
Streaming Kernel Principal Component Analysis

Mina Ghashami Daniel J. Perry Je↵ M. Phillips
School of Computing
University of Utah

Salt Lake City, UT 84112
ghashami@cs.utah.edu

SCI Institute
University of Utah

Salt Lake City, UT 84112
dperry@cs.utah.edu

School of Computing
University of Utah

Salt Lake City, UT 84112
je↵p@cs.utah.edu

Abstract

Kernel principal component analysis
(KPCA) provides a concise set of basis
vectors which capture nonlinear structures
within large data sets, and is a central tool
in data analysis and learning. To allow for
nonlinear relations, typically a full n ⇥ n
kernel matrix is constructed over n data
points, but this requires too much space and
time for large values of n. Techniques such
as the Nyström method and random feature
maps can help towards this goal, but they do
not explicitly maintain the basis vectors in a
stream and take more space than desired.

We propose a new approach for streaming
KPCA which maintains a small set of basis el-
ements in a stream, requiring space only log-
arithmic in n, and also improves the depen-
dence on the error parameter. Our technique
combines together random feature maps with
recent advances in matrix sketching, it has
guaranteed spectral norm error bounds with
respect to the original kernel matrix, and it
compares favorably in practice to state-of-
the-art approaches.

1 Introduction

Principal component analysis (PCA) is a well-known
technique for dimensionality reduction, and has many
applications including visualization, pattern recogni-
tion, and data compression [11]. Given a set of
centered d-dimensional (training) data points A =
[a1; . . . ; an] 2 Rn⇥d, PCA diagonalizes the covariance
matrix C = 1

nAT A by solving the eigenvalue equa-

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 41. Copyright
2016 by the authors.

tion Cv = �v. However, when the data points lie
on a highly nonlinear space, PCA fails to concisely
capture the structure of data. To overcome this, sev-
eral nonlinear extension of PCA have been proposed,
in particular Kernel Principal Component Analysis
(KPCA) [24]. The basic idea of KPCA is to implic-
itly map the data into a nonlinear feature space of
high (or often infinite) dimension and perform PCA in
that space [24]. The nonlinear map is often denoted as
� : Rd ! H where H is a Reproducing Kernel Hilbert
Space (RKHS). While direct computation of PCA in
RKHS is infeasible, we can invoke the so called kernel
trick which exploits the fact that PCA interacts with
data through only pair-wise inner products. That is
h�(x), �(y)iH = K(x, y), for all x, y 2 Rd for a kernel
function K; we represent this as the n ⇥ n gram ma-
trix G. However, KPCA su↵ers from high space and
computational complexity in storing the entire kernel
(gram) matrix G 2 Rn⇥n and in computing the de-
composition of it in the training phase. Then in the
testing phase it spends O(nd) time to evaluate the ker-
nel function for any arbitrary test vector with respect
to all training examples. Although one can use low
rank decomposition approaches [4, 23, 18, 7] to reduce
the computational cost to some extent, KPCA still
needs to compute and store the kernel matrix.

There have been two main approaches towards resolv-
ing this space issue. First approach is the Nyström [26]
which uses a sample of the data points to construct a
much smaller gram matrix. Second approach is using
feature maps [22] which provide an approximate but
explicit embedding of the RKHS into Euclidean space.
As we describe later, both approaches can be made to
operate in a stream, approximating the KPCA result
in less than O(n2) time and space.

Once these approximations are formed, they reveal
a D ⌧ n dimensional space, and typically a k-
dimensional subspace found through linear PCA in
RD, which captures most of the data (e.g., a low rank-k
approximation). There are two main purposes of these

1365

Streaming Kernel Principal Component Analysis

D- and k-dimensional subspaces; they start with map-
ping a data point x 2 Rd into the D-dimensional space,
and then often onto the k-dimensional subspace. If x is
one of the training data points, then the k-dimensional
representation can be used as a concise “loadings” vec-
tor. It can be used in various down-stream training
and learning tasks wherein this k-dimensional space,
can assume linear relations (e.g., linear separators,
clustering under Euclidean distance) since the non-
linearity will have already been represented through
the mapping to this space. If x is not in the training
set, and the training set represents some underlying
distribution, then we can assess the “fit” of x to this
distribution by considering the residual of its represen-
tation in the D-dimensional space when projected to
the k-dimensional space.

We let Test time refer to this time for mapping a
single point x to the D-dimensional and k-dimensional
spaces. The value of k needed to get a good fit depends
on the choice of kernel and its fit to the data; but D
depends on the technique. For instance in (regular)
KPCA D = n, in Nyström D = O(1/"2), when using
random feature maps with [22] D = O((1/"2) log n),
where " 2 (0, 1) is the error parameter. We propose a
new streaming approach, named as SKPCA, that will
only require D = O(1/").

We prove bounds and show empirically that SKPCA
greatly outperforms existing techniques in Test time,
and is also comparable or better in other measures of
Space (the cost of storing this map, and space needed
to construct it), and Train time (the time needed
to construct the map to the D-dimensional and k-
dimensional spaces).

