(K). To simplify notation, in the following,
we will simply write G(i) instead of Gπ(i).

We now introduce a high-probability event which serves as a basis for the proof of the correctness of the algorithm. This
event states that at the end of each phase k the estimated values of the arms will differ from their real values by at most
G(k).

Lemma 4. Let G(1) ≥ G(2) ≥ . . . ≥ G(K) be an ordering of arms by decreasing complexity 13. The event ξ defined as

ξ =
�
∀i ∈ K, k ∈ [K], |�µi(k)− µi| ≤ c1G(k)

�
(32)

holds with probability

P(ξ) ≥ 1− 2K2 exp

�
−2c21(n−K)

log(K)H

�
.

Proof. By Hoeffding’s inequality and a union bound, the probability of the complementary event ξ of ξ can be bounded as

13Notice that the i-th simplest arm is the (K + 1− i)-th most complex arm.
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Parameters: number of rounds n, set of arms K, decision set C, and cumulative pulls scheme n0, n1, . . . , nK .
Let K1 = K, k = 1, and Jn = ∅
while |Kk| ≥ 1 do

Pull each arm i ∈ Kk for nk − nk−1 rounds.
Compute �U∗(k) = argmaxU∈C �µU (k).
Find jk = maxi∈Kk

�Gi(k).
if jk ∈ �U∗(k) then

The arm jk is accepted and Jn = Jn ∪ {jk}.
end if
Deactivate arms jk, i.e., set Kk+1 = Kk\jk.
k ←− k + 1

end while
Return Jn

Figure 5: The modified fixed budget algorithm.

follows, provided we use the proposed pulls scheme nk =
�

n−K
log(K)(K+1−k)

�
, k ∈ K:

P(ξ) =
K�

i=1

K�

k=1

P
�
|�µi(k)− µi| > c1G(k)

�

≤
K�

i=1

K�

k=1

2 exp
�
−2nkc

2
1G

2
(k)

�

≤
K�

i=1

K�

k=1

2 exp

�
− 2c21(n−K)

log(K)(K + 1− k)H(K+1−k))

�

≤ 2K2 exp

�
−2c21(n−K)

log(K)H

�
.

For the proof of Theorem 1 we analyze a slightly modified algorithm described in Figure 5, where for each arm that is
deactivated it is immediately (and not only after all arms have been deactivated) decided, whether it shall be contained in
the set returned by the algorithm at the end. On the event ξ, the correctness of both algorithms is the same, which can be
deduced from statement (ii) of the induction hypothesis in Definition 9 below.

We will now prove Theorem 1 by showing that on event ξ, the optimal set U∗ is identified at the end of the phases. That
is, the algorithm neither accepts an arm not in U∗, nor is any arm in U∗ rejected.

G.1 The Induction Hypothesis

The proof proceeds by induction over the phases of the algorithm. We first introduce the induction hypothesis.

Definition 9. The induction hypothesis is defined by the two following properties. At the beginning of phase k we have:

(i) All accepted arms belong to the optimal set, i.e., Jn(k − 1) ⊆ U∗, and all rejected arms (i.e., arms which have been
deactivated but never accepted) do not belong to the optimal set, i.e., (Kk\Jn(k − 1)) ∩ U∗ = ∅.

(ii) If arm i /∈ Kk and it has been deactivated during phase l ∈ [k − 1], then Gi ≥ (1− 2c2)G(l).

Statement (i) is the classical desired property, while statement (ii) is specific to our approach and implies that by having
been pulled nl times the arm i has been sampled sufficiently often w.r.t. its complexity. Indeed, recall that a set is not
necessarily compared to the optimal set U∗ whose arms most probably belongs to Kk. Therefore we need to show that an
arm i contained in a set V that is likely to be used as a complement set by some “active” set U has been sampled often
enough (i.e., proportionally to its complexity Hi), especially if it has been removed in a previous phase l < k.

We continue with a few properties implied by the induction hypothesis together with the high-probability event ξ of
Lemma 4. We start with concentration inequalities on event ξ for �µ, �Δ, and �G.
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Proposition 8. Assume that the induction hypothesis (Definition 9) at the beginning of phase k as well as event ξ hold.
Then for any arm i ∈ K,

|�µi(k)− µi| ≤ c1 max

�
Gi

1− 2c2
, G(k)

�
. (33)

Furthermore for any pair (U, V ) ∈ C2 such that V = CU we have
��� �ΔV,U (k)−ΔV,U

��� ≤ c2dU,V max{GV,U , G(k)}

and
��� �GV,U (k)−GV,U

��� ≤ c2 max
�
GV,U , G(k)

�
.

where �ΔV,U (k) and �GV,U (k) are the gaps and the simplicity computed at the end of the phase k. Finally, for the special
case of pairs (U∗, U),

��� �ΔU∗,U (k)−ΔU∗,U

��� ≤ c2dU,U∗ max{GV,U , G(k)}

and
��� �GU∗,U (k)−GU∗,U

��� ≤ c2 max{GV,U , G(k)},

with V = CU .

