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Abstract

We initiate the rigorous study of classification
in semimetric spaces, which are point sets
with a distance function that is non-negative
and symmetric, but need not satisfy the tri-
angle inequality. We define the density di-
mension dens and discover that it plays a cen-
tral role in the statistical and algorithmic fea-
sibility of learning in semimetric spaces. We
compute this quantity for several widely used
semimetrics and present nearly optimal sam-
ple compression algorithms, which are then
used to obtain generalization guarantees, in-
cluding fast rates.

Our claim of near-optimality holds in both
computational and statistical senses. When
the sample has radius R and margin γ,
we show that it can be compressed down
to roughly d = (R/γ)dens points, and fur-
ther that finding a significantly better com-
pression is algorithmically intractable unless
P=NP. This compression implies generaliza-
tion via standard Occam-type arguments, to
which we provide a nearly matching lower
bound.

1 Introduction

The problem of learning in non-metric spaces has
been of significant recent interest, being the subject
of a 2010 COLT workshop and a central topic of all
three SIMBAD conferences. In this paper, we initiate
the study of efficient statistical learning in semimetric
spaces, which are point sets endowed with a distance
function that is non-negative and symmetric but may
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not satisfy the triangle inequality [40]1. Without the
latter, quite a bit of structure is lost — for example,
semimetric spaces admit convergent sequences without
a Cauchy subsequence [11]. We are not aware of any
rigorous learning results in semimetric spaces prior to
this work.

Background and motivation. Much of the exist-
ing machinery for classification algorithms, as well as
generalization bounds, depends strongly on the data
residing in a Hilbert space. For some important appli-
cations, this structural constraint severely limits the
applicability of existing methods. Indeed, it is often
the case that the data is naturally endowed with some
distance function strongly dissimilar to the familiar
Euclidean norm.

Consider images, for example. Although these can be
naively represented as coordinate-vectors in Rd, the
Euclidean (or even `p) distance between the represen-
tative vectors does not correspond well to the one per-
ceived by human vision. Instead, the earthmover dis-
tance is commonly used in vision applications [33]. Yet
representing earthmover distances using any fixed `p
norm unavoidably introduces very large interpoint dis-
tortion [32], potentially corrupting the data geometry
before the learning process has even begun. Nor is this
issue mitigated by kernelization, as kernels necessarily
embed the data in a Hilbert space, again incurring the
aforementioned distortion. A similar issue arises for
strings: These can be naively treated as vectors en-
dowed with different `p metrics, but a much more nat-
ural metric over strings is the edit distance, which is
similarly known to be strongly non-Euclidean [1]. Ad-
ditional limitations of kernel methods are articulated
in [4].

These concerns have led researchers to seek out al-
gorithmic and statistical approaches that apply in
greater generality. A particularly fruitful recent direc-
tion has focused on metric spaces, which are point sets
endowed with a distance function that is non-negative

1Some authors use the term “semimetric” to mean pseu-
dometrics. These preserve much of the structure of metrics,
the only difference being that they allow distinct points to
have distance 0. Our usage appears to be more standard.
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and symmetric, and also satisfies the triangle equal-
ity. While metric spaces are significantly more gen-
eral than Hilbertian ones, they still do not capture
many common distance functions used by practition-
ers. These non-metric distances include the Jensen-
Shannon divergence, which appears in statistical appli-
cations [14, 16], the k-median Hausdorff distances, and
the `p distances with 0 < p < 1, which appear in vision
applications [29, 25] — all of which are semimetrics.
An additional line of work [29, 25, 24, 38] underscored
the effectiveness of non-metric distances in various ap-
plications (mainly vision), and among these, semimet-
rics again play a prominent role [8, 12, 15, 22, 26, 23].

Main results. We initiate the rigorous study of clas-
sification for semimetric spaces. We define the density
dimension (dens = dens(X )) of a semimetric space X
as the logarithm of the density constant µ = µ(X ),
which intuitively is the smallest number such that any
r-radius open ball in X contains at most µ points at
mutual interpoint distance at least r/2; a formal defi-
nition is given in Equation (2). We then demonstrate
that dens plays a central role in the statistical and
algorithmic feasibility of learning in this setting by
showing that it controls the packing numbers of X .
Crucially for learning, this insight implies that there
is one standard technique that survives violations of
the triangle inequality — namely, sample compression.
Denoting by R and γ the sample radius and margin,
respectively, we can achieve the latter by extracting a
γ-net from the sample (Theorem 2). This compresses
the sample from size n to (R/γ)O(dens), which is nearly
optimal unless P=NP.