Background and Notation. We indicate matrix
A is n ⇥ d dimensional as A 2 Rn⇥d. Matrices A
and Z will be indexed by their row vectors A =
[a1; a2; . . . ; an] while other matrices V, U, W, . . . will be
indexed by column vectors V = [v1, v2, . . . , vd]. We
use In for the n-dimensional identity matrix and 0n⇥d

as the full zero matrix of dimension n⇥ d. The Frobe-
nius norm of a matrix A is kAkF =

pP
i=1 kaik2

and the spectral norm is kAk2 = supx2Rd
kAxk
kxk . We

denote transpose of a matrix as AT . The singu-
lar value decomposition of matrix A 2 Rn⇥d is de-
noted by [U, S, V] = svd(A). If n � d it guaran-
tees that A = USV T , UT U = In, V T V = Id,
U 2 Rn⇥n, V 2 Rd⇥d, and S = diag(s1, s2, . . . , sd) 2
Rn⇥d is a diagonal matrix with s1 � s2 � . . . �
sd � 0. Let Uk and Vk be matrices containing the
first k columns of U and V , respectively, and Sk =
diag(s1, s2, . . . , sk) 2 Rk⇥k. The matrix Ak = UkSkV T

k

is the best rank k approximation of A in the sense
that Ak = arg minC:rank(C)kkA � Ck2,F . We denote

by ⇡B(A) the projection of rows of A on the span of
the rows of B. In other words, ⇡B(A) = AB†B where
(·)† indicates taking the Moore-Penrose psuedoinverse.
Finally, expected value of a matrix is defined as the
matrix of expected values.

1.1 Related Work

Matrix Sketching. Among many recent advance-
ments in matrix sketching [27, 20], we focus on those
that compress a n ⇥ d matrix A into an ` ⇥ d matrix
B. There are several classes of algorithms based on
row/column sampling [4, 2] (very related to Nyström
approaches [5]), random projection [23] or hashing [3]
which require ` ⇡ c/"2 to achieve " error. The con-
stant c depends on the algorithm, specific type of ap-
proximation, and whether it is a “for each” or “for
all” approximation. A recent and di↵erent approach,
Frequent Directions (FD) [18], uses only ` = 2/" to
achieve the error bound kAT A � BT Bk2  "kAk2F ,
and runs in time O(nd/"). We use a modified version
of this algorithm in our proposed approach.

Incremental Kernel PCA. Techniques of this
group update/augment the eigenspace of kernel PCA
without storing all training data. [13] adapted incre-
mental PCA [9] to maintain a set of linearly indepen-
dent training data points and compute top d eigenvec-
tors such that they preserve a ✓-fraction (for a thresh-
old ✓ 2 (0, 1)) of the total energy of the eigenspace.
However this method su↵ers from two major draw-
backs. First, the set of linearly independent data
points can grow large and unpredictably, perhaps ex-
ceeding the capacity of the memory. Second, under
adversarial (or structured sparse) data, intermediate
approximations of the eigenspace can compound in er-
ror, giving bad performance [6]. Some of these issues
can be addressed using online regret analysis assuming
incoming data is drawn iid (e.g., [15]). However, in
the adversarial settings we consider, FD [18] can be
seen as the right way to formally address these issues.

Nyström-Based Methods for Kernel PCA. An-
other group of methods [26, 5, 8, 14, 25], known as
Nyström, approximate the kernel (gram) matrix G
with a low-rank matrix Ĝ, by sampling columns of G.
The original version [26] samples c columns with re-
placement as C and estimates Ĝ = CW�1CT , where
W is the intersection of the sampled columns and rows;
this method takes O(nc2) time and is not streaming.
Later [5] used sampling with replacement and approx-

imated G as Ĝ = CW †
kCT . They proved if sampling

probabilities are of form pi = G2
ii/
Pn

i=1 G2
ii, then for

" 2 (0, 1) and � 2 (0, 1), a Frobenius error bound
kG�ḠkkF  kG�GkkF +"

Pn
i=1 G2

ii holds with prob-
ability 1� � for c = O((k/"4) log(1/�)), and a spectral
error bound kG � Ḡkk2  kG � Gkk2 + "

Pn
i=1 G2

ii

holds with probability 1� � for c = O((1/"2) log(1/�))

1366

Mina Ghashami, Daniel J. Perry, Je↵ M. Phillips

samples. There exist conditional improvements, e.g.,

[8] shows with c = O(µk ln(k/�)
"2) where µ denotes the

coherence of the top k-dimensional eigenspace of G,
that kG� Ḡkk2  (1 + n

(1�")c)kG�Gkk2.

Random Fourier Features for Kernel PCA.
In this line of work, the kernel matrix is approx-
imated via randomized feature maps. The semi-
nal work of [22] showed one can construct random-
ized feature maps Z : Rd ! Rm such that for any
shift-invariant kernel K(x, y) = K(x � y) and all
x, y 2 Rd, E[hZ(x), Z(y)i] = K(x, y) and if m =
O((d/"2) log(n/�)), then with probability at least 1��,
|hZ(x), Z(y)i �K(x, y)|  ". Using this mapping,
instead of implicitly lifting data points to H by the
kernel trick, they explicitly embed the data to a low-
dimensional Euclidean inner product space. Subse-
quent works generalized to other kernel functions such
as group invariant kernels [17], min/intersection ker-
nels [21], dot-product kernels [12], and polynomial ker-
nels [10, 1]. This essentially converts kernel PCA to
linear PCA. In particular, Lopez et al. [19] proposed
randomized nonlinear PCA (RNCA), which is
an exact linear PCA on the approximate data feature
maps matrix Z 2 Rn⇥m. They showed the approxima-
tion error is bounded as E[kĜ�Gk2]  ⇥((n log n)/m),
where Ĝ = ZZT is not actually constructed.

