
Unwrapping ADMM: Efficient Distributed Computing via Transpose
Reduction

Thomas Goldstein Gavin Taylor Kawika Barabin Kent Sayre
University of Maryland US Naval Academy US Naval Academy US Naval Academy

Abstract

Recent approaches to distributed model fitting
rely heavily on consensus ADMM, where each
node solves small sub-problems using only lo-
cal data. We propose iterative methods that solve
global sub-problems over an entire distributed
dataset. This is possible using transpose re-
duction strategies that allow a single node to
solve least-squares over massive datasets without
putting all the data in one place. This results in
simple iterative methods that avoid the expensive
inner loops required for consensus methods. We
analyze the convergence rates of the proposed
schemes and demonstrate the efficiency of this
approach by fitting linear classifiers and sparse
linear models to large datasets using a distributed
implementation with up to 20,000 cores in far
less time than previous approaches.

1 Introduction

We study optimization routines for problems of the form

minimize f(Dx), (1)

where D 2 Rm⇥n is a (large) data matrix and f is a convex
function. We are particularly interested in the case that D is
stored in a distributed way across N nodes of a network or
cluster. In this case, the matrix D = (DT

1 , DT
2 , · · · , DT

N )T

is a vertical stack of sub-matrices, each of which is stored
on a node. If the function f decomposes across nodes as
well, then problem (1) takes the form

minimize
X

iN

fi(Dix), (2)

where the summation is over the N nodes. Problems of this
form include logistic regression, support vector machines,
lasso, and virtually all generalized linear models [1].
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Most distributed solvers for equation (2), such as ADMM,
assume that one cannot solve global optimization problems
involving the entire matrix D. Rather, each node alternates
between solving small sub-problems involving only local
data, and exchanging information with other nodes.

This work considers methods that solve global optimiza-
tion problems over the entire distributed dataset on each
iteration using transpose reduction methods. Such schemes
exploit the following simple observation: when D has
many more rows than columns, the matrix DT D is con-
siderably smaller than D. The availability of DT D enables
a single node to solve least-squares problems involving the
entire data matrix D. Furthermore, in many applications it
is possible and efficient to compute DT D in a distributed
way. This simple approach solves extremely large opti-
mization problems much faster than the current state-of-the
art. We support this conclusion with convergence bounds
and experiments involving multi-terabyte datasets.

2 Background

Much recent work on solvers for formulation (2) has fo-
cused on the Alternating Direction Method of Multipli-
ers (ADMM) [2, 3, 4], which has become a staple of
the distributed computing and image processing literature.
The authors of [5] propose using ADMM for distributed
model fitting using the “consensus” formulation. Consen-
sus ADMM has additionally been studied for distributed
model fitting [6], support vector machines [7], and numer-
ous domain-specific applications [8, 9]. Many variations
of ADMM have subsequently been proposed, including
specialized variants for decentralized systems [10], asyn-
chronous updates [11, 12], inexact solutions to subprob-
lems [13], and online/stochastic updates [12].

ADMM is a general method for solving the problem

minimize g(x) + h(y), subject to Ax + By = 0.
(3)

The ADMM enables each term of problem (3) to be ad-
dressed separately. The algorithm in its simplest form be-
gins with estimated solutions x0, y0, and a Lagrange mul-
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tiplier �0. The “scaled” ADMM then generates the iterates
8
><
>:

xk+1 = arg minx g(x) + ⌧
2kAx + Byk + �kk2

yk+1 = arg miny h(y) + ⌧
2kAxk+1 + By + �kk2

�k+1 = �k + Axk+1 + Byk+1

(4)

where ⌧ is any positive stepsize parameter. Disparate for-
mulations are achieved by different A, B, f, and g. For
example, consensus ADMM [5] addresses the problem

minimize
X

i

fi(xi), subject to xi = y for all i (5)

which corresponds to (3) with B = (I, I, · · · I)T , A = I,
h(x) =

P
i fi(xi), and g = 0. Rather than solving a global

problem, consensus ADMM performs the parallel updates

xk+1
i = arg min

xi

fi(xi) +
⌧

2
kxi � ykk2. (6)

The shared variable y is updated by the central server, and
Lagrange multipliers {�i} force the {xi} to be progres-
sively more similar on each iteration.