On the statistical front, we give a compression-based
generalization bound that smoothly interpolates be-
tween the consistent (R/γ)O(dens)/n and agnostic√

(R/γ)O(dens)/n decay regimes (Theorem 7). This
“fast rate” holds for general compression schemes. Ap-
plied to margin-based semimetric sample-compression
schemes, it becomes amenable to efficient Structural
Risk Minimization. The lower bound in Theorem 10
shows that even under margin assumptions, there exist
adversarial distributions forcing the sample complex-
ity to be exponential in dens.

To demonstrate the applicability of our framework,
we compute the density dimension of the three pop-
ular semimetrics enumerated above: Jensen-Shannon
divergence, `p distances with 0 < p < 1, and k-median
Hausdorff distances (Theorem 12). Along the way, we
discover that the latter (for k = 1) is in fact univer-
sal for all semimetrics; this surprising fact may be of
independent interest (Lemma 11).

Related work. In a series of papers, [2, 5, 3, 4]
developed a theory of learning with similarity func-

tions, which resemble kernels but relax the require-
ment of being positive definite. Learning is accom-
plished by embedding the data into an appropriate
Euclidean space and performing large-margin sepa-
ration. Hence, this approach effectively extracts the
implicit Euclidean structure encoded in the similarity
function, but does not seem well-suited for inherently
non-Euclidean data. In [37] this framework was ex-
tended to dissimilarity functions, obtaining analogous
results.

For metric spaces, it is known that a sample of size
exponential in the doubling dimension (ddim) suffices
to achieve low generalization error [36, 17, 34, 27],
and that exponential dependence on ddim is in gen-
eral unavoidable [34]. As for algorithmic runtimes,
the naive nearest-neighbor classifier evaluates queries
in O(n) time (where n is the sample size); however,
an approximate nearest neighbor can be found in time
2O(ddim) log n. If one desires runtimes depending not
on n but on the geometry (say, margin γ) of the data,
one may achieve a sample compression scheme of size
γ−O(ddim), and it is NP-hard to achieve a significantly
better compression [18].

As we show in the Appendix, the above results char-
acterizing learning in metric space do not carry over
to semimetrics. More precisely, the doubling dimen-
sion of a semimetric does not control its packing num-
bers, as it does in metric spaces. Although we suc-
ceed in showing that the density constant does indeed
control the packing numbers even in semimetrics, this
does not necessarily imply portability of learning al-
gorithms for metric spaces into semimetrics. For ex-
ample, although the nearest-neighbor classifier is still
well-defined in semimetric spaces, and may naively be
evaluated on queries in O(n) time, relaxing to approx-
imate nearest neighbors no longer provides the expo-
nential speedup in query time that it does in metric
spaces. Simply put, without the triangle inequality,
the hierarchy-based search methods, such as [9, 17]
and related approaches, all break down.

Paper outline. After presenting our basic defini-
tions in Section 2, we give packing bounds and net-
construction algorithms in Section 3. In Section 4 we
give upper and lower bounds on sample complexity
for learning in semimetrics. The density dimension of
some common semimetircs is computed in Sectino 5.

2 Preliminaries

Semimetric spaces. Throughout this paper, our
instance space X will be endowed with a semimetric
ρ : X × X → [0,∞), which is a non-negative sym-
metric function verifying ρ(x, x′) = 0 ⇐⇒ x = x′

for all x, x′ ∈ X . If the semimetric space (X , ρ) ad-
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ditionally satisfies the triangle inequality, ρ(x, x′) ≤
ρ(x, x′′) + ρ(x′′, x′) for all x, x′, x′′ ∈ X , then ρ is a
metric. The distance between two sets A,B in a semi-
metric space is defined by ρ(A,B) = inf

x∈A,x′∈B
ρ(x, x′).

For x ∈ X and r > 0, denote by Br(x) =
{y ∈ X : ρ(x, y) < r} the open r-ball about x. The
radius of a set is the radius of the smallest ball con-
taining it, rad(A) = inf {r > 0 : ∃x ∈ A,A ⊆ Br(x)}
and diam(A) := supx,x′∈A ρ(x, x′).

