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We now derive the various objectives for the CRAFT
framework. We first show the derivation for the generic ob-
jective that accomplishes feature selection on the assorted
data. We then derive the degenerate cases when all features
are retained and all data are (a) numeric, and (b) binary
categorical. In particular, when the data are all numeric,
we recover the DP-means objective [14].

6.1 Main Derivation: Clustering with Assorted
Feature Selection

We have the total number of features,D = |Cat|+|Num|.
We define SN,k to be the number of points assigned to
cluster k. First, note that a Beta distribution with mean

c1 and variance c2 has shape parameters
c21(1− c1)

c2
− c1

and
c1(1− c1)2

c2
+ c1 − 1. Therefore, we can find the

shape parameters corresponding to m and ρ. Now, recall
that for numeric data, we assume the density is of the form
f(xnd|vkd)

=
1

Zkd
e
−

vkd (xnd − ζkd)2

2σ2
kd

+(1−vkd)
(xnd − ζd)2

2σ2
d


, (3)

where Zkd ensures that the area under the density is 1. As-
suming an uninformative conjugate prior on the (numeric)
means, i.e. a Gaussian distribution with infinite variance,
and using the Iverson bracket notation for discrete (categor-
ical) data, we obtain the joint probability distribution given
in Fig. 6 for the underlying graphical model shown in Fig.
1. Note that joint distribution factorizes into a product of
posterior distributions (e.g. the beta prior on the features
conjugates with the feature likelihood to yield one poste-
rior. We will show that under asymptotic conditions, min-
imizing the joint negative log-likelihood yields an intuitive
objective function via simplification of the log-posteriors.

The total contribution of (3) to the negative joint log-
likelihood

=

K+∑
k=1

∑
d∈Num

∑
n:zn,k=1

[
vkd

(xnd − ζkd)2

2σ2
kd

(5)

+ (1− vkd)
(xnd − ζd)2

2σ2
d

]
+

K+∑
k=1

∑
d∈Num

log Zkd.

The contribution of the selected categorical features de-
pends on the categorical means of the clusters, and is given
by

− log

K+∏
k=1

∏
n:zn,k=1

∏
d∈Cat:vkd=1

∏
t∈Td

η
I(xnd=t)
kdt

 .

On the other hand, the categorical features not selected
are assumed to be drawn from cluster-independent global
means, and therefore contribute

− log

K+∏
k=1

∏
n:zn,k=1

∏
d∈Cat:vkd=0

∏
t∈Td

η
I(xnd=t)
0dt

 .

Thus, the total contribution of the categorical features is

−
K+∑
k=1

∑
n:zn,k=1

[ ∑
d∈Cat:vkd=1

∑
t∈Td

I(xnd = t) log ηkdt

+
∑

d∈Cat:vkd=0

∑
t∈Td

I(xnd = t) log η0dt

]
.

The Bernoulli likelihood on vkd couples with the conjugate
Beta prior on νkd. To avoid having to provide the value
of νkd as a parameter, we take its point estimate to be the
mean of the resulting Beta posterior, i.e., we set

νkd =

(
m2(1−m)

ρ
−m

)
+ vkd

m(1−m)

ρ

=
akd

akd + bkd
, (6)

where

akd =
m2(1−m)

ρ
−m+ vkd, and

bkd =
m(1−m)2

ρ
+m− vkd.

Then the contribution of the posterior to the negative log
likelihood is

−
K+∑
k=1

D∑
d=1

[
log

(
akd

akd + bkd

)akd
+log

(
bkd

akd + bkd

)bkd ]
,

or equivalently,

K+∑
k=1

D∑
d=1

[
log (akd + bkd)

(akd+bkd) − log aakdkd − log bbkdkd

]
︸ ︷︷ ︸

F (vkd)

.