1.2 Our Result vs. Previous Streaming

In this paper, we present a streaming algorithm for
computing kernel PCA where the kernel is any shift-
invariant function K(x, y) = K(x � y). We refer to
our algorithm as SKPCA (Streaming Kernel PCA)
throughout the paper. Transforming the data to a m-
dimensional random Fourier feature space Z 2 Rn⇥m

(for m⌧ n) and maintaining an approximate ` dimen-
sional subspace W 2 Rm⇥` (` ⌧ m), we are able to
show that for G̃ = ZWWT ZT , the bound kG� G̃k2 
"n holds with high probability. Our algorithm requires
O(dm+m`) space for storing m feature functions and
the `-dimensional eigenspace W . Moreover SKPCA
needs O(dm + ndm + nm`) = O(nm(d + `)) time to
compute W , and permits O(dm+m`) test time to first
transfer the data point to m-dimensional feature space
and then update the eigenspace W .

We compare with two streaming algorithms.

RNCA[19]: It achieves E[kĜ�Gk2]  ⇥((n log n)/m),
for Ĝ = ZZT and Z 2 Rn⇥m being the data feature
map matrix. Using Markov’s inequality it is easy to
show that with any constant probability kĜ � Gk2 
"n if m = O((log n)/"). We extend this (in Ap-
pendix A.1) to show with m = O((log n)/"2) then
kĜ � Gk2  "n with high probability 1 � 1/n. This
algorithm takes O(dm+nmd+nm2) = O(nmd+nm2)
time to construct m feature functions, apply them to n

data points and compute the m⇥m covariance matrix
(adding n m⇥m outer products). Moreover, it takes
O(dm + m2) space to store the feature functions and
covariance matrix. Testing on a new data point x 2 Rd

is done by applying the m feature functions on x, and
projecting to the rank-k eigenspace in O(dm + mk)

Nyström [5]: It approximates the original Gram ma-

trix with Ḡ = CW †
kCT . For shift-invariant kernels, the

sampling probabilities are pi = G2
ii/
Pn

i=1 G2
ii = 1/n,

hence one can construct W 2 Rc⇥c in a stream using
c independent reservoir samplers. Note setting k = n
(hence Gk = G), their spectral error bound translates
to kG�Ḡk2  "n for c = O((1/"2) log(1/�)). Their al-
gorithm requires O(nc+dc2 log n) time to do the sam-
pling and construct W . It also needs O(cd + c2) space
for storing the samples and W . The test time step on
a point x 2 Rd evaluates K(x, y) on each data point
y sampled, taking O(cd) time, and projects onto the
c-dimensional and k-dimensional basis in O(c2 + ck)
time; requiring O(cd + c2) time.

For both RNCA and Nyström we calculate the eigen-
decomposition once at cost O(m3) or O(c3), respec-
tively, at Train time. Since SKPCA maintains this
decomposition at all steps, and Testing may occur at
any step, this favors RNCA and Nyström.

Table 1 summarizes train/test time and space usage of
above mentioned algorithms. KPCA is included in the
table as a benchmark. All bounds are mentioned for
high probability � = 1/n guarantee. As a result c =
O((log n)/"2) for Nyström and m = O((log n)/"2)
for RNCA and SKPCA. One can use Hadamard fast
Fourier transforms (Fastfood)[16] in place of Gaus-
sian matrices to gain improvement on train/test time
and space usage of SKPCA and RNCA. These ma-
trices allow us to compute random feature maps in
time O(m log d) instead of O(md), and to store fea-
ture functions in space O(m) instead of O(md). Since
d was relatively small in our examples, we did not ob-
serve much empirical benefit of this approach, and we
omit it from our further discussions.

We see SKPCA wins on Space and Train time
by factor (log n)/" over RNCA, and similarly on
Space and Test time by factors (log n)/" and
(log n)/("2k) over Nyström. When d is constant
and " < ((log2 n)/n)1/3 it improves Train time over
Nyström. It is the first method to use Space sublin-
ear (logarithmic) in n and sub-quartic in 1/", and have
Train time sub-quartic in 1/", even without counting
the eigen-decomposition cost.

2 Algorithm and Analysis

In this section, we describe our algorithm Stream-
ing Kernel Principal Component Analysis
(SKPCA) for approximating the eigenspace of a data

1367

Streaming Kernel Principal Component Analysis

Table 1: Asymptotic Train time, Test time and Space for SKPCA, KPCA [24] , RNCA [19], and
Nyström [5] to achieve kG0 �Gk2  "n with high probability (KCPA is exact) and with Gaussian kernels.

Train time Test time Space
KPCA O(n2d + n3) O(n2 + nd) O(n2 + nd)

Nyström O((n log n)/"2 + (d log3 n)/"4 + (log3 n)/"6) O((d log n)/"2 + (log2 n)/"4) O((d log n)/"2 + (log2 n)/"4)
RNCA O((nd log n)/"2 + (n log2 n)/"4 + (log3 n)/"6) O((d log n)/"2 + (k log n)/"2) O((d log n)/"2 + (log2 n)/"4)

SKPCA O((nd log n)/"2 + (n log n)/"3) O((d log n)/"2 + (k log n)/"2) O((d log n)/"2 + (log n)/"3)

Algorithm 1 SKPCA

Input: A 2 Rn⇥d as data points, a shift-invariant
kernel function K, and `, m 2 Z+