Doubling and density dimensions. Let λ = λ(X )
be the smallest number such that every open ball in
X can be covered by λ open balls of half the radius,
where all balls are centered at points of X . Formally,

λ(X ) = min{λ ∈ N : ∀x ∈ X , r > 0

∃x1, . . . , xλ ∈ X : Br(x) ⊆ ∪λi=1Br/2(xi)}.
Then λ is the doubling constant of X , and the doubling
dimension of X is ddim(X ) = log2 λ.

An r-net of a set A ⊆ X is any maximal subset A
having mutual interpoint distance at least r. The r-
packing number M(r,A) of A is the maximum size of
any r-net of A:

M(r,A) = max{|E| : E ⊆ A, (1)

(x, y ∈ E) ∧ (x 6= y) =⇒ ρ(x, y) ≥ r}.

The density constant µ(X ) was defined in [20] as the
smallest number such that any open r-radius ball in
X contains at most µ points at mutual interpoint dis-
tance at least r/2:

µ(X ) = min{µ ∈ N : (x ∈ X ) ∧ (r > 0)

=⇒ M
(r

2
, Br(x)

)
≤ µ}, (2)

and we define the density dimension of X by
dens(X ) = log2 µ(X ). An important property of the
density dimension is that it is hereditary: for S ⊂ X ,
we have µ(S) ≤ µ(X ); the doubling dimension is only
approximately hereditary [20].

It will be convenient to define Log (x) := log2 dxe, and
we will make frequent use of the identity

µ(S)Log(α) = dαedens(S) . (3)

Learning model. We work in the standard agnos-
tic learning model [30, 34], whereby the learner re-
ceives a sample S consisting of n labeled examples
(Xi, Yi), drawn iid from an unknown distribution over
X×{−1, 1}. All subsequent probabilities and expecta-
tions will be with respect to this distribution. Based on
the training sample S, the learner produces a hypoth-
esis h : X → {−1, 1}, whose empirical error is defined
by êrr(h) = n−1

∑n
i=1 1{h(Xi) 6=Yi} and whose general-

ization error is defined by err(h) = P(h(X) 6= Y ).

Sub-sample, margin, and induced 1-NN. In a
slight abuse of notation, we will blur the distinction
between S ⊂ X as a collection of points in a semi-
metric space and S ∈ (X × {−1, 1})n as a sequence
of labeled examples. Thus, the notion of a sub-sample
S̃ ⊂ S partitioned into its positively and negatively
labeled subsets as S̃ = S̃+ ∪ S̃− is well-defined. The
margin of S̃, defined by marg(S̃) = ρ(S̃+, S̃−), is the
minimum distance between a pair of opposite-labeled
points. In degenerate cases where one of S̃+, S̃− is
empty, marg(S̃) = ∞. (For ease of presentation, we
assume that the margin is strictly less than rad(S),
and so rad(S)/marg(S) > 1. In the case of equal-
ity, substituting any value less than the margin will
cause the relevant claim to hold.) A sub-sample S̃
naturally induces the 1-NN classifier hS̃ , via hS̃(x) =

sign(ρ(x, S̃−)− ρ(x, S̃+)).

+

−

+

−

+
+

−

−

−

marg(S) marg(S̃)

Figure 1: In this example, the sub-sample S̃ ⊂ S is
indicated by double circles. It is always the case that
marg(S̃) ≥ marg(S).

The problem of nearest-neighbor condensing is to pro-
duce the minimal subsample S̃ ⊂ S so that the 1-NN
classifier hS̃ is consistent with S, i.e. has zero training
error. In the inconsistent version of this problem, one
is given a parameter ε > 0 and tasked with producing
a minimal subsample S̃ ⊂ S whose induced hS̃ has
training error at most ε.

3 Packing bounds and algorithms

The central contribution of this section is the follow-
ing lemma, which demonstrates that for a semimetric
space, a bound on its density dimension implies one
on its packing numbers.

Lemma 1. For any point set S in a semimetric
space X and r > 0, the size of any r-net of S is

k = (rad(S)/r)
O(dens(S))

, and furthermore, such an
r-net can be computed in time O(k|S|).