Proof. First note that if i ∈ Kk, then on event ξ we have |�µi(k)− µi| ≤ c1G(k). Thus, let us assume that i /∈ Kk. Let l be
the phase at which arm i has been deactivated, with l ∈ {1, . . . , k − 1}. We have

|�µi(k)− µi|
(a)

≤ c1G(l)

(b)

≤ c1
1− 2c2

Gi,

where (a) is implied by the event ξ and the fact that �µi(k) = �µi(l), (b) uses property (ii) of the induction hypothesis.
Summarizing, independent of whether i ∈ Kk or not, we have for any i

|�µi(k)− µi| ≤ c1 max

�
Gi

1− 2c2
, G(k)

�
,

which shows the first claim. Let us now focus on a pair of sets U, V such that i ∈ U ⊕ V and V = CU or V = U∗. Then
by the previous inequality,

|�µi(k)− µi| ≤ c1 max

�
Gi

1− 2c2
, G(k)

�

(a)

≤ max
�
c2Gi, c1G(k)

�

(b)

≤ c2 max
�
GV,U , G(k)

�
,

where (a) follows from the choice of the constants such that c2 ≥ c1
1−2c2

. For (b) we use Proposition 5 for V = CU , the
definition of GV,U , the fact that ΔV,U > 0 as well as c1 ≤ c2. As a result we obtain

��� �ΔV,U (k)−ΔV,U

��� ≤
�

i∈U⊕V

|�µi(k)− µi|

≤ c2dV,U max{GV,U , G(k)},
which proves the first part of the second statement. The second part then simply follows from

�GV,U (k) =
�ΔV,U (k)

dU,V

(c)

≥ ΔV,U − c2dV,U max{GV,U , G(k)}
dV,U

= GV,U − c2 max{GV,U , G(k)},
where (c) follows from the first statement. The missing inequality to conclude the second part of the second statement can
be obtained analogously. Finally, the last statement follows along the same lines, only replacing Proposition 5 in step (b)
above by Proposition 6.
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The following Proposition shows that at the beginning of each phase k there is an arm ak which has a larger simplicity
than the k-th largest simplicity. In the remaining proof this arm will serve as a reference arm, as this is the arm that should
be deactivated at the end of phase k.

Proposition 9. Let

ak = argmin
i∈Kk

Hi = argmax
i∈Kk

Gi

be the simplest arm among those left at the beginning of phase k. Then Gak
≥ G(k).

Proof. At the beginning of phase k, only K − |Kk| = k − 1 arms have been deactivated, i.e., |Kk| = K + 1 − k. Hence
the simplest arm left in Kk (i.e., ak) cannot be more difficult than the arm that would be left if all the k − 1 simpler arms
were deactivated (i.e., G(k)), which gives the claimed G(k) ≤ Gak

.

The following Proposition shows that at the end of each phase k, the reference arm ak belongs to �U∗ if and only if it
actually belongs to U∗. This allows us to show that the simplicity of ak can be well estimated at the end of phase k.

Proposition 10. Assume that the induction hypothesis (Definition 9) at the beginning of phase k as well as event ξ hold.
Then ak ∈ U∗ if and only if ak ∈ �U∗(k), where �U∗(k) is the estimated optimal set at the end of phase k.

Proof. We prove in detail that ak /∈ U∗ implies ak /∈ �U∗(k). The reverse can be shown along a similar line of arguments.
The proof is by contradiction. Thus, let us assume that ak /∈ U∗ and ak ∈ �U∗(k). Note that this implies that �U∗(k) �= U∗.
Let W = C�U∗(k) be the complement of the estimated optimal set (note that W exists, since �U∗(k) is not optimal). We have

�ΔW,�U∗(k)(k)
(a)

≥ ΔW,�U∗(k) − c2dW,�U∗(k) max
�
GW,�U∗(k), G(k)

�

= dW,�U∗(k)

�
GW,�U∗(k) − c2 max

�
GW,�U∗(k), G(k)

��
,

where (a) uses Proposition 8. We consider two cases.

Case 1) GW,�U∗(k) ≥ G(k)

In this case,

�ΔW,�U∗(k)(k) ≥ dW,�U∗(k)

�
GW,�U∗(k) − c2GW,�U∗(k)

�

= dW,�U∗(k)GW,�U∗(k)(1− c2) > 0,

where the last inequality follows from the fact that 0 < c2 < 1 and GW,�U∗(k) > 0 by definition of W . It follows that

�µ�U∗(k)(k) < �µW (k), which contradicts that �U∗(k) is the empirical best set.

