APPENDIX

A High Probability Bound for RFFMaps

Here we extend the analysis of Lopez et al. [19] to show that the Fourier Random Features of Rahimi and Recht [22] approximate the spectral error with their approximate Gram matrix within εn with high probability.

A. 1 High Probability Bound "for all" Bound for RFFMaps

In our proof we use the Bernstein inequality on sum of zero-mean random matrices.

Matrix Bernstein Inequality: Let $X_{1}, \cdots, X_{d} \in$ $\mathbb{R}^{n \times n}$ be independent random matrices such that for all $1 \leq i \leq d, E\left[X_{i}\right]=0$ and $\left\|X_{i}\right\|_{2} \leq R$ for a fixed constant R. Define variance parameter as $\sigma^{2}=$ $\max \left\{\left\|\sum_{i=1}^{d} \mathbf{E}\left[X_{i}^{T} X_{i}\right]\right\|,\left\|\sum_{i=1}^{d} \mathbf{E}\left[X_{i} X_{i}^{T}\right]\right\|\right\}$. Then for all $t \geq 0, \operatorname{Pr}\left[\left\|\sum_{i=1}^{d} X_{i}\right\|_{2} \geq t\right] \leq 2 n \cdot \exp \left(\frac{-t^{2}}{3 \sigma^{2}+2 R t}\right)$. Using this inequality, [19] bounded $\mathbf{E}\left[\|G-\hat{G}\|_{2}\right]$. Here we employ similar ideas to improve this to a bound on $\|G-\hat{G}\|_{2}$ with high probability.

Lemma A.1. For n points, let $G=\Phi \Phi^{T} \in \mathbb{R}^{n \times n}$ be the exact gram matrix, and let $\hat{G}=Z Z^{T} \in$ $\mathbb{R}^{n \times n}$ be the approximate kernel matrix using $m=$ $O\left(\left(1 / \varepsilon^{2}\right) \log (n / \delta)\right)$ RFFMAPs. Then $\|G-\hat{G}\| \leq \varepsilon n$ with probability at least $1-\delta$.

Proof. Consider m independent random variables $E_{i}=\frac{1}{m} G-z_{i} z_{i}^{T}$. Note that $\mathbf{E}\left[E_{i}\right]=\frac{1}{m} G-\mathbf{E}\left[z_{i} z_{i}^{T}\right]=$ $0^{n \times n}$ [22]. Next we can rewrite

$$
\left\|E_{i}\right\|_{2}=\left\|\frac{1}{m} G-z_{i} z_{i}^{T}\right\|_{2}=\left\|\frac{1}{m} \mathbf{E}\left[Z Z^{T}\right]-z_{i} z_{i}^{T}\right\|_{2}
$$

and thus bound

$$
\begin{aligned}
\left\|E_{i}\right\|_{2} & \leq \frac{1}{m}\left\|\mathbf{E}\left[Z Z^{T}\right]\right\|_{2}+\left\|z_{i} z_{i}^{T}\right\|_{2} \leq \frac{1}{m} \mathbf{E}\left[\|Z\|_{2}^{2}\right]+\left\|z_{i}\right\|^{2} \\
& \leq \frac{2 n}{m}+\frac{2 n}{m}=\frac{4 n}{m}
\end{aligned}
$$

The first inequality is correct because of triangle inequality, and second inequality is achieved using Jensen's inequality on expected values, which states $\|\mathbf{E}[X]\| \leq \mathbf{E}[\|X\|]$ for any random variable X. Last inequality uses the bound on the norm of z_{i} as $\left\|z_{i}\right\|^{2} \leq$ $\frac{2 n}{m}$, and therefore $\|Z\|_{2}^{2} \leq\|Z\|_{F}^{2} \leq 2 n$.
To bound σ^{2}, due to symmetry of matrices E_{i}, simply
$\sigma^{2}=\left\|\sum_{i=1}^{m} \mathbf{E}\left[E_{i}^{2}\right]\right\|_{2}$. Expanding

$$
\begin{aligned}
\mathbf{E}\left[E_{i}^{2}\right] & =\mathbf{E}\left[\left(\frac{1}{m} G-z_{i} z_{i}^{T}\right)^{2}\right] \\
& =\mathbf{E}\left[\frac{G^{2}}{m^{2}}+\left\|z_{i}\right\|^{2} z_{i} z_{i}^{T}-\frac{1}{m}\left(z_{i} z_{i}^{T} G+G z_{i} z_{i}^{T}\right)\right]
\end{aligned}
$$

it follows that

$$
\begin{aligned}
\mathbf{E}\left[E_{i}^{2}\right] & \leq \frac{G^{2}}{m^{2}}+\frac{2 n}{m} \mathbf{E}\left[z_{i} z_{i}^{T}\right]-\frac{1}{m}\left(\mathbf{E}\left[z_{i} z_{i}^{T}\right] G+G \mathbf{E}\left[z_{i} z_{i}^{T}\right]\right) \\
& =\frac{1}{m^{2}}\left(G^{2}+2 n G-2 G^{2}\right)=\frac{1}{m^{2}}\left(2 n G-G^{2}\right)
\end{aligned}
$$