Proof. To bound the size of a maximal r-net C ⊂ S,
suppose its radius is R. Partition C into clusters by ex-
tracting from C an arbitrary net D with minimum in-
terpoint distance R/2, and assigning each point p ∈ C
to a cluster centered at the nearest neighbor of p in
D. Then apply the procedure recursively to each clus-
ter, halving the previous radius, until reaching point
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sets with minimum interpoint distance at least r. By
repeatedly applying the definition of the density con-
stant, the size of C is bounded by µ(S)Log(rad(S)/r) =

(rad(S)/r)
O(dens(S))

.

The actual r-net is constructed in a greedy fashion.
Initialize set C = ∅, and for every point in S, add it
to C if its closest neighbor in C is at distance r or
greater. Since |C| ≤ k, the total runtime is O(k|S|).
See Algorithm 1.

Algorithm 1 Brute-force net construction

Require: sample S, margin r
Ensure: C is an r-net for S

for x ∈ S do
if ρ(x,C) ≥ r then
C = C ∪ {x}

end if
end for

Having demonstrated the existence of a small r-net,
we can now consider the problems of producing both
consistent (lossless) and inconsistent (lossy) 1-NN clas-
sifiers for the sample (see Section 2).

Consistent case. For a labeled sample S, recall that
the margin of S is the minimum distance between op-
positely labeled points in S, as defined formally in Sec-
tion 2. The margin of a given sample can be computed
in time Θ(|S|2) by considering all pairs of points. We
begin with a consistent classifier, whose generaliza-
tion performance with explicit constants is analyzed
in Theorem 6(i). Informally, the latter states that a
1-nearest neighbor classifier induced by a sub-sample

of size k has generalization error O
(
k logn+log 1

δ

n

)
.

Theorem 2. Let S be a sample set equipped with
a semimetric distance function, and let the margin
γ = marg(S) be given. In time O(k|S|) we can con-
struct a nearest-neighbor classifier that achieves zero

training error on S, where k = (rad(S)/γ)
O(dens(S))

.
The evaluation time for a test point is Θ(k), and with
probability 1−δ, the resulting classifier has generaliza-

tion error O
(
k logn+log 1

δ

n

)
.

Proof. We build a γ-net C for S in time O(k|S|), as in
Lemma 1. Since γ is the margin, by construction every
point in S has the same label as its nearest neighbor in
C, and so the nearest neighbor classifier with respect
to C has zero sample error.

Given a test point x, we assign it the same label as
its nearest neighbor in C. Then the generalization
bounds follow from Theorem 6(i). For the runtime,
O(k) operations are clearly sufficient to find the near-
est neighbor.

Remark 3. If the margin is not known in advance,
then it must be computed, and the runtime in The-
orem 2 grows to O(n2). In this case we can give
an alternate construction that achieves the runtime of
O(k|S|) of the Theorem. Extract sets S+, S− ∈ S
of oppositely labeled points in S, and for each set
build a subset in a manner similar to the proof of
Lemma 1: Let R be the maximum among the radii
of S+, S−. Partition S+ into clusters by extracting
from S+ an arbitrary net D with minimum interpoint
distance R/2, and assigning each point p ∈ S+ to a
cluster centered at the nearest neighbor of p in D.
Then apply the procedure recursively to each cluster
in D, halving the previous radius. This construction
is done to S− in parallel, and terminates when the
union of the subsets for S+ and S− is consistent with
S. This must occur within O(log(rad(S)/marg(S)))
iterations, producing a consistent set of size k in time
O(kn log(rad(S)/marg(S))) = O(kn) (where equality
follows from the log(rad(S)/marg(S)) term being sub-
sumed in the definition of k).

The procedure in Theorem 2 compresses S, pro-
ducing a consistent sub-sample C. Immediate from
the theorem is that the smaller the compressed
set C, the better the generalization bounds of the
classifier. However, as [18] recently demonstrated,
even in metric spaces, it is NP-hard to approxi-
mate the size of the minimum consistent subset to
within a factor 2O(ddim(S) log(rad(S)/marg(S))1−o(1) =
2O(dens(S) log(rad(S)/marg(S))1−o(1) . This means that
choosing the net of Lemma 1 is close to the optimal
construction for a consistent subset of S.