Output: Feature maps [f1, · · · , fm] and their ap-
proximate best `-dim subspace W
[f1, · · · , fm] = FeatureMaps(K, m)
B 0`⇥m

for i 2 [n] do

zi =
q

2
m [f1(ai), · · · , fm(ai)]

B zi #insert zi as a row to B
if B has no zero valued rows then

[Y,⌃, W] svd(B)

B
q

max{0,⌃2 � ⌃2
`/2,`/2I`} · WT

Return [f1, · · · , fm] and W #W 2 Rm⇥`

set which exists on a nonlinear manifold and is re-
ceived in streaming fashion one data point at a time.
SKPCA consists of two implicit phases. In the first
phase, a set of m data oblivious random feature func-
tions (f1, · · · , fm) are computed to map data points
to a low dimensional Euclidean inner product space.
These feature functions are used to map each data
point ai 2 Rd to zi 2 Rm. In the second phase,
each approximate feature vector zi is fed into a modi-
fied FrequentDirections [18] which is a small space
streaming algorithm for computing an approximate set
of singular vectors; the matrix W 2 Rm⇥`.

However, in the actual algorithm these phases are not
separated. The feature mapping functions are pre-
computed (oblivious to the data), so the approximate
feature vectors are immediately fed into the matrix
sketching algorithm, so we never need to fully mate-
rialize and store the full n ⇥m matrix Z. Also, per-
haps unintuitively, we do not sketch the m-dimensional
column-space of Z, rather its n-dimensional row-space.
Yet, since the resulting `-dimensional row-space of W
(with ` ⌧ m) encodes a lower dimensional subspace
within Rm, it serves to represent our kernel principal
components. Pseudocode is provided in Algorithm 1.
Approximate feature maps. To make the algo-
rithm concrete, we consider the approximate feature
maps described in the general framework of Rahimi
and Recht [22]; label this instantiation of the Fea-
tureMaps function as Random-Fourier Feau-

reMaps (or RFFMaps). This works for positive
definite shift-invariant kernels K(x, y) = K(x � y)
(e.g. Gaussian kernel K(x, y) = (1/2⇡)d/2 exp(�kx �
yk2/2)). It computes a randomized feature map z :
Rd ! Rm so that E[z(x)T z(y)] = K(x, y) for any
x, y 2 Rd. To construct the mapping z, they de-
fine m functions of the form fi(x) = cos(rT

i x + �i),
where ri 2 Rd is a sample drawn uniformly at random
from the Fourier transform of the kernel function, and
�i ⇠ Unif(0, 2⇡], uniformly at random from the interval
(0, 2⇡]. Applying each fi on a datapoint x, gives the
ith coordinate of z(x) in Rm as z(x)i =

p
2/mfi(x).

This implies each coordinate has squared value of
(z(x)i)

2  2/m.

We consider m = O((1/"2) log n) and ` = O(1/").

Space: We store the m functions fi, for i = 1, . . . , m;
since for each function uses a d-dimensional vector ri,
it takes O(dm) space in total. We compute feature
map z(x) and get a m-dimensional row vector z(ai)
for each data point ai 2 A, which then is used to
update the sketch B 2 R`⇥m in FrequentDirec-
tions. Since we need an additional O(`m) for stor-
ing B and W , the total space usage of Algorithm 1 is
O(dm + `m) = O((d log n)/"2 + (log n)/"3).

Train Time: Applying the feature map takes O(n ·
dm) time and computing the modified FrequentDi-
rections sketch takes O(n`m) time, so the training
time is O(ndm + n`m) = O(n log n(d/"2 + 1/"3)).

Test Time: For a test point xtest, we can lift it to
Rm in O(dm) time using {f1, . . . , fm}, and then use
W to project it to R` in O(`m) time. In total it takes
O(dm + `m) = O((d + 1/")/"2 · log n) time.

Although W approximates the eigenspace of A, it will
be useful to analyze the error by also considering all
of the data points lifted to Rm as the n ⇥ m matrix
Z; and then its projection to R` as Z̃ = ZW 2 Rn⇥`.
Note Z̃ would need an additional O(n`) to store, and
another pass over A (similar for Nyström and RFF);
we do not compute and store Z̃, only analyze it.

2.1 Spectral Error Analysis

Let G = ��T be the exact kernel matrix in RKHS. Let
Ĝ = ZZT be an approximate kernel matrix using Z 2
Rn⇥m; it consists of mapping the n points to Rm us-
ing m RFFMaps. Then we consider G̃ = ZWWT ZT ,

1368

Mina Ghashami, Daniel J. Perry, Je↵ M. Phillips

as the kernel matrix which could be constructed from
output W of Algorithm 1 using RFFMaps. We ulti-
mately will show that kG� G̃k2  "n. The main tech-
nical challenge is that FD bounds are typically for the
covariance matrix WT W not the gram matrix WWT ,
and thus new ideas are required.

We show in Lemma A.1 in Appendix A.1 that with
m = O((1/"2) log(n/�)) then kG � Ĝk2  "n with
probability at least 1��. Note this is a “for all” result
which (see Lemma 2.3) is equivalent to, for all unit vec-
tors x that |k�T xk2�kZT xk2|  "n. If we loosen this
to a “for each” result, where the above inequality holds
for any one unit vector x (say we only want to test
with a single vector xtest), then we show in Appendix
A.2 that this holds with m = O((1/"2) log(1/�)). This
makes partial progress towards an open question [1]
(can m be independent of n?) about creating oblivi-
ous subspace embeddings for Gaussian kernel features.