3 Transpose Reduction Made Easy:
Regularized Least-Squares

Transpose reduction is most easily understood for regular-
ized least-squares problems; we discuss the general case in
Section 4. Consider the problem

minimize J(x) +
1

2
kDx � bk2 (7)

for some penalty term J. When J(x) = µ|x| for some
scalar µ, this becomes the lasso regression [14]. Typical
consensus solvers for problem (7) require each node to
compute the solution to equation (6), which is here given
by

xk+1
i = arg min

xi

1

2
kDixi � bik2 +

⌧

2
kxi � ykk2

=(DT
i Di + ⌧I)�1(DT

i bi + ⌧yk).

During the setup phase for consensus ADMM, each node
forms the matrix DT

i Di, and then computes and caches the
inverse (or equivalently the factorization) of (DT

i Di + ⌧I).

Alternatively, transpose reduction can solve (7) on a single
machine without moving the entire matrix D to one place,
greatly reducing the required amount of computation. Us-
ing the simple identity

1

2
kDx � bk2 =

1

2
hDx � b, Dx � bi

=
1

2
xT (DT D)x � xT DT b +

1

2
kbk2

we can replace problem (7) with the equivalent problem

minimize J(x) +
1

2
xT (DT D)x � xT DT b. (8)

To solve problem (8), the central server needs only the
matrix DT D and the vector DT b. When D is a “tall”
matrix D 2 Rm⇥n, with n ⌧ m, DT D has only n2

(rather than nm) entries, small enough to store on a sin-
gle server. Furthermore, because DT D =

P
i DT

i Di and
DT b =

P
i DT

i bi, the matrices DT D and DT b is formed
by having each server do computations on its own local
Di, and then reducing the results on a central server.

Once DT D and DT b have been computed in the cloud
and cached on a central server, the global problem can be
solved on this server. This is done using either a single-
node ADMM method for small dense lasso (see [5] Section
6.4) or a forward-backward (proximal) splitting method
[15]. The latter approach only requires the gradient of
1
2xT (DT D)x�xT DT b, which is given by DT Dx�DT b.

4 Unwrapping ADMM: Transpose
Reduction for General Problems

Transpose reduction can be applied to complex prob-
lems using ADMM. On each iteration of the proposed
method, least-squares problems are solved over the entire
distributed dataset. In contrast, consensus methods use sub-
problems involving only small data subsets.

We aim to solve problem (1) by adapting a common
ADMM formulation from the imaging literature [4, 16].
We begin by “unwrapping” the matrix D; we remove it
from f using the formulation

minimize f(y), subject to y = Dx. (9)

Applying the ADMM with A = D, B = �I, h = f, and
g = 0 yields the following iterates:

8
><
>:

xk+1 = arg minx kDx � yk + �kk2 = D+(yk � �k)

yk+1 = arg miny f(y) + ⌧
2kDxk+1 � y + �kk2

�k+1 = �k + Dxk+1 � yk+1.

(10)

The x update solves a global least squares prob-
lem over the entire dataset, which requires the
pseudoinverse of D. The y update can be written
yk+1 = proxf (Dxk+1 + �k, ⌧�1), where we used
the proximal mapping of f, which is defined as
proxf (z, �) = arg miny f(y) + 1

2�ky � zk2. Pro-
vided f is decomposable, the minimization in this update
is coordinate-wise decoupled. Each coordinate of yk+1

is computed with either an analytical solution, or using a
simple 1-dimensional lookup table of solutions.
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4.1 Distributed Implementation

While Transpose ADMM is highly effective on a sin-
gle machine, there are additional benefits in large, dis-
tributed datasets. D = (DT

1 , DT
2 , · · · , DT

N )T , y =
(yT

1 , yT
2 , · · · , yT

N )T and � = (�T
1 , �T

2 , · · · , �T
N )T can all

be distributed over N nodes, such that no node has suffi-
cient access to solve the global least squares problem for
xk+1. This is where we exploit transpose reduction. The
constraint in (9) now becomes yi = Dix, and the least-
squares x update in (10) becomes

xk+1 = D+(yk��k) =

 X

i

DT
i Di

!�1X

i

DT
i (yk

i ��k
i ).