Case 2) GW,�U∗(k) < G(k))

We write

�ΔW,�U∗(k)(k) ≥ dW,�U∗(k)

�
GW,�U∗(k) − c2G(k)

�

(b)

≥ dW,�U∗(k)

�
Gak

− c2G(k)

�

(c)

≥ dW,�U∗(k)G(k)(1− c2) > 0,

where (b) holds since ak ∈ �U∗(k), so that Gak
= min

U :ak∈U
max

V :µV >µU

GV,U ≤ max
V :µV >µ �U∗(k)

GV,�U∗(k) = GW,�U∗(k). Concern-

ing (c), this holds by Proposition 9, as Gak
≥ G(k). Similar as before we obtain the contradiction �µ�U∗(k)(k) < �µW (k).

The following Proposition gives a lower bound on the estimated simplicity of the reference arm ak at the end of phase k
depending on G(k). This will be used later to show that the algorithm does not remove other arms than ak in each phase k.
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Proposition 11. Assume that the induction hypothesis (Definition 9) at the beginning of phase k as well as event ξ hold.
Then �Gak

(k) ≥ (1− c2)G(k).

Proof. We give a detailed proof for the case where ak /∈ �U∗(k). The other case follows from symmetric arguments. Let
Uk be a set that defines the estimated simplicity of ak, that is

Uk ∈ arg min
U :ak∈U

�G�CU (k),U (k),

and let Wk = CUk
. Note that Wk is well-defined because Uk �= U∗: Indeed, from Proposition 10, since ak /∈ �U∗(k), also

ak /∈ U∗, so that because ak ∈ Uk, we have Uk �= U∗.

Then we have

�Gak
(k) = �G�CU (k),Uk

(k)

= max
V :�µV (k)>�µUk

(k)

�GV,Uk
(k)

≥ �GWk,Uk
(k)

(a)

≥ GWk,Uk
− c2 max

�
GWk,Uk

, G(k)

�
,

where (a) follows from Proposition 8. We have, as ak /∈ U∗, that

Gak
= min

U :ak∈U
GCU ,U ≤ GWk,Uk

.

Furthermore, from Proposition 9 we have that G(k) ≤ Gak
and thus G(k) ≤ GWk,Uk

. Thus the previous expression
simplifies to

�Gak
(k) ≥ GWk,Uk

− c2GWk,Uk
≥ (1− c2)G(k).

The following lemma is rather technical. It shows that if the estimated simplicity of a sub-optimal decision Uk is defined
with respect to Vk, then this estimated simplicity will be larger than the true simplicity of the decision set Vk. The proof
shows that if the estimated simplicity of Uk were smaller than the true simplicity of Vk, then it would surely be also smaller
than the estimated simplicity of Vk defined with respect to Wk, leading to a contradiction. For notational convenience,
in the following we will drop the dependency of the estimated quantities on the phase k (e.g., write �GVk,Uk

instead of
�GVk,Uk

(k)).

Proposition 12. Assume that the induction hypothesis (Definition 9) at the beginning of phase k as well as event ξ hold.
Further assume that Uk, Vk,Wk ∈ C such that Uk �= �U∗(k), Vk = �CUk

(k) �= U∗, Wk = CVk
, and GWk,Vk

≥ G(k). Then
�GVk,Uk

(k) ≥ (1− c2)GWk,Vk
.

Proof. We start by showing that �µUk
< �µVk

< �µWk
. First, �µUk

< �µVk
comes from the definition of Vk as the (estimated)

complement of Uk. Furthermore,

�ΔWk,Vk

(a)

≥ ΔWk,Vk
− c2dWk,Vk

max{GWk,Vk
, G(k)}

(b)

≥ ΔWk,Vk
− c2dWk,Vk

GWk,Vk

(c)
= ΔWk,Vk

− c2ΔWk,Vk
> 0,

where (a) follows from Proposition 8 and the fact that ΔWk,Vk
> 0 (since Wk is the (exact) complement of Vk), (b) follows

from the assumption that GWk,Vk
≥ G(k), and (c) is obtained from the definition of simplicity GWk,Vk

and the fact that
0 < c2 < 1. This completes the proof of the claim that �µUk

< �µVk
< �µWk

.
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Next, we show that �GWk,Vk
≤ �GVk,Uk

. First note that by Proposition 314 we obtain from �µUk
< �µVk

< �µWk
that

�GWk,Uk
≥ min

�
�GWk,Vk

, �GVk,Uk

�
, where the inequality is strict whenever �GWk,Vk

�= �GVk,Uk
. Now if we assume that

�GWk,Vk
> �GVk,Uk

, the previous inequality becomes strict as �GWk,Uk
> �GVk,Uk

. Then we would obtain the contradiction

�GVk,Uk
= max

V :�µV >�µU

�GV,Uk
≥ �GWk,Uk

> �GVk,Uk
,

thus implying the claimed �GWk,Vk
≤ �GVk,Uk

.