The first inequality holds by $\left\|z_{i}\right\|^{2} \leq 2 n / m$, and second inequality is due to $\mathbf{E}\left[z_{i} z_{i}^{T}\right]=\frac{1}{m} G$. Therefore

$$
\begin{aligned}
\sigma^{2} & =\left\|\sum_{i=1}^{m} \mathbf{E}\left[E_{i}^{2}\right]\right\|_{2} \leq\left\|\frac{1}{m}\left(2 n G-G^{2}\right)\right\|_{2} \\
& \leq \frac{2 n}{m}\|G\|_{2}+\frac{1}{m}\left\|G^{2}\right\|_{2} \leq \frac{2 n^{2}}{m}+\frac{1}{m}\|G\|_{2}^{2} \leq \frac{3 n^{2}}{m}
\end{aligned}
$$

the second inequality is by triangle inequality, and the last inequality by $\|G\|_{2} \leq \operatorname{Tr}(G)=n$. Setting $M=$ $\sum_{i=1}^{m} E_{i}=\sum_{i=1}^{m}\left(\frac{1}{m} G-z_{:, i} z_{:, i}^{T}\right)=G-\hat{G}$ and using Bernstein inequality with $t=\varepsilon n$ we obtain

$$
\begin{aligned}
\operatorname{Pr}\left[\|G-\hat{G}\|_{2} \geq \varepsilon n\right] & \leq 2 n \exp \left(\frac{-(\varepsilon n)^{2}}{3\left(\frac{3 n^{2}}{m}\right)+2\left(\frac{4 n}{m}\right) \varepsilon n}\right) \\
& =2 n \exp \left(\frac{-\varepsilon^{2} m}{9+8 \varepsilon}\right) \leq \delta
\end{aligned}
$$

Solving for m we get $m \geq \frac{9+8 \varepsilon}{\varepsilon^{2}} \log (2 n / \delta)$, so with probability at least $1-\delta$ for $m \stackrel{\varepsilon^{2}}{=} O\left(\frac{1}{\varepsilon^{2}} \log (n / \delta)\right)$, then $\|G-\hat{G}\|_{2} \leq \varepsilon n$.

A. 2 For Each Bound for RFFMaps

Here we bound $\left|\left\|\Phi^{T} x\right\|^{2}-\left\|Z^{T} x\right\|^{2}\right|$, where Φ and Z are mappings of data to RKHS by RFFMAPs, respectively and x is a fixed unit vector in \mathbb{R}^{n}.

Note that Lemma A. 1 essentially already gave a stronger proof, where using $m=O\left(\left(1 / \varepsilon^{2}\right) \log (n / \delta)\right)$ the bound $\|G-\hat{G}\|_{2} \leq \varepsilon n$ holds along all directions (which makes progress towards addressing an open question of constructing oblivious subspace embeddings for Gaussian kernel features spaces, in [1]). The advantage of this proof is that the bound on m will be independent of n. Unfortunately, in this proof, going from the "for each" bound to the stronger "for all" bound would seem to require a net of size $2^{O(n)}$ and a union bound resulting in a worse "for all" bound with $m=O\left(n / \varepsilon^{2}\right)$.

On the other hand, main objective of Test time procedure, which is mapping a single data point to the

Figure 4: Results for Forest dataset. Row 1: Kernel Frobenius Error (left), Kernel Spectral Error (middle) and Train Time (right) vs. Sample size. Row 2: Kernel Frobenius Error (left), Kernel Spectral Error (middle) vs. Space, and Test Time vs. Sample size (right)
D-dimensional or k-dimensional kernel space is already interesting for what the error is expected to be for a single vector x. This scenario corresponds to the "for each" setting that we will prove in this section.

In our proof, we use a variant of Chernoff-Hoeffding inequality, stated next. Consider a set of r independent random variables $\left\{X_{1}, \cdots, X_{r}\right\}$ where $0 \leq X_{i} \leq$ Δ. Let $M=\sum_{i=1}^{r} X_{i}$, then for any $\alpha \in(0,1 / 2)$, $\operatorname{Pr}[|M-\mathbf{E}[M]|>\alpha] \leq 2 \exp \left(\frac{-2 \alpha^{2}}{r \Delta^{2}}\right)$.
For this proof we are more careful with notation about rows and column vectors. Now matrix $Z \in \mathbb{R}^{n \times m}$ can be written as a set rows $\left[z_{1,:} ; z_{2,:} ; \ldots, z_{n,:}\right]$ where each $z_{i, \text { : }}$ is a vector of length m or a set of columns $\left[z_{:, 1}, z_{:, 2}, \ldots, z_{:, d}\right]$, where each $z_{:, j}$ is a vector of length n. We denote the (i, j)-th entry of this matrix as $z_{i, j}$.