(11)
Each vector Di(y

k
i � �k

i ) can be computed locally on node
i. Multiplication by (

P
i DT

i Di)
�1 (which need only be

computed once) takes place on the central server. The dis-
tributed method is listed in Algorithm 1. Note the massive
dimensionality reduction that takes place when DT D =P

i DT
i Di is formed.

Algorithm 1 Transpose Reduction ADMM
1: Central node: Initialize global x0 and ⌧
2: All nodes: Initialize local {y0

i }, {�0
i }

3: All nodes: Wi = DT
i Di, 8i

4: Central node: W = (
P

i Wi)
�1

5: while not converged do
6: All nodes: dk

i = DT
i (yk

i � �k
i ), 8i

7: Central Node: xk+1 = W
P

i dk
i

8: All nodes:
yk+1

i = arg minyi
fi(yi) + ⌧

2kDix
k+1 � yi + �k

i k2

= proxfi
(Dix

k+1 + �k
i , ⌧�1), 8i

9: All nodes: �k+1
i = �k

i + Dix
k+1 � yk+1

i

10: end while

4.2 Heterogeneous problems

Transpose reduction ADMM is, in a sense, the opposite
of consensus. Transpose reduction methods solve a global
data-dependent problem on the central node, while the re-
mote nodes only perform proximal operators and matrix
multiplications. In contrast, consensus methods solve all
data dependent problems in the remote nodes, and no data
is ever seen by the central node. This important property
makes transpose reduction extremely powerful when data
is heterogeneous across nodes, as opposed to homogeneous
problems where each node’s data is drawn from identical
distributions. With standard homogeneous Gaussian test
problems, all consensus nodes solve nearly identical prob-
lems, and thus arrive at a consensus quickly.

In practical applications, data on different nodes often rep-
resents data from different sources and is thus not iden-
tically distributed. The efficiency of consensus in such

(more realistic) situations significantly decreases. Because
transpose reduction solves global problems over the entire
dataset, the distribution of data over nodes is irrelevant,
making these methods insensitive to data heterogeneity. We
discuss theoretical reasons for this in Section 6.1, and ex-
plore the impact of heterogeneity with synthetic and real
data in Section 8.

4.3 Splitting Over Columns

When the matrix D is extremely wide (m ⌧ n), it often
happens that each server stores a subset of columns of D
rather than rows. Fortunately, such problems can be han-
dled by solving the dual of the original problem. The dual
of the sparse problem (14) is given by

minimize
↵

f⇤(↵) subject to kDT↵k1  µ (12)

where f⇤ denotes the Fenchel conjugate [17] of f. For ex-
ample the dual of the lasso problem is simply

minimize
↵

1

2
k↵ + bk2 subject to kDT↵k1  µ.

Problem (12) then reduces to the form (1) with

bD =

✓
I

DT

◆
, f̂(z)k =

(
1
2kzk + bkk2, for 1  k  m

X (zk), for k > m

where X (z) is the characteristic function of the `1 ball
of radius µ. The function X (z) is infinite when |zi| > µ
for some i, and zero otherwise. The unwrapped ADMM
for this problem requires the formation of DiD

T
i on each

server, rather than DT
i Di.

5 Applications: Linear Classifiers and
Sparsity

In addition to penalized regression problems, transpose re-
duction can train linear classifiers. If D 2 Rm⇥n contains
feature vectors and l 2 Rm contains binary labels, then a
logistic classifier is put in the form (9) by letting f(z) be
the logistic loss flr(z) =

Pm
k=1 log(1 + exp(�lkzk)).

Problem (9) also includes support vector machines, in
which we solve

minimize
1

2
kxk2 + Ch(Dx), (13)

where C is a regularization parameter, and h =PM
k=1 max{1 � lkzk, 0} is a simple “hinge loss” function.