Inconsistent case. It is natural to ask whether
allowing the classifier nonzero sample error results
in improved generalization bounds. This is indeed
generally the case, as the bound in Theorem 7 in-
dicates. Informally, the latter shows that a 1-
nearest neighbor classifier induced by a sub-sample
of size k with sample error ε has generalization error

Q(k, ε) = O

(
ε+ 1

n log nk

δ +
√

ε
n log nk

δ

)
. Optimizing

this bound is an instance of Structural Risk Minimiza-
tion (SRM). Unfortunately, we can show SRM to be
infeasible for this problem, and that the generalization
guarantees of Theorem 2 are nearly the best that can
be obtained by way of Theorem 7:

Theorem 4. Given a set S equipped with a met-
ric or semimetric distance function, let S∗ ⊂ S
be a sub-sample for which the generalization bound
Q(d, ε) in Theorem 7 (for a fixed constant δ) is min-
imized. Then it is NP-hard to compute any subset
of S achieving a generalization bound within factor

2O((dens(S) log(rad(S)/marg(S)))1−o(1) of the generalization
bound induced by S∗.
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Proof. The proof is via reduction from the minimum
consistent subset problem mentioned above. Fix the
confidence level δ in the bound, let T be an instance of
the minimum consistent subset problem, and put m =
|T |. For some large value p, replace each point ti ∈ T
with a (similarly labeled) set of p points si,1, . . . , si,p
obeying the line metric, with ρ(si,a, si,b) = φ|a− b| for
an infinitesimally small φ. Put ρ(si,a, sj,b) = ρ(ti, tj).
The new set is S, with n = |S| = pm.

Consider a subset S′ ⊂ S. If the 1-NN rule on S′ mis-
classifies a point of S, say si,a, then in fact it must mis-
classify all p points si,b, b ∈ [1, p]. So an inconsistent
subset of S achieves a value of Q(|S′|, p/n) = Ω(p/n)
in the generalization bound.

Now consider the consistent subset of S consisting
of m = n/p points si,1 for i ∈ [1,m]. By Theo-
rem 6(i), this classifier achieves a generalization bound

of O
(
m logn
n

)
= O

(
logn
p

)
. So when p = Ω(

√
n log n),

this consistent classifier is better than any incon-
sistent classifier. Now a consistent subset of size
d ≤ m has generalization bound O

(
d logn
n

)
. As it

is NP-hard to find a subset whose size is within a
factor 2O(dens(S) log(rad(S)/marg(S))1−o(1) of the small-
est consistent subset, it is NP-hard to find a consis-
tent subset with generalization bound within a factor

2O(dens(S) log(rad(S)/marg(S))1−o(1) of the optimal consis-
tent subset, and the theorem follows.

In light of the hardness result established in Theo-
rem 4, we specialize the goal from one of seeking a
small nearly consistent sub-sample to one where the
sub-sample must be a γ-net. In this case, the relevant
generalization bound is provided by Theorem 9. As
before, we wish to perform SRM for this bound. For-
tunately, we are able to compute the latter exactly in
polynomial time, and even more efficiently if we are
willing to settle for a solution within a constant factor
of the optimal. The proof of the following theorem
follows the lines of [17].

Theorem 5. Given a sample set S equipped with a
semimetric:

(a) A nearest-neighbor classifier minimizing the gen-
eralization bound of Theorem 9 can be computed
in randomized time O(|S|4.373).

(b) A nearest-neighbor classifier whose generalization
bound is within factor 2 of optimal can be com-
puted in deterministic time O(|S|2 log |S|).

Each of these classifiers can be evaluated on test points

in time
(

rad(S)
γ

)O(dens(S))

, where γ is the margin im-

posed by the SRM procedure.

Proof. For each of these solutions, we enumerate and
sort in increasing order the distances between all
oppositely labeled point pairs in S, in total time
O(|S|2 log |S|). Each distance constitutes a separate
guess for the optimal margin to “impose” on S. That
is, for each distance γ, we will remove from S some
points to ensure that all opposite labeled pairs are
more than γ far apart.

To accomplish this, we iteratively build a new graphG.
We initialize G with vertices representing the points of
S. At each round we add to G an edge between the
next closest pair of opposite labeled points, as given
by the sorted enumeration above. This distance is the
margin of the current round: Points connected by an
edge in G represent pairs that are too close together for
the current margin, and we need to compute how many
points would need to be removed from G in order for
no edge to remain in the graph. (However, no points or
edges will actually removed from G.) As observed by
[17], this task is precisely the problem of bipartite ver-
tex cover. By König’s theorem, the minimum vertex
cover problem in bipartite graphs is equivalent to the
maximum matching problem, and a maximum match-
ing in bipartite graphs can be computed in randomized
time O(n2.373) [31, 39]. So for each candidate margin,
we can compute in O(n2.373) time the number of points
that must be removed from the current graph G in or-
der to remove all edges. For O(n2) possible margins,
this amounts to O(n4.373) time. Having computed for
each interpoint distance the number of points required
to be deleted to achieve this distance, we choose the
distance-number pair which minimizes the bound of
Theorem 9. We then remove the corresponding points
from S, and use the algorithm of Lemma 1 to construct
a net satisfying the margin bound.