We now can conclude with

�GVk,Uk
≥ �GWk,Vk

(a)

≥ GWk,Vk
− c2 max{GWk,Vk

, G(k)}
(b)

≥ GWk,Vk
− c2GWk,Vk

,

where (a) follows from Proposition 8 and the fact that ΔWk,Vk
> 0 and (b) holds due to the assumption that GWk,Vk

≥
G(k).

G.2 The Induction Step

We now move on to prove the induction step. We do this in two separate lemmas, one for each property in the induction
hypothesis.

Lemma 5. Assume that the induction hypothesis at the beginning of phase k as well as event ξ hold. Then property (i) of
Definition 9 holds at phase k + 1 as well.

Proof. Property (i) states that no error is made until the beginning of phase k. To prove that this is still true at the beginning
of phase k+1 we need to prove that during phase k no error is made. An error occurs when either the algorithm deactivates
and rejects an arm jk ∈ U∗, or the algorithm deactivates and accepts an arm jk /∈ U∗. We show by contradiction that both
cases cannot happen.

We give a detailed proof for the case where jk ∈ U∗ is rejected. The argument for the second source of error, when j /∈ U∗

is accepted, is similar.

The strategy of the proof will be to compare the estimated simplicity of the rejected arm to the simplicity of the arm ak,
that is, the arm with the highest simplicity at the end of phase k, and which should be the targeted arm to be deactivated.
Using Proposition 11, we know that the simplicity of ak is of order of G(k). Therefore it remains to prove that Gjk is
smaller than G(k).

As jk is rejected, jk /∈ �U∗(k) and hence, U∗ �= �U∗. Furthermore, ak �= jk, as otherwise Proposition 10 would imply that
jk ∈ �U∗, a contradiction to the assumption that arm jk is rejected.
As jk has been deactivated during phase k, we have �Gjk ≥ �Gak

, since the algorithm deactivates the arm with the largest
simplicity, that is, jk = argmaxi∈Kk

�Gi. Let Vk = �CU∗ be the estimated complement of the optimal set (which exists, as
U∗ �= �U∗) and Wk = CVk

be the (exact) complement of Vk. Then

�Gjk = min
U :j∈U

max
V :�µV >�µU

�GV,U

(a)

≤ �GVk,U∗

(b)

≤ GVk,U∗ + c2 max
�
GWk,Vk

, G(k)

�

(c)

≤ c2 max
�
GWk,Vk

, G(k)

�
,

where (a) is because jk ∈ U∗ and Vk is the (estimated) complement of U∗, (b) holds by the last statement of Proposition 8,
and (c) follows from µVk

< µ∗, whence ΔVk,U∗ < 0 and GVk,U∗ < 0.

14More precisely, we rely on an equivalent version based on estimated values and estimated simplicity.
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We now show by contradiction that GWk,Vk
≤ G(k). Thus, assume that GWk,Vk

> G(k). Then by Proposition 12,
�GVk,U∗ ≥ (1− c2)GWk,Vk

. Together with the previous inequality this gives

(1− c2)GWk,Vk
≤ �GVk,U∗ ≤ c2 max{GWk,Vk

, G(k)} ≤ c2GWk,Vk
,

which is a contradiction, since c2 < 1/2, and we conclude that GWk,Vk
≤ G(k).

Now using inequality (c) from before, we get �Gjk ≤ c2G(k). Using Proposition 11, for ak we have that �Gak
≥ (1−c2)G(k).

Since c2 < 1/2, it holds that �Gjk ≤ c2G(k) < (1 − c2)G(k) ≤ �Gak
. As a result �Gjk < �Gak

, which contradicts the fact
that jk would be the deactivated arm during phase k, as by definition of jk = argmaxi∈Kk

�Gi. Thus we can conclude that
the algorithm does not reject any arm from U∗.

Lemma 6. Assume that the induction hypothesis at the beginning of phase k as well as event ξ hold. Then property (ii) of
Definition 9 holds at phase k + 1 as well.

Proof. Let jk be the arm which is deactivated at the end of phase k, i.e., jk = argmaxi∈Kk
�Gi(k). Again, we only

consider the case where jk /∈ U∗, as the proof for the case jk ∈ U∗ is symmetrical. We have to show that jk satisfies
Gjk ≥ (1− 2c2)G(k), which will be done in five steps.

