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APPENDIX

A High Probability Bound for
RFFMaps

Here we extend the analysis of Lopez et al. [19] to
show that the Fourier Random Features of Rahimi and
Recht [22] approximate the spectral error with their
approximate Gram matrix within en with high prob-
ability.

A.1 High Probability Bound “for all” Bound
for RFFMaps

In our proof we use the Bernstein inequality on sum
of zero-mean random matrices.

Matrix Bernstein Inequality: Let Xi,---, Xy €
R™ ™ be independent random matrices such that for
all 1 < i < d, E[X;] = 0 and || X;]]2 < R for a
fixed constant R. Define variance parameter as o2 =
max{|| iy EXT X|l, | S50, ELX. X[}, Then for

allt > 0, Pr [H Z?Zl XZH > t} < 2n - exp (ﬁt;m)
2

Using this inequality, [19] bounded E[||G — G||3]. Here
we employ similar ideas to improve this to a bound on
|G — G2 with high probability.

Lemma A.l. For n points, let G = ®OT € R**"
be the exact gram matriz, and let G = 7227 ¢
R™ "™ be the approximate kernel matriz using m =
O((1/£2)log(n/8)) RFFMaPS. Then |G — G| < en
with probability at least 1 — 9.

Pmof Consider m independent random variables
; = LG — z;z]. Note that E[E;] = LG — E[z2]] =
O”X" [22] Next we can rewrite
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The first inequality is correct because of triangle
inequality, and second inequality is achieved using
Jensen’s inequality on expected values, which states
|[E[X]]| < E[||X]|] for any random variable X. Last in-
equality uses the bound on the norm of z; as ||z]|? <
21 and therefore || Z]13 < ||Z]|% < 2n.

To bound o2, due to symmetry of matrices E;, simply

o? = || 3" E[E?]|2. Expanding
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it follows that

G? on 1
< I 4 ZEg R - = T ST
E[E;] < - + - E[z7; ] m(E[zlzl |G + G E[z;2; ])
= %(cﬂ +2nG — 2G?) = #(%G - G?)

The first inequality holds by [|z;]|? < 2n/m, and sec-
ond inequality is due to E[z;2]] = L G. Therefore
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the second inequality is by triangle inequality, and the
last inequality by [|G|l2 < Tr(G) = n. Setting M =
S B =Y (G - z2h) = G- G and using
Bernstein inequality with t = en we obtain

. (en)?
Pr [HG =Gz > 5n:| < 2nexp <3(3n2) +2(£) )

—e?m
= 2nexp 91 8¢ <

Solving for m we get m > 9i‘&log@n/é), so with
probability at least 1— 4 for m = O(Z; log(n/d)), then
|G = Gll2 < en. O

A.2 For Each Bound for RFFMaps

Here we bound |[|®7z||*> — ||Z7 |||, where ® and Z
are mappings of data to RKHS by RFFMAPS, respec-
tively and z is a fized unit vector in R".

Note that Lemma A.l essentially already gave a
stronger proof, where using m = O((1/¢2?)log(n/J))
the bound |G — G||2 < en holds along all directions
(which makes progress towards addressing an open
question of constructing oblivious subspace embed-
dings for Gaussian kernel features spaces, in [1]). The
advantage of this proof is that the bound on m will be
independent of n. Unfortunately, in this proof, going
from the “for each” bound to the stronger “for all”
bound would seem to require a net of size 2°(") and a
union bound resulting in a worse “for all” bound with

m = 0(n/e?).

On the other hand, main objective of TEST TIME pro-
cedure, which is mapping a single data point to the
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Figure 4: Results for FOREST dataset. Row 1: Kernel Frobenius Error (left), Kernel Spectral Error (middle) and TRAIN
TIME (right) vs. SAMPLE SIZE. Row 2: Kernel Frobenius Error (left), Kernel Spectral Error (middle) vs. SPACE, and TEST

TIME vs. SAMPLE SIZE (right)

D-dimensional or k-dimensional kernel space is already
interesting for what the error is expected to be for a
single vector x. This scenario corresponds to the “for
each” setting that we will prove in this section.

In our proof, we use a variant of Chernoff-Hoeffding
inequality, stated next. Consider a set of r indepen-
dent random variables {X1,---, X} where 0 < X; <
A. Let M = ', X;, then for any a € (0,1/2),

all X;s. Setting M = >"7" | X; = || Z7z||?, we observe

m m n

EM] =) E[(z52)] =Y E| zix;)?
i=1 i=1 j=1
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Pr[|M — E[M]| > o] < 2exp ( 20 ) = Z ? E lZz ; +222x7 x E [Zz” z;ﬂ}
For this proof we are more careful with notation about jz =1 =t k>j
rows and column vectors. Now matrix Z € R"*™ 2 E

= i Zj 250) + 2 xj x E[(z, 2
can be written as a set rows [21,.;22.;. .., 2] Where jz:; J B {2 2. ;; Ehe s 2]
each z;, is a vector of length m or a set of columns n
(2.1, 2.2, - - -, 2.4, where each z. ; is a vector of length _ 22 Gy 1 ) +2 2 2x (D5, D)

El ) El k) — ) ) k ) k
n. We denote the (4, j)-th entry of this matrix as z; ;. ; pen ; kz>] ! ]
n D

Theorem A.l. For n points in any arbitrary di- 2

= 2
mension and a shift-invariant kernel, let G = Z_Ex] ;(éﬂ + z;;% Tk Z(b” Oni
®OT € R™ " be the exact gram matriz, and G = = B ! !
ZZT € R™" be the approximate kernel matric D n

_ 2
using m = O((1/?)log(1/6)) RFFMAPS. Then = Z Ty ¢ﬂ + QZZxﬂ Tk Gji Phi
for any fized unit vector x € R™, it holds that =1 \J=l J=lk>j
|[|@7z||> = || Z72|?| < en with probability at least 1—4. D ) S

= (b.0,2)* = |9 |

i=1

Proof. Note R™ is not the dimension of data. Consider
any unit vector x € R™. Define m independent random
variables {X; = (z.;,7)?}™,. We can bound each X;
as 0 < X; < |z.4]|> < 2n/m therefore A = 2n/m for

Since z is a fixed unit vector, it is pulled out of all ex-
pectations. Using the Chernoff-Hoeffding bound and
setting a = en yields Pr [|[|@Tz|? — || Z7z|]?| > en] <

2exp (%) = 2exp (—2e?m) < 6. Then we

solve for m = (1/(2¢?))In(2/4) in the last inequal-
ity. O