The y update in (10) becomes very easy because the proxi-
mal mapping of h has the closed form

proxh(z, �)k = zk + lk max{min{1 � lkzk, �}, 0}.

Note that this algorithm is much simpler than the consensus
implementation of SVM, which requires each node to solve
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SVM-like sub-problems using expensive iterative methods
(see Section A in the supplementary material).

Sparse model fitting problems have the form

minimize µ|x| + f(Dx) (14)

for some regularization parameter µ > 0. Sparse problems
can be reduced to the form (1) by defining

bD =

✓
I

D

◆
, f̂(z)k =

(
µ|zk|, for 1  k  n

fk(zk), for k > n

and then minimizing f̂( bDx). Experimental results are pre-
sented in Section 8.

6 Convergence Theory

Classical results prove convergence of ADMM but provide
no rate [18]. More recently, rates have been obtained by
using an unusual measure of convergence involving the
change between adjacent iterates [19]. It is still an open
problem to directly prove convergence of the iterates of
ADMM in the general setting. In this section, we take a
step in that direction by providing a rate at which the gra-
dient of (1) goes to zero, thus directly showing that xk is
a good approximate minimizer of (1). We do this by ex-
ploiting the form of transpose reduction ADMM and the
analytical tools in [19].

Theorem 1. If the gradient of f exists and has Lipschitz
constant L(rf), then (10) shrinks the gradient of the ob-
jective function (1) with global rate

kr{f(Dxk)}k2 =kDTrf(Dxk)k2

C
ky0 � Dx?k2 + k�0 � �?k2

k

where C = (L(rf) + ⌧)2⇢(DT D) is a constant and
⇢(DT D) denotes the spectral radius of DT D.

Proof. We begin by writing the optimality condition for the
x-update in (10):

DT (Dxk+1�yk +�k) = DT�k+1+DT (yk+1�yk) = 0.

Note we used the definition �k+1 = �k + Dxk+1 � yk+1

to simplify (6). Similarly, the optimality condition for the
y-update yields

rf(yk+1) + ⌧(yk+1 � Dxk+1 � �k) =rf(yk+1) � ⌧�k+1

=0,

or simply rf(yk+1) = ⌧�k+1. Combining this with (6)
yields DTrf(yk) = ⌧DT (yk � yk+1). We now have

@x{f(Dxk)} =DTrf(Dxk) = DTrf(yk + Dxk � yk)

=DTrf(yk + Dxk � yk)

� DTrf(yk) + ⌧DT (yk � yk+1)

and so k@x{f(Dxk)}k is bounded above by

kDTrf(yk+Dxk�yk)�DTrf(yk)k+⌧kDT (yk�yk+1)k

 L(rf)kDT kopkDxk � ykk + ⌧kDT kopkyk � yk+1k,
where kDT kop denotes the operator norm of DT .

We now invoke the following known identity governing the
difference between iterates of (4)

kB(yk+1�yk)k2 + kAxk+1 + Byk+1k2

kB(y0 � y?)k2 + k�0 � �?k2

k + 1

(see [19], Assertion 2.10). When adapted to the problem
form (1), we obtain

kyk+1 � ykk2 + kDxk+1 � yk+1k2

 ky0 � Dx?k2 + k�0 � �?k2

k + 1
.

(15)

It follows from (15) that both kDxk�ykk and kyk�yk+1k
are bounded above by

p
(ky0 � Dx?k2 + k�0 � �?k2)/k.

Applying this bound to (6) yields

k@x{f(Dxk)}k 
p

C(ky0 � Dx?k2 + k�0 � �?k2)/k.

We obtain the result by squaring this inequality and noting
that kDk2

op = ⇢(DT D).

Note that logistic regression problems satisfy the condi-
tions of Theorem 1 with L(rf) = 1/4. Also, better rates
are possible using accelerated ADMM [20].