Step 1. We first notice that Lemma 5 implies that no error is made during phase k, since property (i) still holds at the
beginning of phase k + 1. As a result, we have that jk ∈ U∗ if and only if jk ∈ �U∗ which means in our current case that
jk /∈ �U∗. Let Uk and Vk be the sets which define the (exact) simplicity of jk, that is,

Uk = arg min
U :jk∈U

GCU ,U

and Vk = CUk
, so that Gjk = GVk,Uk

. Further, let Wk = �CUk
, noting that Wk is well defined since Uk �= �U∗. Indeed,

jk /∈ U∗ and jk ∈ Uk, whence Uk �= U∗.

We claim that GWk,Uk
≤ Gjk . Indeed, if µWk

≤ µUk
then we trivially have GWk,Uk

≤ 0 ≤ Gjk . Furthermore, if
µWk

> µUk
we have by definition of Uk and Vk,

GWk,Uk
≤ max

W :µW>µUk

GW,Uk
= GVk,Uk

= Gjk ,

which proves our claim GWk,Uk
≤ Gjk .

Step 2. Next, we note that

�Gjk = min
U :jk∈U

�G�CU ,U ≤ max
�µV >�µUk

�GV,Uk
= �GWk,Uk

. (34)

Step 3. Here we show that Gi ≤ max{Gjk , GZk,Wk
} for i ∈ Wk ⊕ Uk. We distinguish the following cases:

Case 1) i ∈ Wk\Uk

Case 1.1) i ∈ U∗: In this case i ∈ Uk ⊕ U∗ and thus we can apply Proposition 6 to Uk and CUk
= Vk and obtain

Gi ≤ GVk,Uk
= Gjk .

Case 1.2) i /∈ U∗: Let Zk = CWk
, noting that since i is in Wk but not in U∗, we have Wk �= U∗. Then

Gi = min
U :i∈U

GCU ,U ≤ GCWk
,Wk

= GZk,Wk
,

where the first equality follows from the fact that i /∈ U∗, while the inequality is due to the fact that i ∈ Wk.

Case 2) i ∈ Uk\Wk

Case 2.1) i ∈ U∗: Let Zk = CWk
, noting that since i is in U∗ but not in Wk, it holds that Wk �= U∗. Then

Gi = min
U :i/∈U

GCU ,U ≤ GCWk
,Wk

= GZk,Wk
,
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where the first equality follows from the fact that i ∈ U∗, while the inequality is due to the fact that i /∈ Wk.
Case 2.2) i /∈ U∗: In this case we have by definition that

Gi = min
U :i∈U

GCU ,U ≤ GCU ,Uk
= GVk,Uk

= Gjk ,

which completes the proof that Gi ≤ max{Gjk , GZk,Wk
} for i ∈ Wk ⊕ Uk.

Step 4. Next, we are going to show that �Gjk ≤ Gjk + c2 max{Gjk , G(k)}, a version of Proposition 8 for arm jk. We
distinguish two cases:

Case 1) Wk = U∗

In this case, we have

�Gjk

(a)

≤ �GWk,Uk

(b)

≤ GWk,Uk
+ c2 max{GVk,Uk

, G(k)}
(c)

≤ Gjk + c2 max
�
Gjk , G(k)

�
,

where (a) is obtained from equation (34), (b) is a result of Proposition 8, and (c) follows from GWk,Uk
≤ Gjk of Step 1.

Case 2) Wk �= U∗

Let Zk = CWk
. We prove by contradiction that GZk,Wk

≤ max
�
GVk,Uk

/(1− 2c2), G(k)

�
. Thus, assume that GZk,Wk

>

max
�
GVk,Uk

/(1− 2c2), G(k)

�
. Then

�GWk,Uk

(a)

≤ GWk,Uk
+ c1

1

dUk⊕Wk

�

i∈Uk⊕Wk

max

�
Gi

1− 2c2
, G(k)

�

(b)

≤ GWk,Uk
+ c1 max

�
Gjk

1− 2c2
,
GZk,Wk

1− 2c2
, G(k)

�

(c)

≤ GVk,Uk
+ c1

GZk,Wk

1− 2c2
(d)

≤ GVk,Uk
+ c2GZk,Wk

, (35)

where (a) is using for all i ∈ Uk ⊕ Wk the Equation 33 in Proposition 8, (b) follows from Step 3, and (c) is obtained
by GWk,Uk

≤ Gjk = GVk,Uk
(Step 1) and the assumption on GZk,Wk

, finally (d) is obtained by c1
1−2c2

≤ c2. By

Proposition 12, we have �GWk,Uk
≥ (1− c2)GZk,Wk

, which together with (35) gives

(1− c2)GZk,Wk
≤ �GWk,Uk

≤ GVk,Uk
+ c2GZk,Wk

≤ c2GZk,Wk
,

which is a contradiction due to 0 < c2 < 1/2. This finishes the proof of GZk,Wk
≤ max{GVk,Uk

/(1− 2c2), G(k)}.