The runtime improvement in (b) comes from a faster
vertex-cover computation. It is well known that a 2-
approximation to vertex cover can be computed (in ar-
bitrary graphs) by a greedy algorithm in time linear in
the graph size O(|V +∪V −|+|E|) = O(n2), see e.g. [6].
This algorithm simply chooses any edge and removes
both endpoints, until no edges remain. We apply this
algorithm to our setting: A new edge is added to G
only if both endpoints survive in the already computed
cover, and then both endpoints are marked as removed
in the solution to the new graph. Having computed for
each interpoint distance the number of points required
to be deleted to achieve this distance, we choose the
distance-number pair which minimizes the bound of
Theorem 9. We then remove the corresponding points
from S, and use the algorithm of Lemma 1 to construct
a net satisfying the margin bound. The runtime is
dominated by the time required to sort the distances.

For both algorithms, a new point is classified by finding
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its nearest neighbor in the extracted net.

4 Generalization guarantees

In this section, we provide general sample compres-
sion bounds, which then will be specialized to the
nearest-neighbor classifier proposed above. Theorem 7
presents a smooth interpolation between two classic
bounds: the consistent case with rate Õ(1/n), and the
agnostic case with rate Õ(1/

√
n). Applied to margin-

based semimetric sample-compression schemes, this
result yields the efficiently computable and optimiz-
able bound in Theorem 9, which is nearly optimal (as
shown in Theorem 4). Finally, the lower bound in The-
orem 10 shows that even under margin assumptions,
there exist adversarial distributions forcing the sample
complexity to be exponential in dens.

4.1 Sample compression schemes

We use the notion of a sample compression scheme
in the sense of [21], where it is treated in full rigor.
Informally, a learning algorithm maps a sample S of
size n to a hypothesis hS . It is a d-sample compression
scheme if a sub-sample of size d suffices to produce
a hypothesis that agrees with the labels of all the n
points. It is an ε-lossy d-sample compression scheme if
a sub-sample of size d suffices to produce a hypothesis
that disagrees with the labels of at most εn of the n
sample points.

The algorithm need not know d and ε in advance. We
say that the sample S is (d, ε)-compressible if the algo-
rithm succeeds in finding an ε-lossy d-sample compres-
sion scheme for this particular sample. In this case:

Theorem 6 ([21]). For any distribution over X ×
{−1, 1}, any n ∈ N and any 0 < δ < 1, with prob-
ability at least 1− δ over the random sample S of size
n, the following holds:

(i) If S is (d, 0)-compressible, then

err(hS) ≤ 1

n− d

(
(d+ 1) log n+ log

1

δ

)
.

(ii) If S is (d, ε)-compressible, then

err(hS) ≤ εn

n− d +

√
(d+ 2) log n+ log 1

δ

2(n− d)
.

The generalizing power of sample compression was in-
dependently discovered by [28, 13], and later elabo-
rated upon by [21]. The bounds above are already
quite usable, but they feature an abrupt transition
from the (logn)/n decay in the lossless (ε = 0) regime
to the

√
(log n)/n decay in the lossy regime. We now

provide a smooth interpolation between the two (such

results are known in the literature as “fast rates” [10];
see also a related result in [34]):

Theorem 7. Fix a distribution over X × {−1, 1}, an
n ∈ N and 0 < δ < 1. With probability at least 1 − δ
over the random sample S of size n, the following holds
for all 0 ≤ ε ≤ 1

2 : If S is (d, ε)-compressible, then,
putting ε̃ = εn/(n− d), we have

err(hS) ≤ ε̃+
2

3(n− d)
log

nd+2

δ

+

√
9ε̃(1− ε̃)
2(n− d)

log
nd+2

δ

=: Q(d, ε). (4)

Proof. Deferred to the journal version.