6.1 Linear convergence analysis and heterogeneous
data

We now examine conditions under which transpose re-
duction is guaranteed to have a better worst-case perfor-
mance bound than consensus methods, especially when
data is heterogeneous across nodes. We examine conver-
gence rates for the case of strongly convex f, in which case
the iterates of the ADMM (4) are known to converge R-
linearly. If x? and �? are the optimal primal and dual solu-
tions, then

⌧kA(xk+1 � x?)k2 + ⌧�1k�k+1 � �?k2

(1 + �)�1
�
⌧kA(xk+1 � x?)k2 + ⌧�1k�k+1 � �?k2

�

for some � > 0 [21]. If we denote the condition number
of A by A and the condition numbers of the functions f

and g by f and g, then � = �min(AT A)
�max(AT A)

p
g

= 1
A

p
g

.

Applying this result to consensus ADMM (A = I and
g(x) =

P
i fi(Dixi)) where all fi are identically condi-

tioned, we get

�con =
mini �min(DT

i Di)
1
2

maxi �max(DT
i Di)

1
2

1
2

f

.
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On the other hand, transpose reduction removes the ma-
trix D from the objective function and corresponds to
(4) with A = I and g(x) =

P
i fi(yi). We thus obtain

�tr = 1/
p
f for the transpose reduction ADMM. Note

that �tr � �con, and so the worst case performance of trans-
pose reduction is (significantly) better than consensus. The
worst-case linear convergence rate of transpose reduction
does not deteriorate for poorly conditioned D because the
data term has been moved from the objective into the con-
straints. If we compare �con to �tr, we expect the conver-
gence of consensus methods to suffer with increased num-
bers of nodes and a more poorly conditioned D.

7 Implementation Details

We compare transpose reduction methods to consensus
ADMM using both synthetic and empirical data. We study
the transpose reduction scheme for lasso (Section 3) in ad-
dition to the unwrapped ADMM (Algorithm 1) for logistic
regression and SVM. We built a distributed implementation
of both the transpose reduction and consensus optimization
methods, and ran all experiments on a large Cray super-
computer hosted by the DOD Supercomputing Resource
Center. This allowed us to study experiments ranging in
size from very small to extremely large. All distributed
methods were implemented using MPI. Stopping condi-
tions for both methods were set using the residuals defined
in [5] with ✏rel = 10�3, and ✏abs = 10�6.

Many steps were taken to achieve top performance of the
consensus optimization routine. The authors of [5] sug-
gest using a stepsize parameter ⌧ = 1; however, bet-
ter performance is achieved by tuning this parameter. We
tuned the stepsize parameter to achieve convergence in a
minimal number of iterations on a problem instance with
m = 10, 000 data vectors and n = 100 features per vector,
and then scaled the stepsize parameter up/down to be pro-
portional to m. It was found that this scaling made the num-
ber of iterations nearly invariant to n and m. In the con-
sensus implementation, the iterative solvers for each local
logistic regression/SVM problem were warm-started using
solutions from the previous iteration.

The logistic regression subproblems were solved using a
limited memory BFGS method (with warm start to accel-
erate performance). The transpose reduced lasso method
(Section 3) requires a sparse least-squares method to solve
the entire lasso problem on a single node. This was accom-
plished using the forward-backward splitting implementa-
tion FASTA [15, 22].

Note that the consensus solver for SVM requires the solu-
tion to sub-problems that cannot be solved by conventional
SVM solvers (see (17) in the supplemental material), so
we built a custom solver using the same coordinate descent
techniques as the well-known solver LIBSVM [23]. By us-
ing warm starts and exploiting the structure of the consen-

sus sub-problem, our custom consensus ADMM method
solves the problem (17) dramatically faster than standard
solvers for problem (13). See Appendix A in the supple-
mentary materials for details.

8 Numerical Experiments

To study transpose reduction in a wide range of settings,
we applied consensus and transpose solvers to both syn-
thetic and empirical datasets. We recorded both the total
compute time and the wallclock time. Total compute time
is the time computing cores spend performing calculations,
excluding communication; wall time includes all calcula-
tion and communication.