By (35) and the results of Steps 2 and 1, we finally get

�Gjk ≤ �GWk,Uk
≤ GWk,Uk

+ c1 max
� Gjk

1− 2c2
,
GZk,Wk

1− 2c2
, G(k)

�
≤ Gjk + c2 max

�
Gjk , G(k)

�
.

Step 5. From Proposition 11 and the fact that jk is the deactivated arm (i.e., jk = argmaxi∈Kk
�Gi) we have

(1− c2)G(k) ≤ �Gak
≤ �Gjk ≤ Gjk + c2 max

�
Gjk , G(k)

�
.

We conclude by considering the two possible cases for the max term.
Case 1) Gjk > G(k)

We have (1− c2)G(k) ≤ Gjk + c2Gjk . Since 1−c2
1+c2

≥ 1− 2c2, we get

Gjk ≥ 1− c2
1 + c2

G(k) ≥ (1− 2c2)G(k).

Case 2) Gjk ≤ G(k)

Here we have (1− c2)G(k) ≤ Gjk + c2G(k), whence

(1− 2c2)G(k) ≤ Gjk ,

which concludes the proof.
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G.3 Proof of Theorem 1

With the results of the previous sections, the proof of Theorem 1 is immediate. First, assume that event ξ holds. Note
that properties (i) and (ii) of the induction assumption hold for phase k = 1. Lemmas 5 and 6 prove the induction step,
showing that properties (i) and (ii) hold for all phases k. It remains to consider the error probability for event ξ. This is
handled by Lemma 4, where we finally choose c1 = 1/8, c2 = 1/4 so that 0 < c1 < 1, 0 < c2 < 1/2 and c2 ≥ c1

1−2c2
.

H Fixed Confidence Results: Proof of Theorem 2

We first introduce a high-probability event corresponding to the confidence bounds used by our algorithm.

Lemma 7. The event ξ defined as

ξ = {∀i ∈ K, ∀t > 0, |�µi(t)− µi| ≤ βi(t− 1)} (36)

holds with probability 1− δ, where

�µi(t) =
1

Ti(t)

Ti(t)�

t=1

Xi,t and βi(t− 1) =

�
log 4Kt2

δ

2Ti(t)
.

Proof. By Chernoff-Hoeffding’s inequality, the definition of the confidence intervals βi(t− 1), and a union bound over all
Ti(t) ∈ {0, . . . , t}, t = 1, . . . ,∞.

Recall that
U �
t =

�
U : ∀V ∈ C, �Δ+

U,V (t) > −dU,V max
W∈C

�G+
W,U (t)/2

�

and
�G+(t) = max

U∈U �
t,V ∈C

�G+
V,U (t) and (Ut, Vt) = argmax

U∈U �
t,V ∈C,U �=V

�G+
V,U (t).

The following lemma gives a lower bound on �G+(t).

Lemma 8. On the event ξ, for all time steps t, �G+(t) ≥ 1
2GI(t).

Proof. First note that on event ξ, for any t and any pair of decisions U, V ∈ C, we have �Δ+
U,V (t) ≥ ΔU,V and consequently

�G+
U,V ≥ GU,V . The proof proceeds by distinguishing two main cases. We show the details for the case when I(t) /∈ U∗.

The case I(t) ∈ U∗ can be dealt with using similar arguments.

Case 1) I(t) ∈ Ut

We introduce Wt = CUt , which exists since Ut �= U∗, as I(t) /∈ U∗ and I(t) ∈ Ut. We have

�G+(t) = max
U∈U �

t,V ∈C
�G+
V,U (t) ≥ �G+

Wt,Ut
(t) =

�Δ+
Wt,Ut

(t)

dUt,Wt

≥ ΔWt,Ut

dUt,Wt

(a)

≥ min
U :I(t)∈U

ΔCU ,U

dU,CU

(b)
= GI(t),

where (a) follows from the fact that Wt = CUt and I(t) ∈ Ut, and (b) is due to I(t) /∈ U∗ so that its complexity is defined
as the minimum over decisions U to which it belongs.

Case 2) I(t) ∈ Vt

Let Wt = CVt
, noting that Wt is well-defined since Vt �= U∗, as I(t) /∈ U∗ and I(t) ∈ Vt.