Vikas K. Garg, Cynthia Rudin, Tommi Jaakkola

P(x, z, v, ν, η, ζ,m)

= P(x|z, v, η, ζ)P(v|ν)P(z)P(η)P(ν;m, ρ)

=

K+∏
k=1

∏
n:zn,k=1

[( ∏
d∈Cat:vkd=1

∏
t∈Td

η
I(xnd=t)
kdt

)( ∏
d∈Cat:vkd=0

∏
t∈Td

η
I(xnd=t)
0dt

)
( ∏
d′∈Num

1

Zkd′
e−[vkd′ (xnd′−ζkd′ )2/(2σ2

kd′ )+(1−vkd′ )(xnd′−ζd′ )
2/(2σ2

d′ ))]

)]

·

K+∏
k=1

D∏
d=1

νvkdkd (1− νkd)1−vkd

 ·
θK+−1 Γ (θ + 1)

Γ (θ +N)

K+∏
k=1

(SN,k − 1)!

 (4)

·

K+∏
k=1

∏
d∈Cat

Γ
(∑

t∈Td
αkdt
K+

)
∏
t∈Td Γ

(αkdt
K+

) ∏
t′∈Td

η
(αkdt′/K

+)−1
kdt′



·
K+∏
k=1

D∏
d=1

Γ

(
m(1−m)

ρ
− 1

)
ν

m2(1−m)

ρ
−m−1


kd (1− νkd)

m(1−m)2

ρ
−(2−m)



Γ

(
m2(1−m)

ρ
−m

)
Γ

(
m(1−m)2

ρ
− (1−m)

)

Figure 6: Joint probability distribution for the generic case (both numeric and categorical features).

Since vkd ∈ {0, 1}, this simplifies to

K+∑
k=1

D∑
d=1

F (vkd) =

K+∑
k=1

D∑
d=1

[vkd(F (1)− F (0)) + F (0)]

=

K+∑
k=1

D∑
d=1

vkd

∆F +K+DF (0), (7)

where ∆F = F (1) − F (0) quantifies the change when a
feature is selected for a cluster.

The numeric means do not make any contribution since we
assumed an uninformative conjugate prior over R. On the
other hand, the categorical means contribute

− log

K+∏
k=1

∏
d∈Cat

Γ
(∑

t∈Td
αkdt
K+

)
∏
t∈Td Γ

(αkdt
K+

) ∏
t′∈Td

η
(αkdt′/K

+)−1
kdt′

 ,
which simplifies to

K+∑
k=1

∑
d∈Cat

[
− log

Γ
(∑

t∈Td
αkdt
K+

)
∏
t∈Td Γ

(αkdt
K+

)
−
∑
t′∈Td

(αkdt′
K+

− 1
)

log ηkdt′

]
. (8)

Finally, the Dirichlet process specifies a distribution over
possible clusterings, while favoring assignments of points

to a small number of clusters. The contribution of the cor-
responding term is

− log

θK+−1 Γ (θ + 1)

Γ (θ +N)

K+∏
k=1

(SN,k − 1)!

 ,
or equivalently,

−(K+ − 1) log θ − log

 Γ (θ + 1)

Γ (θ +N)

K+∏
k=1

(SN,k − 1)!

 . (9)

The total negative log-likelihood is just the sum of terms in
(5), (6), (7), (8), and (9). We want to maximize the joint
likelihood, or equivalently, minimize the total negative log-
likelihood. We would use asymptotics to simplify our ob-
jective. In particular, letting σd →∞, ∀k ∈ [K+] and d ∈
Num, and αkdt → K+, ∀t ∈ Td, d ∈ Cat, k ∈ [K+],
setting log θ to

−

λ+

K+∑
k=1

∑
d∈Cat

log |Td| −
K+∑
k=1

∑
d∈Num

log Zkd

K+ − 1

 ,

and ignoring the term containing SN,k that contributes
O(1), we obtain our objective for assorted feature selec-
tion:
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arg min
z,v,η,ζ,σ