8.1 Synthetic Data

We study ADMM using both standard homogeneous test
problems and the (more realistic) case where data is het-
erogeneous across nodes.
Lasso problems We use the same synthetic problems used
to study consensus ADMM in [5]. The data matrix D is a
random Gaussian matrix. The true solution xtrue contains
10 active features with unit magnitude, and the remaining
entries are zero. The `1 penalty µ is chosen as suggested in
[5] — i.e., the penalty is 10% the magnitude of the penalty
for which the solution to (7) becomes zero. The observation
vector is b = Dxtrue + ⌘, where ⌘ is a standard Gaussian
noise vector with � = 1.
Classification problems We generated a random Gaussian
matrix for each class. The first class consists of zero-mean
Gaussian entries. The first 5 columns of the second ma-
trix were random Gaussian with mean 1, and the remain-
ing columns were mean zero. The classes generated by this
process are not perfectly linearly separable. The `1 penalty
was set using the “10%” rule used in [5].
Heterogeneous Data With homogeneous Gaussian test
problems, every node solves nearly identical problems, and
we arrive at a consensus quickly. As we saw in the the-
oretical analysis of Section 6.1, consensus ADMM dete-
riorates substantially when data is heterogeneous across
nodes. To simulate heterogeneity, we chose one random
Gaussian scalar for each node, and added it to Di.

We performed experiments by varying the numbers of
cores used, feature vector length, and the number of data
points per core. Three representative results are illustrated
in Figure 1, while more complete tables appear in supple-
mentary material (Appendix B). In addition, convergence
curves for experiments on both homogeneous and hetero-
geneous data can be seen in Figures 2a and 2b.

8.2 Empirical Case Study: Classifying Guide Stars

We perform experiments using the Second Genera-
tion Guide Star Catalog (GSC-II) [24], an astronomical
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(a) Logistic regression with homogeneous data.
Experiments used 100,000 data points of 1,000
features each per core.

(b) Logistic regression with heterogeneous data.
Experiments used 100,000 data points of 1,000
features each per core. Note that transpose ADMM
required only 120 hours of compute time for 15 TB of
data.

(c) SVM with homogeneous data. Experiments used
50,000 data points of 100 features each per computing
core.

(d) Lasso with heterogeneous data. Experiments
used 50,000 data points of 200 features each per
computing core.

Figure 1: Selected results from Consensus ADMM (green) and Transpose ADMM (blue) on three different optimization problems of
varying sizes. Every core stores an identically-sized subset of the data, so data corpus size and number of cores are related linearly. The
top horizontal axis denotes the total data corpus size, while the bottom horizontal axis denotes the number of computing cores used.

database containing spectral and geometric features for 950
million stars and other objects. The GSC-II also classifies
each astronomical body as “star” or “not a star.” We train a
sparse logistic classifier to discern this classification using
only spectral and geometric features.

A data matrix was compiled by selecting all spectral and
geometric measurements reported in the catalog, and also
“interaction features” made of all second-order products.
After the addition of a bias feature, the resulting matrix has
307 features per object, and occupies 1.8 TB of space.

Experiments recorded the global objective as a function of
wall time. As seen in the convergence curves (Figure 2c)
transpose ADMM converged far more quickly than con-
sensus. We also experiment with storing the data matrix
across different numbers of nodes. These experiments il-
lustrated that this variable had little effect on the relative
performance of the two optimization strategies; transpose
methods remained far more efficient regardless of number
of cores. See Table 1.

Note the strong advantage of transpose reduction over con-
sensus ADMM in Figure 2c. This confirms the observations
of Sections 6.1 and 8.1, where it was observed that trans-
pose reduction methods are particularly powerful for het-
erogeneous real-world data, as opposed to the identically
distributed matrices used in conventional synthetic experi-
ments.

9 Discussion

Transpose reduction methods required substantially less
computation time than consensus methods in all experi-
ments. As seen in Figure 1, Figure 2, and the supplementary
table (Appendix B), performance of both methods scales
nearly linearly with the number of cores and amount of
data used for classification problems. For lasso (Figure 1d),
the runtime of transpose reduction appears to grow sub-
linearly with the number of cores. This contrasts with con-
sensus methods that have a strong dependence on this pa-
rameter. This is largely because the transpose reduction
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(a) Homogeneous data. Experiments used
7,200 computing cores with 50,000 data
points of 2,000 features each.