Case 2.1) Vt ∈ U �
t: Similar to Case 1, we have

�G+(t) = max
U∈U �

t,V ∈C
�G+
V,U (t)

(a)

≥ �G+
Wt,Vt

(t) =
�Δ+
Wt,Vt

(t)

dVt,Wt

≥ ΔWt,Vt

dVt,Wt

(b)

≥ min
U :I(t)∈U

ΔCU ,U

dU,CU

(c)
= GI(t),
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where (a) holds by Vt ∈ U �
t and the definition of �G+(t), (b) follows from Wt = CVt and our assumption I(t) ∈ Vt, and

(c) is due to I(t) /∈ U∗ so that its complexity is defined as the minimum over decisions U to which it belongs.
Case 2.2) Vt /∈ U �

t: In this case, by definition of U �(t) there exists a decision set Zt such that �G+
Vt,Zt

(t) ≤
− 1

2 max
W∈C

�G+
W,Vt

(t). Therefore, we have

�G+
Vt,Zt

(t) ≤ −1

2
max
W∈C

�G+
W,Vt

(t) ≤ −1

2
�G+
Wt,Vt

(t) (37)

≤ −1

2
GWt,Vt ≤ −1

2
GI(t), (38)

where the last equality follows from the fact that I(t) /∈ U∗ and the definition of GI(t) in that case. We now focus on the
three decision sets Vt, Ut, Zt and define the value µ̇i associated to arms i ∈ Vt ∪ Ut ∪ Zt as

µ̇i =

�
�µ−
i (t) if i ∈ Ut,

�µ+
i (t) if i ∈ (Vt ∪ Zt)\Ut.

We also define ĠZt,Ut
, ĠVt,Ut

, ĠZt,Vt
as well as Δ̇Zt,Ut

, Δ̇Vt,Ut
, Δ̇Zt,Vt

obtained by using µ̇i instead of µi in their
computation. Then we get

Δ̇Zt,Vt
(t) =

�

i∈Zt\Vt

µ̇i −
�

i∈Vt\Zt

µ̇i =
�

i∈(Zt\Vt)\Ut

µ̇i +
�

i∈(Zt\Vt)∩Ut

µ̇i −
�

i∈(Vt\Zt)\Ut

µ̇i −
�

i∈(Vt\Zt)∩Ut

µ̇i

=
�

i∈(Zt\Vt)\Ut

�µ+
i (t) +

�

i∈(Zt\Vt)∩Ut

�µ−
i (t)−

�

i∈(Vt\Zt)\Ut

�µ+
i (t)−

�

i∈(Vt\Zt)∩Ut

�µ−
i (t)

≥
�

i∈(Zt\Vt)\Ut

�µ−
i (t) +

�

i∈(Zt\Vt)∩Ut

�µ−
i (t)−

�

i∈(Vt\Zt)\Ut

�µ+
i (t)−

�

i∈(Vt\Zt)∩Ut

�µ+
i (t)

= −


 �

i∈(Vt\Zt)\Ut

�µ+
i (t) +

�

i∈(Vt\Zt)∩Ut

�µ+
i (t)−

�

i∈(Zt\Vt)\Ut

�µ−
i (t)−

�

i∈(Zt\Vt)∩Ut

�µ−
i (t)




= −Δ+
Vt,Zt

(t). (39)

Furthermore,

�G+
Zt,Ut

(t)
(a)
= ĠZt,Ut

(b)

≥ min
�
ĠZt,Vt

, ĠVt,Ut

�
(40)

(c)

≥ min
�
ĠZt,Vt

, �G+
Vt,Ut

(t)
�

(41)

(d)

≥ min
�
− �G+

Vt,Zt
(t), �G+

Vt,Ut
(t)
�

(42)

(e)

≥ min

�
1

2
GI(t), �G+

Vt,Ut
(t)

�
,

where (a) and (c) are obtained by the definition Ġ, (b) follows from µ̇Ut < µ̇Vt < µ̇Zt and an analogue of Proposition 3
with strict inequality in case of ĠVt,Ut �= ĠZt,Vt , (d) uses equation (39), and (e) is by equation (37).

Now let us assume �G+(t) = �G+
Vt,Ut

(t) < 1
2GI(t), from which we will derive a contradiction. From equation (37) and

by definition of Ġ, we have �G+(t) = �G+
Vt,Ut

(t) < 1
2GI(t) ≤ ĠZt,Vt

, so we have strict inequality in (b) of equation (40).
Consequently, we can derive from (40) the contradiction

�G+
Zt,Ut

(t) > min

�
�G+
Vt,Ut

(t),
1

2
GI(t)

�
≥ �G+

Vt,Ut
(t) = max

V ∈C
�G+
V,Ut

(t),

which completes the proof of �G+(t) ≥ 1
2GI(t).

