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S1 Oracle Multiple Steps look-ahead Expected Loss

Denote by ηn = min{y0, y∗, y2 . . . , yn−1} the value of the best visited location when looking at n evaluations in
the future. Note that ηn reduces to the current best lost η in the one step-ahead case. It is straightforward to
see that

min(yn, ηn) = min(y, η).

It holds hat

Λn(x∗|I0,Fn(x∗)) =

∫
min(y, η)

n∏
j=1

p(yj |Ij−1,Fn(x∗))dy∗ . . . dyn

where the integrals with respect to x2 . . . dxn are p(xj |Ij−1,Fn(x∗)) = 1, j = 2, . . . , n since we don’t need to
optimise for any location and p(yj |xj , Ij−1,Fn(x∗)) = p(yj |Ij−1,Fn(x∗)). Notice that

n∏
j=1

p(yj |Ij−1,Fn(x∗)) = p(yn|In−1,Fn(x∗))

n−1∏
j=1

p(yj |Ij−1Fn(x∗))

= p(yn, yn−1|In−2,Fn(x∗))

n−2∏
j=1

p(yj |Ij−1Fn(x∗))

. . .

= p(yn, yn−1, . . . , y2|I1,Fn(x∗))

2∏
j=1

p(yj |Ij−1Fn(x∗))

= p(y|I0,Fn(x∗))

and therefore

Λn(x∗|I0,Fn(x∗)) = E[min(y, η)] =

∫
min(y, η)p(y|I0,Fn(x∗))dy

S2 Formulation of the Oracle Multiple Steps look-ahead Expected Loss to be
computed using Expectation Propagation

Assume that y ∼ N (y;µ,Σ). Then we have that

E[min(y, η)] =

∫
Rn

min(y, η)N (y;µ,Σ)dy

=

∫
Rn−(η,∞)n

min(y)N (y;µ,Σ)dy +

∫
(η,∞)n

ηN (y;µ,Σ)dy.

The first term can be written as follows:∫
Rn−(η,∞)n

min(y)N (y;µ,Σ)dy =

n∑
j=1

∫
Pj

yjN (y;µ,Σ)dy

where Pj := {y ∈ Rn − (η,∞)n : yj ≤ yi, ∀i 6= j}. We can do this because the regions Pj are disjoint and it
holds that ∪nj=1Pj = Rn − (η,∞)n. Also, note that the min(y) can be replaced within the integrals since within
each Pj it holds that min(y) = yj . Rewriting the integral in terms of indicator functions we have that

n∑
j=1

∫
Pj

yjN (y;µ,Σ)dy =

n∑
j=1

∫
Rn

yj

n∏
i=1

tj,i(y)N (y;µ,Σ)dy (S.1)

where tj,i(y) = I{yi ≤ η} if j = i and tj,i(y) = I{yj ≤ yi} otherwise.
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The second term can be written as∫
(η,∞)n

ηN (y;µ,Σ)dy = η

∫
Rn

n∏
i=1

hi(y)N (y;µ,Σ)dy (S.1)

where hi(y) = I{yi > η}. Merge (S.1) and (S2) to conclude the proof.

S3 Synthetic functions

In this section we include the formulation of the objective functions used in the experiments that are not available
in the references provided.

Name Function

SinCos f(x) = x sin(x) + x cos(2x)
Alpine2-q f(x) =

∏q
i=1

√
xi sin(xi)

Cosines f(x) = 1−
∑2
i=1(g(xi)− r(xi)) with g(xi) = (1.6xi − 0.5)2 and r(xi) = 0.3 cos(3π(1.6xi − 0.5)).

Table 1: Functions used in the experimental section.

S4 Evaluating the effect of the loss function

To isolate the impact of the acquisition function on the performance of the optimisation we run an experiment
in which the function to optimise is sampled from the gp used to perform the optimisation. In particular, we
use the square exponential kernel with variance and length-scale fixed to 1 and we solve problems of dimensions
1 and 2 in [0, 1] and [0, 1]× [0, 1] respectively. The average minimum value obtained by the gp-lcb, mpi, el and
glasses is shown in Table 2.

1D 2D

gp-lcb -1.90 -1.28
mpi -2.09 -1.15
el -2.35 -1.34
glasses -2.38 -1.37

Table 2: Average min. results for 1D and 2D problems in which random samples from the model used to perform
the optimisation are taken as objectives. glasses achieves the best results of the used acquisitions.
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S5 Standard deviation of the ‘gap’ measures

MPI LCB EL GL-2 GL-3 GL-5 GL-10 GL-H

SinCos 0.1502 0.1442 0.1221 0.0707 0.1429 0.1749 0.0862 0.0499
Cosines 0.0377 0.0368 0.0548 0.0394 0.0389 0.0417 0.0633 0.0135
Branin 0.0060 0.0121 0.0004 0.0020 0.0146 0.0036 0.0005 0.0030
Six-hump Camel 0.0065 0.0199 0.0063 0.0080 0.0104 0.0080 0.0096 0.0092
McCormick 0.0093 0.0091 0.0242 0.0152 0.0135 0.0128 0.0116 0.0129
Dropwave 0.0473 0.0595 0.0558 0.0293 0.0320 0.0238 0.0229 0.0407
Powers 0.0073 0.0073 0.0071 0.0186 0.0063 0.0147 0.0059 0.1415
Ackley-2 0.0491 0.0103 0.1197 0.1061 0.1349 0.1005 0.1171 0.1637
Ackley-5 0.0196 0.0181 0.1146 0.1809 0.1433 0.1401 0.1779 0.1361
Ackley-10 0.0015 0.0016 0.1519 0.0011 0.0020 0.0019 0.1386 0.1209
Alpine2-2 0.0957 0.0903 0.1132 0.0848 0.0534 0.0822 0.0878 0.0439
Alpine2-5 0.0679 0.0577 0.0579 0.0835 0.0878 0.0808 0.0777 0.0814

Table 3: Standard deviation of the average ‘gap’ measure (5 replicates) across different functions. el-k is the
expect loss function computed with k steps ahead at each iteration. glasses is the glasses algorithm, mpi is
the maximum probability of improvement and gp-lcb is the lower confidence bound criterion.
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