Next, we show that applying the modified Frequent Di-
rections step to Z does not asymptotically increase the
error. To do so, we first show that spectrum of Z along
directions that FrequentDirections fails to capture is
small. We prove this for any n ⇥m matrix A that is
approximated as B 2 R`⇥m by FrequentDirections.

Lemma 2.1. Consider an A 2 Rn⇥m matrix with
m  n, and let B be an ` ⇥m matrix resulting from
running Frequent Directions on A with ` rows. For any
unit vector y 2 Rn with kyT AB†Bk = 0, it holds that
kyT Ak2  kA�Akk2F /(`� k), for all k  `, including
k = 0 where A�Ak = A.

Proof. Let [U, S, V] = svd(A) be the svd of A. Con-
sider any unit vector y 2 Rn that lies in the col-
umn space of A and the null space of B, that is
kyT AB†Bk = 0 and kyT AA†k = kyk = 1. Since
U = [u1, u2, . . . , un] provides an orthonormal basis for
Rn, we can write

y =
nX

i=1

↵iui such that ↵i = hy, uii,
nX

i=1

↵2
i = 1

Since 1 =
Pn

i=1 ↵
2
i = kyk = kyT AA†k =

kyT UmUT
mk =

Pm
i=1 ↵

2
i , therefore ↵i = 0 for i > m.

Moreover kyT Ak2 =
Pm

i=1 s2
i hy, uii2 =

Pm
i=1 s2

i↵
2
i .

This implies there exists a unit vector x =
Pm

i=1 ↵ivi 2
Rm with ↵i = hx, vii = hy, uii for i = 1, · · · , m such
that kyT Ak = kAxk and importantly kBxk = 0, which
we will prove shortly.

Then, due to the Frequent Directions bound [7], for
any unit vector x̄ 2 Rm, kAx̄k2 � kBx̄k2  kA �
Akk2F /(` � k), and for our particular choice of x with
kBxk = 0, we obtain kyT Ak = kAxk2  kA �
Akk2F /(`� k), as desired.

Now to see that kBxk = 0, we will assume that
kBxk > 0 and prove a contradiction. Since kBxk > 0,
then x is not in the null space of B, and k⇡B(x)k > 0
for any unit vector x. Let ⌃ = diag(�1, . . . , �`), assum-
ing �1 � �2 � . . . � �` > 0, are the singular values of
B, and W = [w1, . . . , w`] 2 Rmx` are its right singular
vectors. Then kBxk = k⌃Wxk and if k⇡B(x)k > 0,
then setting ⌃̄ = diag(1, 1, . . . , 1) and B̄ = ⌃̄W = W`

to remove the scaling from B, we have k⇡B̄(x)k > 0.
Similarly, if kyT USV T B†Bk = kyT⇡B(A)k = 0, then
setting S̄ = diag(1, . . . , 1) and Ā = US̄V T to remove
scale from A, we have kyT⇡B(Ā)k = 0. Hence

0 < k⇡B̄(x)k = kxB†Bk = kxW`W
T
` k

= k
X̀

j=1

hx, wjik = k
X̀

j=1

mX

i=1

↵ihvi, wjik

and

0 = kyT⇡B(Ā)k = k
mX

i=1

hy, uiivT
i W`W

T
` k

= k
mX

i=1

↵iv
T
i W`k = k

X̀

j=1

mX

i=1

↵ihvi, wjik.

Since last terms of each line match, we have a contra-
diction, and hence kBxk = 0.

Lemma 2.2. Let Z̃ = ZW , and G̃ = Z̃Z̃T =
ZWWT ZT be the corresponding gram matrix from
Z 2 Rn⇥m and W 2 Rm⇥` constructed via Algo-
rithm 1 with ` = 2/". Comparing to Ĝ = ZZT , then
kG̃� Ĝk2  "n.

Proof. Consider any unit vector y 2 Rn, and note
that yT Z = [yT Z]W + [yT Z]?W where [yT Z]W =
yT ZWWT lies on the column space spanned by W ,
and [yT Z]?W = yT Z(I�WWT) is in the null space of
W . Then first o↵ kyT Zk2 = k[yT Z]W k2+k[yT Z]?W k2
since two components are perpendicular to each other.
Second [yT Z]W W = yT ZWWT W = yT ZW and
[yT Z]?W W = yT Z(I�WWT)W = yT Z(W�W) = 0.
Knowing these two we can say

yT (ZZT � Z̃Z̃T)y

= (yT Z)(yT Z)T � (yT Z)WWT (yT Z)T

= kyT Zk2 �
�
[yT Z]W + [yT Z]?W

�
WWT ([yT Z]W

+ [yT Z]?W)T

= kyT Zk2 � (yT ZW)(yT ZW)T

=
�
k[yT Z]W k2 + k[yT Z]?W k2

�
� kyT ZWk2

= k[yT Z]?W k2.

The last inequality holds because kyT ZWk =
kyT ZWWT k = k[yT Z]W k as W is an orthonormal
matrix.

1369

Streaming Kernel Principal Component Analysis

To show k[yT Z]?W k  "kZk2F , consider vector v =
yT Z(I � WWT)Z† and let y⇤ = v/kvk. Clearly y⇤

satisfies requirement of Lemma 2.1 as it is a unit vector
in Rn and ky⇤ZWWT k = 0 as

ky⇤ZWWT k = kyT Z(I �WWT)Z†ZWWT k/kvk
= kyT Z(I �WWT)WWT k/kvk = 0.