4.2 Margin-based nearest neighbor
compression

We now specialize the general sample compression re-
sult of Theorem 7 to our setting, where hS′ induced
by a sub-sample S′ ⊂ S is given by the 1-NN clas-
sifier defined in Section 2. Any sample S of size n is
trivially (n, 0)-compressible and (0, 12 )-compressible —
the former is achieved by not compressing at all, and
the latter by a constant predictor. Now d and ε can-
not simultaneously be made arbitrarily small, and for
non-degenerate samples S, the bound Q in Theorem 7
will have a nontrivial minimal value Q∗. Theorem 4
shows that computing Q∗ is intractable and the algo-
rithm in Theorem 5 solves a tractable modification of
this problem. For k ∈ N and γ > 0, let us say that the
sample S is (k, γ)-separable if it admits a sub-sample
S′ ⊂ S such that |S \ S′| ≤ k and marg(S′) > γ, and
observe that separability implies compressibility:

Lemma 8. If S is (k, γ)-separable then it is(
drad(S)/γedens(S) , k/|S|

)
-compressible.

Proof. Suppose S′ ⊂ S is a witness of (k, γ)-
separability. Being pessimistic, we will allow our lossy
sample compression scheme to mislabel all of S \ S′,
but not any of S′, giving it a sample error ε ≤ k/|S|.
Now by construction, S′ is (0, γ)-separable, and thus
a γ-net S̃ ⊂ S′ suffices to recover the correct labels
of S′ via 1-nearest neighbor. Lemma 1 provides the
estimate

|S̃| ≤ µ(S)Log(rad(S)/γ) = drad(S)/γedens(S) ,

whence the compression bound.

These observations culminate in an efficiently optimiz-
able margin-based generalization bound:
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Theorem 9. Fix a distribution over X , an n ∈ N and
0 < δ < 1. With probability at least 1 − δ over the
random sample S of size n, the following holds for all
0 ≤ k ≤ n/2: If S is (k, γ)-separable with witness S′,
then

err(hS′) ≤ Q(d, k/n) =: R(k, γ),

where Q is defined in (4) and

d = µ(S′)Log(rad(S
′)/γ) = drad(S′)/γedens(S) .

Furthermore, the minimizer (k∗, γ∗) of R(·, ·) is effi-
ciently computable.

4.3 Sample complexity lower bound

The following result shows that even under margin as-
sumptions, a sample of size exponential in dens will be
required for some distributions.

Theorem 10. There are universal constants c, δ >
0 such that for every semimetric space (X , ρ) with
dens(X ) > 6 and any learning algorithm mapping
samples S of size n to hypotheses hn : X → {−1, 1},
there is a distribution P over X and a target concept
f : X → {−1, 1}, such that err(f) = 0 yet

P

(
err(hn) ≥ c drad(S)/marg(S)edens(X )

n

)
≥ 1− δ.

Proof. Deferred to the journal version.

5 Density dimension of some common
semimetrics

In this section we demonstrate the utility of the density
dimension by calculating its value under some com-
mon semimetric distance functions on d-dimensional
vectors. The first of these functions is the Jensen-
Shannon divergence, equivalent [14] to the `2-squared

distance function `22(x, y) =
∑d
i=1 |xi − yi|2. We also

consider the non-metric `p-spaces for 0 < p < 1,

`p(x, y) = (
∑d
i=1 |xi − yi|p)1/p. Finally, we consider

the k-median Hausdorff distance.

Recall that the usual Hausdorff distance is a metric
defined on any two point sets A and B, and we shall
make the simplifying assumption that |A| = |B| = m.
Let l(a, b) for all a ∈ A and b ∈ B be a vector dis-
tance function — for simplicity we shall assume the
Euclidean `2 distance — and l(a,B) be the distance
from a ∈ A to its nearest neighbor in B. The Hausdorff
distance is the maximum distance between a point
in A (or B) and its nearest neighbor in B (respec-
tively, in A): max {maxa∈A l(a,B),maxb∈B l(b, A)}.
[22] define the k-median Hausdorff distance (in the

terminology of [25], but perhaps more aptly termed
the k-rank Hausdorff distance) by setting hk(A,B)
to be the k-th smallest value in the vector v =
(l(a1, B), . . . , l(ad, B)), and then the k-rank Hausdorff
distance is Hk(A,B) = max {hk(A,B), hk(B,A)}.
Note that Hm(A,B) recovers the classic metric Haus-
dorff distance (and we require k ≤ m). On the other
hand, we can show that H1(A,B) is sufficiently ro-
bust to be universal for all semimetrics — that is, any
semimetric can be realized by the distance function
H1(A,B):

Lemma 11. If ρ is a semimetric on a point set X
of size n, then ρ can be realized as the H1 distance
(induced by l = `2 as above) over subsets of R of size n.