K+∑
k=1

∑
n:zn,k=1

∑
d∈Num

vkd(xnd − ζkd)2

2σ2
kd︸ ︷︷ ︸

Numeric Data Discrepancy

+ (λ+DF0)K+︸ ︷︷ ︸
Regularization Term

+

K+∑
k=1

D∑
d=1

vkd

F∆︸ ︷︷ ︸
Feature Control

+

K+∑
k=1

∑
d∈Cat

[
vkd

 ∑
n:zn,k=1

−I(xnd = t) log ηkdt)


︸ ︷︷ ︸

Categorical Discrepancy Term I

+ (1− vkd)
∑

n:zn,k=1

∑
t∈Td

−I(xnd = t) log η0dt

]
︸ ︷︷ ︸

Categorical Discrepancy Term II

,

where ∆F = F (1) − F (0) quantifies the change when a
feature is selected for a cluster, and we have renamed the
constants F (0) and ∆F as F0 and F∆ respectively.

6.1.1 Setting ρ

Reproducing the equation for νkd from (6), since we want
to ensure that νkd ∈ (0, 1), we must have

0 <

(
m2(1−m)

ρ
−m

)
+ vkd

m(1−m)

ρ

< 1.

Since vkd ∈ {0, 1}, this immediately constrains

ρ ∈ (0,m(1−m)).

Note that ρ guides the selection of features: a high value of
ρ, close to m(1 −m), enables local feature selection (vkd
becomes important), whereas a low value of ρ, close to 0,
reduces the influence of vkd considerably, thereby resulting
in global selection.

6.2 Degenerate Case: Clustering Binary Categorical
Data without Feature Selection

In this case, the discrete distribution degenerates to
Bernoulli, while the numeric discrepancy and the feature
control terms do not arise. Therefore, we can replace the
Iverson bracket notation by having cluster means µ drawn
from Bernoulli distributions. Then, the joint distribution of
the observed data x, cluster indicators z and cluster means

µ is given by P(x, z, µ)

= P(x|z, µ)P(z)P(µ)

=

K+∏
k=1

∏
n:zn,k=1

D∏
d=1

µxndkd (1− µkd)1−xnd


︸ ︷︷ ︸

(A)

·

θK+−1 Γ (θ + 1)

Γ (θ +N)

K+∏
k=1

(SN,k − 1)!


︸ ︷︷ ︸

(B)

(10)

·

K+∏
k=1

D∏
d=1

Γ
( α

K+
+ 1
)

Γ
( α

K+

)
Γ(1)

µ
α

K+−1

kd (1− µkd)0


︸ ︷︷ ︸

(C)

.

The joint negative log-likelihood is

− logP(x, z, µ) = −[log (A) + log (B) + log (C)].

We first note that log (A)

=

K+∑
k=1

∑
n:zn,k=1

D∑
d=1

xnd logµkd + (1− xnd) log(1− µkd)

=

K+∑
k=1

∑
n:zn,k=1

D∑
d=1

xnd log

(
µkd

1− µkd

)
+ log(1− µkd)

=

K+∑
k=1

∑
n:zn,k=1

D∑
d=1

[
log(1− µkd) + µkd log

(
µkd

1− µkd

)

+ xnd log

(
µkd

1− µkd

)
− µkd log

(
µkd

1− µkd

)]

=

K+∑
k=1

∑
n:zn,k=1

D∑
d=1

[
(xnd − µkd) log

(
µkd

1− µkd

)

+ µkd logµkd + (1− µkd) log(1− µkd)
]

=

K+∑
k=1

∑
n:zn,k=1

D∑
d=1

(xnd − µkd) log

(
µkd

1− µkd

)
−H(µkd),

where

H(p) = −p log p− (1− p) log(1− p) for p ∈ [0, 1].

log (B) and log (C) can be computed via steps analogous
to those used in assorted feature selection. Invoking the
asymptotics by letting α→ K+, setting

θ = e
−

λ+
K+D

K+ − 1
log

( α

K+

)
,
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and ignoring the term containing SN,k that contributes
O(1), we obtain the following objective:

argmin
z,µ

K+∑
k=1

λK+

+
∑

n:zn,k=1

∑
d

[
H(µkd) + (µkd − xnd) log

(
µkd

1− µkd

)]
︸ ︷︷ ︸

(Binary Discrepancy)

,

where the term (Binary Discrepancy) is an objective for
binary categorical data, similar to the K-means objective
for numeric data. This suggests a very intuitive procedure,
which is outlined in Algorithm 3.