Therefore it satisfies ky⇤Zk  kZ�Zkk2F /(`�k). Since
kZk2F  2n for k = 0 and ` = 2/", we obtain

k[yT Z]?W k2 = kyT Z(I �WWT)k
= kyT Z(I �WWT)Z†Zk2 = ky⇤Zk2kvk2

 kZk2F kvk2/`  "nkvk2.

It is left to show that kvk  1. For
that, note ⇡ZW

�
⇡Z(yT)

�
= ⇡ZW (yT ZZ†) =

yT ZZ†(ZW)(ZW)† = yT ZW (ZW)† = ⇡ZW (yT).
The finally we obtain

kvk2 = kyT Z(I �WWT)Z†k2

= kyT ZZ† � yT ZWWT Z†k2

= k⇡Z(yT)� ⇡ZW (yT)k2

= k⇡Z(yT)� ⇡ZW (⇡Z(yT))k2

 k⇡Z(yT)k2  kyk2 = 1.

Combining Lemmas A.1 and 2.2 and using triangle
inequality, we get our main result.

Theorem 2.1. Let G = ��T be the exact kernel ma-
trix over n points. Let G̃ = ZWT WZT be the result
of Z from m = O((1/"2) log(n/�)) RFFMaps and W
from running Algorithm 1 with ` = 4/". Then with
probability at least 1� �, we have kG� G̃k2  "n.

2.2 Frobenius Error Analysis

Let the true gram matrix be G = ��T , and consider
G0 = Y Y T , for any Y including when Y = ZW . First
we write the bound in terms of � and Y .

Lemma 2.3. kG�G0k2 = max
kxk=1

|k�T xk2 � kY T xk2|.

Proof. Recall we can rewrite spectral norm as kG �
G0k2 = max

kxk=1
|xT Gx � xT G0x| = max

kxk=1
|xT��T x �

xT Y Y T x| = max
kxk=1

|k�T xk2 � kY T xk2|. First line fol-

lows by definition of top eigenvalue of a symmetric
matrix, and last line is true because kyk2 = yT y for
any vector y.

Thus if kG�G0k2  "n where G0 = Y Y T could be re-
constructed by any of the algorithms we consider, then
it implies maxkxk=1 |k�T xk2�kY T xk2|  "n. We can
now generalize the spectral norm bound to Frobenius
norm. Let G�G0 = U⇤UT be the eigen decomposition

of G�G0. Recall that one can write each eigenvalue as
⇤i,i = uT

i (G � G0)ui, and the definition of the Frobe-

nius norm implies kG�G0k2F =
nP

i=1

⇤2
i,i Hence

kG�G0k2F =

nX

i=1

(uT
i (G�G0)ui)

2

=

nX

i=1

(k�T uik2 � kY T uik2)2 
nX

i=1

("n)2  "2n3.

Therefore kG�G0kF  "n1.5. We can also show a more
interesting bound by considering Gk and G0

k, the best
rank k approximations of G and G0 respectively.

Lemma 2.4. Given that kG�G0k2  "n we can bound
kG�G0

kkF  kG�GkkF + "
p

kn.

Proof. Let [u1, . . . , un] and [v1, . . . , vn] be eigenvectors
of G and G�G0, respectively. Then

kG�G0
kk2F =

kX

i=1

(vT
i (G�G0

k)vi)
2

+
nX

i=k+1

(vT
i (G�G0

k)vi)
2


kX

i=1

(vT
i (G�G0

k)vi)
2 +

nX

i=k+1

(vT
i Gvi)

2


kX

i=1

(vT
i (��T � Y Y T)vi)

2 +
nX

i=k+1

(uT
i Gui)

2

=
kX

i=1

(k�T vik2 � kY T vik2)2 + kG�Gkk2F

 k("n)2 + kG�Gkk2F .

The second transition is true because G0 is positive
semidefinite, therefore vT

i (G � G0
k)vi  vT

i Gvi, and
third transition holds because if ui is ith eigenvector
of G then, uT

i Gui � vT
i Gvi where vi is ith eigenvector

of G�G0. Taking square root yields

kG�G0
kk2F  kG�G0

kkF + "n
p

k.

Thus we can get error bounds for the best rank-k ap-
proximation of the data in RKHS that depends on
“tail” kG � GkkF which is typically small. We can
also make the second term "n

p
k equal to "0n by us-

ing a value of " = "0/
p

k in the previously described
algorithms.

3 Experiments
We measure the Space, Train time, and Test
time of our SKPCA algorithms with ` taking values
{2, 5, 10, 20, 30, 50}. We use spectral and Forbenious

1370

Mina Ghashami, Daniel J. Perry, Je↵ M. Phillips

K
er

n
el

F
ro

b
en

iu
s

E
rr

or

K
er

n
el

S
p
ec

tr
a
l
E
rr

or

T
ra

in
ti
m

e
(s

e
c
)

K
er

n
el

F
ro

b
en

iu
s

E
rr

or

K
er

n
el

S
p
ec

tr
a
l
E
rr

or

T
es

t
ti
m

e
(s

e
c
)

Figure 1: RandomNoisy dataset showing Error and Test and Train time versus Sample Size (m or c) and Space.

error measures and compare against the Nyström
and the RNCA approach using RFFMaps. All meth-
ods are implemented in Julia, run on an OpenSUSE
13.1 machine with 80 Intel(R) Xeon(R) 2.40GHz CPU
and 750 GB of RAM.

