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APPENDIX

A High Probability Bound for
RFFMaps

Here we extend the analysis of Lopez et al. [19] to
show that the Fourier Random Features of Rahimi and
Recht [22] approximate the spectral error with their
approximate Gram matrix within "n with high prob-
ability.

A.1 High Probability Bound “for all” Bound
for RFFMaps

In our proof we use the Bernstein inequality on sum
of zero-mean random matrices.

Matrix Bernstein Inequality: Let X1, · · · , Xd 2
Rn⇥n be independent random matrices such that for
all 1  i  d, E[Xi] = 0 and kXik2  R for a
fixed constant R. Define variance parameter as �2 =
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Using this inequality, [19] bounded E[kG� Ĝk2]. Here
we employ similar ideas to improve this to a bound on
kG� Ĝk2 with high probability.

Lemma A.1. For n points, let G = ��T 2 Rn⇥n

be the exact gram matrix, and let Ĝ = ZZT 2
Rn⇥n be the approximate kernel matrix using m =
O((1/"2) log(n/�)) RFFMaps. Then kG � Ĝk  "n
with probability at least 1� �.

Proof. Consider m independent random variables
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1
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1
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The first inequality is correct because of triangle
inequality, and second inequality is achieved using
Jensen’s inequality on expected values, which states
kE[X]k  E[kXk] for any random variable X. Last in-
equality uses the bound on the norm of zi as kzik2 
2n
m , and therefore kZk22  kZk2F  2n.

To bound �2, due to symmetry of matrices Ei, simply
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it follows that
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The first inequality holds by kzik2  2n/m, and sec-
ond inequality is due to E[zizTi ] =

1
mG. Therefore
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the second inequality is by triangle inequality, and the
last inequality by kGk2  Tr(G) = n. Setting M =Pm

i=1 Ei =
Pm

i=1(
1
mG � z:,iz

T
:,i) = G � Ĝ and using

Bernstein inequality with t = "n we obtain
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Solving for m we get m � 9+8"
"2 log(2n/�), so with

probability at least 1� � for m = O( 1
"2 log(n/�)), then

kG� Ĝk2  "n.

A.2 For Each Bound for RFFMaps

Here we bound
��k�Txk2 � kZTxk2

��, where � and Z
are mappings of data to RKHS by RFFMaps, respec-
tively and x is a fixed unit vector in Rn.

Note that Lemma A.1 essentially already gave a
stronger proof, where using m = O((1/"2) log(n/�))
the bound kG � Ĝk2  "n holds along all directions
(which makes progress towards addressing an open
question of constructing oblivious subspace embed-
dings for Gaussian kernel features spaces, in [1]). The
advantage of this proof is that the bound on m will be
independent of n. Unfortunately, in this proof, going
from the “for each” bound to the stronger “for all”
bound would seem to require a net of size 2O(n) and a
union bound resulting in a worse “for all” bound with
m = O(n/"2).

On the other hand, main objective of Test time pro-
cedure, which is mapping a single data point to the
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Figure 4: Results for Forest dataset. Row 1: Kernel Frobenius Error (left), Kernel Spectral Error (middle) and Train

Time (right) vs. Sample size. Row 2: Kernel Frobenius Error (left), Kernel Spectral Error (middle) vs. Space, and Test

Time vs. Sample size (right)

D-dimensional or k-dimensional kernel space is already
interesting for what the error is expected to be for a
single vector x. This scenario corresponds to the “for
each” setting that we will prove in this section.

In our proof, we use a variant of Cherno↵-Hoe↵ding
inequality, stated next. Consider a set of r indepen-
dent random variables {X1, · · · , Xr} where 0  Xi 
�. Let M =

Pr
i=1 Xi, then for any ↵ 2 (0, 1/2),

Pr [|M � E[M ]| > ↵]  2 exp
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⌘
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For this proof we are more careful with notation about
rows and column vectors. Now matrix Z 2 Rn⇥m

can be written as a set rows [z1,:; z2,:; . . . , zn,:] where
each zi,: is a vector of length m or a set of columns
[z:,1, z:,2, . . . , z:,d], where each z:,j is a vector of length
n. We denote the (i, j)-th entry of this matrix as zi,j .

Theorem A.1. For n points in any arbitrary di-
mension and a shift-invariant kernel, let G =
��T 2 Rn⇥n be the exact gram matrix, and Ĝ =
ZZT 2 Rn⇥n be the approximate kernel matrix
using m = O((1/"2) log(1/�)) RFFMaps. Then
for any fixed unit vector x 2 Rn, it holds that��k�Txk2 � kZTxk2

��  "n with probability at least 1��.

Proof. Note Rn is not the dimension of data. Consider
any unit vector x 2 Rn. Definem independent random
variables {Xi = hz:,i, xi2}mi=1. We can bound each Xi

as 0  Xi  kz:,ik2  2n/m therefore � = 2n/m for
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Since x is a fixed unit vector, it is pulled out of all ex-
pectations. Using the Cherno↵-Hoe↵ding bound and
setting ↵ = "n yields Pr
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solve for m = (1/(2"2)) ln(2/�) in the last inequal-
ity.