Theorem A.1. For n points in any arbitrary dimension and a shift-invariant kernel, let $G=$ $\Phi \Phi^{T} \in \mathbb{R}^{n \times n}$ be the exact gram matrix, and $\hat{G}=$ $Z Z^{T} \in \mathbb{R}^{n \times n}$ be the approximate kernel matrix using $m=O\left(\left(1 / \varepsilon^{2}\right) \log (1 / \delta)\right)$ RFFMAPS. Then for any fixed unit vector $x \in \mathbb{R}^{n}$, it holds that $\left|\left\|\Phi^{T} x\right\|^{2}-\left\|Z^{T} x\right\|^{2}\right| \leq \varepsilon n$ with probability at least $1-\delta$.

Proof. Note \mathbb{R}^{n} is not the dimension of data. Consider any unit vector $x \in \mathbb{R}^{n}$. Define m independent random variables $\left\{X_{i}=\left\langle z_{:, i}, x\right\rangle^{2}\right\}_{i=1}^{m}$. We can bound each X_{i} as $0 \leq X_{i} \leq\left\|z_{:, i}\right\|^{2} \leq 2 n / m$ therefore $\Delta=2 n / m$ for
all X_{i} s. Setting $M=\sum_{i=1}^{m} X_{i}=\left\|Z^{T} x\right\|^{2}$, we observe

$$
\begin{aligned}
& \mathbf{E}[M]=\sum_{i=1}^{m} \mathbf{E}\left[\left\langle z_{:, i}, x\right\rangle^{2}\right]=\sum_{i=1}^{m} \mathbf{E}\left[\left(\sum_{j=1}^{n} z_{j i} x_{j}\right)^{2}\right] \\
& =\sum_{i=1}^{m} \mathbf{E}\left[\sum_{j=1}^{n}\left(z_{j i} x_{j}\right)^{2}+2 \sum_{j=1}^{n} \sum_{k>j}^{n} z_{j i} z_{k i} x_{j} x_{k}\right] \\
& =\sum_{j=1}^{n} x_{j}^{2} \mathbf{E}\left[\sum_{i=1}^{m} z_{j i}^{2}\right]+2 \sum_{j=1}^{n} \sum_{k>j}^{n} x_{j} x_{k} \mathbf{E}\left[\sum_{i=1}^{m} z_{j i} z_{k i}\right] \\
& =\sum_{j=1}^{n} x_{j}^{2} \mathbf{E}\left[\left\langle z_{j,:}, z_{j,:}\right\rangle\right]+2 \sum_{j=1}^{n} \sum_{k>j}^{n} x_{j} x_{k} \mathbf{E}\left[\left\langle z_{j,:}, z_{k,:}\right\rangle\right] \\
& =\sum_{j=1}^{n} x_{j}^{2}\left\langle\phi_{j,:}, \phi_{j,:}\right\rangle+2 \sum_{j=1}^{n} \sum_{k>j}^{n} x_{j} x_{k}\left\langle\phi_{j,:}, \phi_{k,:}\right\rangle \\
& =\sum_{j=1}^{n} x_{j}^{2} \sum_{i=1}^{D} \phi_{j i}^{2}+2 \sum_{j=1}^{n} \sum_{k>j}^{n} x_{j} x_{k} \sum_{i=1}^{D} \phi_{j i} \phi_{k i} \\
& =\sum_{i=1}^{D}\left(\sum_{j=1}^{n} x_{j}^{2} \phi_{j i}^{2}+2 \sum_{j=1}^{n} \sum_{k>j}^{n} x_{j} x_{k} \phi_{j i} \phi_{k i}\right) \\
& =\sum_{i=1}^{D}\left\langle\phi_{:, i}, x\right\rangle^{2}=\left\|\Phi^{T} x\right\|^{2}
\end{aligned}
$$

Since x is a fixed unit vector, it is pulled out of all expectations. Using the Chernoff-Hoeffding bound and setting $\alpha=\varepsilon n$ yields $\operatorname{Pr}\left[\left|\left\|\Phi^{T} x\right\|^{2}-\left\|Z^{T} x\right\|^{2}\right|>\varepsilon n\right] \leq$ $2 \exp \left(\frac{-2(\varepsilon n)^{2}}{m(2 n / m)^{2}}\right)=2 \exp \left(-2 \varepsilon^{2} m\right) \leq \delta$. Then we solve for $m=\left(1 /\left(2 \varepsilon^{2}\right)\right) \ln (2 / \delta)$ in the last inequality.