(b) Heterogeneous data. Experiments used
7,200 computing cores with 50,000 data
points of 2,000 features each.

(c) Empirical star data. Experiments used
2,500 cores to classify 1.8TB of data. Con-
sensus did not terminate until 1160 sec.

Figure 2: Logistic regression objective function vs wallclock time for Consensus ADMM (green) and Transpose ADMM (blue).

Cores T-Wall T-Comp C-Wall C-Comp
2500 0:01:06 11:35:25 0:24:39 31d,19:59:13
3000 0:00:49 12:10:33 0:21:43 32d, 2:44:11
3500 0:00:50 12:17:27 0:17:01 30d, 7:56:19
4000 0:00:45 12:38:24 0:29:53 40d, 13:38:19

Table 1: Wall clock and total compute times for logistic regres-
sion on the 1.8TB Guide Star Catalog. “T-” denotes results for
transpose reduction and “C-” denotes consensus. Times format is
(days,) hours:mins:secs.

method solves all data-dependent problems on a single ma-
chine, whereas consensus optimization requires progres-
sively more communication with larger numbers of cores
(as predicted in Section 6.1).

Note that transpose reduction methods need more startup
time for some problems than consensus methods because
the local Gram matrices DT

i Di must be sent to the central
node, aggregated, and the result inverted; this is not true for
the lasso problem, for which consensus solvers must also
invert a local Gram matrix on each node, though this at
least saves startup communication costs. This startup time
is particularly noticeable when overall solve time is short,
as in Figure 2b. Note that even for this problem total com-
putation time and wall time was still substantially shorter
with transpose reduction than with consensus methods.

9.1 Effect of Heterogeneous Data

When data is heterogeneous across nodes, the nodes have
a stronger tendency to “disagree” on the solution, taking
longer to reach a consensus. This effect is illustrated by
a comparison between Figures 2a and 2b, or Figures 1a
and 1b, where consensus methods took much longer to
converge on heterogeneous data sets. In contrast, because
transpose reduction solves global sub-problems across the
entire distributed data corpus, it is relatively insensitive to
data heterogeneity across nodes. In the same figures, trans-
pose reduction results were similar between the two sce-
narios, while consensus methods required much more time
for the heterogeneous data. This explains the strong advan-
tage of transpose reduction on the GSC-II dataset (Figure

2c, Table 1), which contains empirical data and is thus not
uniformly distributed.

9.2 Communication & Computation

Transpose reduction leverages a tradeoff between commu-
nication and computation. When N nodes are used with
a distributed data matrix D 2 Rm⇥n, each consensus
node transmits xi 2 Rn to the central server, which totals
to O(Nn) communication. Transpose reduction requires
O(m) communication per iteration, which is often some-
what more. Despite this, transpose reduction is still highly
efficient for two reasons. First, consensus requires inner it-
erations to solve expensive sub-problems, while transpose
reduction does not. Second, transpose reduction methods
stay synchronized better than consensus ADMM, making
communication more efficient on synchronous architec-
tures. The iterative methods used by consensus ADMM for
logistic regression and SVM sub-problems do not termi-
nate at the same time on every machine, especially when
the data is heterogeneous across nodes. Consensus nodes
must block until all nodes become synchronized. In con-
trast, Algorithm 1 requires the same computations on each
server, allowing nodes to stay synchronized naturally.

10 Conclusion

We introduce transpose reduction ADMM — an iterative
method that solves model fitting problems using global
least-squares subproblems over a distributed dataset. Theo-
retical convergence rates are superior for the new approach,
particularly when data is heterogeneous across nodes. This
is illustrated by numerical experiments using synthetic
and empirical data, both homogeneous and heterogeneous,
which demonstrate that the transpose reduction can be sub-
stantially more efficient than consensus methods.
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