Data sets. We run experiments on several
real (CPU, Adult, Forest) and synthetic
(RandomNoisy) data sets. Each data set is an
n ⇥ d matrix A (CPU is 7373 ⇥ 21, Forest is
523910 ⇥ 54, Adult is 33561 ⇥ 123, and Random-
Noisy is 20000 ⇥ 1000) with n data points and d
attributes. For each a random subset is removed
as the test set of size 1000, except CPU where the
test set size is 800. We generate the Random-
Noisy synthetic dataset using the approach by [18].
We create A = SDU + F/⇣, where SDU is an
s-dimensional signal matrix (for s < d) and F/⇣ is
(full) d-dimensional noise with ⇣ controlling the signal
to noise ratio. Each entry Fi,j of F is generated
i.i.d. from a normal distribution N(0, 1), and we use
⇣ = 10. For the signal matrix, S 2 Rn⇥s again we
generate each Si,j ⇠ N(0, 1) i.i.d; D is diagonal with
entries Di,i = 1 � (i � 1)/d linearly decreasing; and
U 2 Rs⇥d is just a random rotation. We set s = 50.

Error measures. We consider two error measures
comparing the true gram matrix G and an approxi-
mated gram matrix (constructed in various ways). Ker-

nel Spectral Error = kG � G0k2/n represents the worst
case error. Kernel Frobenius Error = kG�G0kF /n2 rep-
resents the global error. We normalized the error mea-
sures by 1/n and 1/n2, respectively, so they are compa-
rable across data sets. These measures require another
pass on the data to compute, but give a more holistic
view of how accurate our approaches are.

We measure the Space requirements of each algo-
rithm as follows. SKPCA sketch has space md + m`,
Nyström is c2 + cd, and RNCA is m2 +md, where m
is the number of RFFMaps, and c is the number of
samples in Nyström. In our experiments, we set m
and c similarly, calling these parameters Sample Size.
Note that Sample Size and Space usage are di↵er-
ent: both RNCA and Nyström have Space quadratic
in Sample Size, while for SKPCA it is linear.

Results. Figures 1, 2, and 3 show log-log plots of re-
sults for Random Noisy, CPU, and Adult datasets.
See also Figure 4 for Forest in the Appendix.

For small Sample Size we observe that Nyström
performs quite well under all error measures, corrob-
orating results reported by Lopez et al. [19]. How-
ever, all methods have a very small error range, typi-
cally less than 0.01. For Kernel Frobenius Error we typ-
ically observe a cross-over point where RNCA and of-
ten most versions of SKPCA have better error for that
size. Under Kernel Spectral Error we often see a cross-
over point for SKPCA, but not for RNCA. We suspect
that this is related to how FD only maintains the most
dominate directions while ignoring other (potentially
spurious) directions introduced by the RFFMaps.

In general, SKPCA has as good or better error than
RNCA for the same size, with smaller size being re-
quired with smaller ` values. This di↵erence is more
pronounced in Space than Sample Size, where our
theoretical results expect a polynomial advantage.

In timing experiments, especially Train time we see
SKPCA has a very large advantage. As a function of
Sample Size RNCA is slowest for the Train time,
and Nyström is slowest for Test time by several

1371

Streaming Kernel Principal Component Analysis

K
er

n
el

F
ro

b
en

iu
s

E
rr

or

K
er

n
el

S
p
ec

tr
a
l
E
rr

or

T
ra

in
ti
m

e
(s

e
c
)

K
er

n
el

F
ro

b
en

iu
s

E
rr

or

K
er

n
el

S
p
ec

tr
a
l
E
rr

or

T
es

t
ti
m

e
(s

e
c
)

Figure 2: CPU dataset showing Error and Test and Train time versus Sample Size (m or c) and Space.

K
er

n
el

F
ro

b
en

iu
s

E
rr

or

K
er

n
el

S
p
ec

tr
a
l
E
rr

or

T
ra

in
ti
m

e
(s

e
c
)

K
er

n
el

F
ro

b
en

iu
s

E
rr

or

K
er

n
el

S
p
ec

tr
a
l
E
rr

or

T
es

t
ti
m

e
(s

e
c
)

Figure 3: Adult dataset showing Error and Test and Train time versus Sample Size (m or c) and Space.

orders of magnitude. In both cases all versions of
SKPCA are among the fastest algorithms. For the
Train time results, RNCA’s slow time is dominated
by summing n outer products, of dimensions m ⇥m.
This is avoided in SKPCA by only keeping the top `
dimensions, and only requiring similar computation on
the order of `⇥m, where typically `⌧ m. Nyström
only updates the c⇥ c gram matrix when a new point
replaces an old one, expected c log n times.

Nyström is comparatively very slow in Test time.
It computes a new row and column of the gram matrix,
and projects onto this space, taking O(cd + c2) time.
Both RNCA and SKPCA avoid this by directly com-
puting an m dimensional representation of a test data
point in O(dm) time. Recall we precompute the eigen-

structure for RNCA and Nyström, whereas SKPCA
maintains it at all times, so if this step were counted,
SKPCA’s advantage here would be even larger.

Summary. Our proposed method SKPCA has su-
perior timing and error results to RNCA, by sketching
in the kernel feature space. Its error is typically a bit
worse than a Nyström approach, but the di↵erence is
quite small, and SKPCA is far superior to Nyström
in Test time, needed for any data analysis.

Acknowledgements. Thanks to support from NSF
CCF-1350888, IIS-1251019, ACI-1443046, and CNS-
1514520.