The following Lemma shows that any set U in Ut also is in U �
t .
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Lemma 9. On the event ξ, for all time steps t, Ut ⊂ U �
t .

Proof. It is obviously sufficient to show that the threshold −TU,V (t) ≤ 0. On the event ξ, we have max
W∈C

�G+
W,U (t) ≥

�G+
U∗,U (t) ≥ GU∗,U ≥ 0. By definition of TU,V (t), this implies that −TU,V (t) ≤ 0.

The following Lemma gives an upper bound on �G+(t).

Lemma 10. Assume that event ξ holds. Then 8βI(t)(t− 1) ≥ �G+(t) for all t.

Proof. First note that

�G+
Ut,Vt

(t)
(a)
> −1

2
max
W∈C

�G+
W,Ut

(t)
(b)
= −1

2
�G+
Vt,Ut

(t), (43)

where (a) follows from Ut ∈ U �
t and the definition of U �

t and (b) from the definition of Ut and Vt. Moreover, we have

�G+
Vt,Ut

(t)
(a)
=

2

dUt,Vt

�

i∈Ut⊕Vt

βi(t− 1)− �G+
Ut,Vt

(t)

(b)

≤ 2

dUt,Vt

�

i∈Ut⊕Vt

βi(t− 1) +
1

2
�G+
Vt,Ut

(t),

where (a) is because �Δ+
Vt,Ut

(t) +Δ+
Ut,Vt

(t) = 2
�

i∈Ut⊕Vt

βi(t− 1), and (b) is because of equation (43). Hence, we obtain

�G+(t) = �G+
Vt,Ut

(t) ≤ 4

dUt,Vt

�

i∈Ut⊕Vt

βi(t− 1). (44)

Moreover, as we will demonstrate in the following, we have

1

dUt,Vt

�

i∈Ut⊕Vt

βi(t− 1) ≤ 2βI(t)(t− 1). (45)

We show this in detail for the case when I(t) ∈ Ut, the case I(t) ∈ Vt is similar. For I(t) ∈ Ut, we have
�

i∈Ut\Vt

βi(t−1) ≥
�

i∈Vt\Ut

βi(t− 1) and consequently,

�

i∈Ut⊕Vt

βi(t− 1) =
�

i∈Ut\Vt

βi(t− 1) +
�

i∈Vt\Ut

βi(t− 1) ≤ 2
�

i∈Ut\Vt

βi(t− 1).

Since for I(t) ∈ Ut, we have for all i ∈ Ut\Vt that βi(t− 1) ≤ βI(t)(t− 1), we therefore obtain

�

i∈Ut⊕Vt

βi(t− 1) ≤ 2
�

i∈Ut\Vt

βi(t− 1) ≤ 2dUt,Vt
βI(t)(t− 1)

and consequently,

1

dUt,Vt

�

i∈Ut⊕Vt

βi(t− 1) ≤ 2
dUt,Vt

dUt,Vt

βI(t)(t− 1) ≤ 2βI(t)(t− 1),

which proves equation (45). Finally, combining (44) and (45) gives the claim of the lemma.

Finally, we are ready to give the proof of Theorem 2.
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Proof of Theorem 2. First note that by Lemma 9, on event ξ we have Ut ⊆ U �
t , so the algorithm is well-defined, since as

long as |Ut| > 1 also |U �
t| > 1 and there is always an arm to be pulled.

Next, we show that with probability of at least 1− δ, the algorithm returns the optimal set U∗. Indeed, assume that ξ holds
and that U∗ is rejected from Ut at some step t. Then there exists a set V such that 0 ≥ �Δ+

U∗,V (t) = µ+
U∗(t) − µ−

V (t) ≥
µU∗ − µV > 0, which is a contradiction. Hence, the claim follows from Lemma 7.

Finally, let us consider the sample complexity of our algorithm. By Lemma 10 and Lemma 8 we have for any pulled arm i
that 8βi(t) ≥ �G+(t) ≥ 1

2Gi. Summing over all arms i ∈ K, this gives for each t that Ti(t) ≤ 128Hi log(4Kt2/δ).
Therefore, �

i∈K
Ti(t) = t ≤

�

i∈K
128Hi log(4Kt2/δ) ≤ 128H log(4Kt2/δ).

Thus, as soon as t reaches t ≥ 128H log(4Kt2/δ), the algorithm stops. Denoting this step by ñ and using Lemma 8
of Antos et al. [2010] in order to solve this equation gives ñ ≤ O (H log(HK/δ)).