Algorithm 3 Clustering binary categorical data
Input: x1, . . . , xN ∈ {0, 1}D: binary categorical data,

and λ > 0: cluster penalty parameter.
Output: K+: number of clusters and l1, . . . , lK+ : cluster-

ing.

1. Initialize K+ = 1, l1 = {x1, . . . , xN} and the
mean µ1 (sample randomly from the dataset).

2. Initialize cluster indicators zn = 1 for all n ∈ [N ].

3. Repeat until convergence

• Compute ∀k ∈ [K+], d ∈ [D]:

H(µkd) = −µkd logµkd − (1− µkd) log(1− µkd).

• For each point xn

– Compute the following for all k ∈ [K+]:

dnk =

D∑
d=1

[
H(µkd) + (µkd − xnd) log

(
µkd

1− µkd

)]
.

– If min
k
dnk > λ, setK+ = K+ +1, zn =

K+, and µK+ = xn.

– Otherwise, set zn = argmin
k
dnk.

• Generate clusters l1, . . . , lK+ based on
z1, . . . , zK+ : lk = {xn | zn = k}.

• For each cluster lk, update µk =
1

|lk|
∑
x∈lk

x.

In each iteration, the algorithm computes “distances” to the
cluster means for each point to the existing cluster centers,
and checks if the minimum distance is within λ. If yes,
the point is assigned to the nearest cluster, otherwise a new

cluster is started with the point as its cluster center. The
cluster means are updated at the end of each iteration, and
the steps are repeated until there is no change in cluster
assignments over successive iterations.

We get a more intuitively appealing objective by noting that
the objective (11) can be equivalently written as

argmin
z

K+∑
k=1

∑
n:zn,k=1

∑
d

H(µ∗kd) + λK+, (11)

where µ∗kd denotes the mean of feature d computed by us-
ing points belonging to cluster k. characterizes the uncer-
tainty. Thus the objective tries to minimize the overall un-
certainty across clusters and thus forces similar points to
come together. The regularization term ensures that the
points do not form too many clusters, since in the absence
of the regularizer each point will form a singleton cluster
thereby leading to a trivial clustering.

6.3 Degenerate Case: Clustering Numerical Data
without Feature Selection (Recovering DP-means)

In this case, there are no categorical terms. Furthermore,
assuming an uninformative conjugate prior on the numeric
means, the terms that contribute to the negative joint log-
likelihood are

K+∏
k=1

∏
d′

1

Zkd′
e
−

vkd′(xnd′ − ζkd′)2

(2σ2
kd′)

+(1−vkd′ )
(xnd′ − ζd′)2

(2σ2
d′)


,

and

θK
+−1 Γ (θ + 1)

Γ (θ +N)

K+∏
k=1

(SN,k − 1)!.

Taking the negative logarithms on both these terms and
adding them up, setting log θ to

−

λ+

K+∑
k=1

∑
d′

log Zkd′

K+ − 1

 ,

and vkd′ = 1 (since all features are retained), letting σd′ →
∞ for all d′, and ignoring the O(1) term containing SN,k,
we obtain

argmin
z

K+∑
k=1

∑
n:zn,k=1

∑
d

(xnd − ζ∗kd)2

2σ∗2kd
+ λK+, (12)

where ζ∗kd and σ∗2kd are, respectively, the mean and variance
of the feature d computed using all the points assigned to
cluster k. This degenerates to the DP-means objective [14]
when σ∗kd = 1/

√
2, for all k and d. Thus, using a com-

pletely different model and analysis to [14], we recover the
DP-means objective as a special case.