1372

Mina Ghashami, Daniel J. Perry, Je↵ M. Phillips

References

[1] Haim Avron, Huy L. Nguyen, and David P.
Woodru↵. Subspace embeddings for the polyno-
mial kernel. In NIPS, 2014.

[2] Christos Boutsidis, Michael W. Mahoney, and
Petros Drineas. An improved approximation al-
gorithm for the column subset selection problem.
In Proceedings of 20th ACM-SIAM Symposium on
Discrete Algorithms, 2009.

[3] Kenneth L Clarkson and David P Woodru↵. Low
rank approximation and regression in input spar-
sity time. In Proceedings of the 45th Annual ACM
symposium on Theory of computing, 2013.

[4] Petros Drineas, Ravi Kannan, and Michael W
Mahoney. Fast monte carlo algorithms for matri-
ces ii: Computing a low-rank approximation to a
matrix. SIAM Journal on Computing, 36(1):158–
183, 2006.

[5] Petros Drineas and Michael W Mahoney. On the
nyström method for approximating a gram matrix
for improved kernel-based learning. The Jour-
nal of Machine Learning Research, 6:2153–2175,
2005.

[6] Mina Ghashami, Amey Desai, and Je↵ M.
Phillips. Improved practical matrix sketching
with guarantees. In Proceedings 22nd Annual Eu-
ropean Symposium on Algorithms, 2014.

[7] Mina Ghashami and Je↵ M. Phillips. Relative
errors for deterministic low-rank matrix approxi-
mations. In SODA, pages 707–717, 2014.

[8] Alex Gittens and Michael W Mahoney. Revisiting
the nystrom method for improved large-scale ma-
chine learning. arXiv preprint arXiv:1303.1849,
2013.

[9] Peter M Hall, A David Marshall, and Ralph R
Martin. Incremental eigenanalysis for classifica-
tion. In BMVC, volume 98, pages 286–295, 1998.

[10] Ra↵ay Hamid, Ying Xiao, Alex Gittens, and Den-
nis DeCoste. Compact random feature maps.
arXiv preprint arXiv:1312.4626, 2013.

[11] Ian Jolli↵e. Principal component analysis. Wiley
Online Library, 2005.

[12] Purushottam Kar and Harish Karnick. Ran-
dom feature maps for dot product kernels. arXiv
preprint arXiv:1201.6530, 2012.

[13] Shosuke Kimura, Seiichi Ozawa, and Shigeo Abe.
Incremental kernel pca for online learning of fea-
ture space. In Computational Intelligence for
Modelling, Control and Automation, 2005 and
International Conference on Intelligent Agents,
Web Technologies and Internet Commerce, Inter-
national Conference on, volume 1, pages 595–600.
IEEE, 2005.

[14] Sanjiv Kumar, Mehryar Mohri, and Ameet Tal-
walkar. Sampling methods for the nyström
method. The Journal of Machine Learning Re-
search, 13(1):981–1006, 2012.

[15] Dima Kuzmin and Manfred K Warmuth. Online
kernel pca with entropic matrix updates. In Pro-
ceedings of the 24th international conference on
Machine learning, pages 465–472. ACM, 2007.

[16] Quoc Le, Tamás Sarlós, and Alex Smola.
Fastfood-approximating kernel expansions in log-
linear time. In Proceedings of the international
conference on machine learning, 2013.

[17] Fuxin Li, Catalin Ionescu, and Cristian Smin-
chisescu. Random fourier approximations for
skewed multiplicative histogram kernels. In Pat-
tern Recognition, pages 262–271. Springer, 2010.

[18] Edo Liberty. Simple and deterministic matrix
sketching. In KDD, pages 581–588, 2013.

[19] David Lopez-Paz, Suvrit Sra, Alex Smola, Zoubin
Ghahramani, and Bernhard Schölkopf. Random-
ized nonlinear component analysis. arXiv preprint
arXiv:1402.0119, 2014.

[20] Michael W. Mahoney. Randomized algorithms for
matrices and data. Foundations and Trends in
Machine Learning, 3, 2011.

[21] Subhransu Maji and Alexander C Berg. Max-
margin additive classifiers for detection. In Com-
puter Vision, 2009 IEEE 12th International Con-
ference on, pages 40–47. IEEE, 2009.

[22] Ali Rahimi and Benjamin Recht. Random fea-
tures for large-scale kernel machines. In Advances
in neural information processing systems, pages
1177–1184, 2007.

[23] Tamás Sarlós. Improved approximation algo-
rithms for large matrices via random projections.
In FOCS, pages 143–152, 2006.

[24] Bernhard Schölkopf, Alexander Smola, and
Klaus-Robert Müller. Kernel principal compo-
nent analysis. In Artificial Neural Networks—
ICANN’97, pages 583–588. Springer, 1997.

1373

Streaming Kernel Principal Component Analysis

[25] Ameet Talwalkar and Afshin Rostamizadeh. Ma-
trix coherence and the nystrom method. arXiv
preprint arXiv:1004.2008, 2010.

[26] Christopher Williams and Matthias Seeger. Using
the nyström method to speed up kernel machines.
In Proceedings of the 14th Annual Conference on
Neural Information Processing Systems, number
EPFL-CONF-161322, pages 682–688, 2001.

[27] David P. Woodru↵. Sketching as a tool for nu-
merical linear algebra. Foundations and Trends
in Theoretical Computer Science, 10:1–157, 2014.

.

1374