Proof. Put D = diam(X) and replace each point xi ∈
X with a set Ai ⊂ R of size n as follows. For ai,j ∈ Ai,
if j ≥ i, then set ai,j = 2D((i+1)n+j), and otherwise
set ai,j = aj,i + ρ(xi, xj).

Consider any pair xi, xj ∈ X for i < j. Clearly
`2(ai,j−aj,i) = `2(ai,j−ai,j−ρ(xi, xj)) = ρ(xi, xj), so
H1(Ai, Aj) is at most this value. On the other hand,
for any k, p we can show that `2(ai,k − aj,p) ≥ D
whenever k 6= j or p 6= i): If i ≤ k, we have
ai,k = 2D((i+ 1)n+ k), and otherwise 2D((k + 1)n+
i) ≤ ai,k ≤ 2D((k + 1)n + i) + D. Similarly, if
j ≤ p we have aj,p = 2D((j + 1)n + p), and other-
wise 2D((p+ 1)n+ j) ≤ aj,p ≤ 2D((p+ 1)n+ j) +D.
Since by assumption i 6= j, the two terms differ by at
least D unless both j = k and i = p.

We bound the density dimension under these three
distance functions.

Theorem 12. A set of m d-dimensional vectors has
density dimension: O(d) under `2-squared, O(d/p2)
under `p (0 < p < 1), and O(k(d+ logm)) under Hk.

Proof. We begin with a standard proof that a set of
d-dimension Euclidean vectors has density dimension
O(d). Take any radius 4 ball, and we bound the size
of a 2-net of points within this ball. By the triangle
inequality, 1-radius balls centered at the 2-net points
do not intersect, and so the density constant of the
space is bounded by the number of 1-radius balls whose
centers can be packed into the 4-radius ball. Since a
piece of a 1-radius ball may escape the 4-radius ball,
by the triangle inequality this term is bounded by the
number of 1-radius balls that can be packed into a
5-radius ball. The ratio of the volume of a 5-radius
ball to that of a 1-radius ball is 5d, which bounds the
density constant of d-dimensional Euclidean space.

For `22, we embed this space into `2 by simply retain-
ing the vectors and changing only the distance func-
tion. In other words, we take the square root of all
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the distances, which is known as a snowflake operator.
To bound the number of 2-net points within a ball of
radius 4 in `22, consider instead a larger 1-net in the
4-radius ball. After the embedding, it is a 2-radius
Euclidean ball containing a 1-net, and so the density
constant of `22 is 2O(d) as well.

For `p (0 < p < 1), let us consider a snowflake of this

function, that is `
p/2
p (x, y) = (

∑d
i=1 |xi − yi|p)1/2. We

can show that the vectors under this distance function
can be embedded into O(d/p2)-dimensional Euclidean
space with only constant distortion: Considering each
coordinate separately, the distance operator |xi−yi|p/2
on a single coordinate has the effect of embedding all
points on a line into a helix. It is known that this
embedding can be realized in O(1/p2)-dimensional Eu-
clidean space with arbitrarily small distortion (see [35]
for 1

2 < p < 1, and [19, 7] for 0 < p ≤ 1
2 ). We cre-

ate such an embedding for each coordinate and then
concatenate the coordinate embeddings into a single
vector. This yields an embedding from d-dimensional

`
p/2
p into O(d/p2)-dimensional Euclidean space with

arbitrarily small distortion. Then a 1-net inside a 22/p-
radius ball in the original `p-space is a 1-net inside a
(2 + ε)-radius ball in the target Euclidean space (for
arbitrarily small ε), and so its density dimension is
O(d/p2).

For the k-rank Hausdorff distance, note that for all
vector sets A,B and subsets A′ ⊂ A and B′ ⊂ B,
Hk(A′, B′) ≥ Hk(A,B) (since hk is non-decreasing
under deletions). Further, there always exist A′, B′

of size k satisfying Hk(A′, B′) = Hk(A,B) (by com-
bining pairs from hk(A,B) and hk(B,A) in a prudent
fashion). Now consider a set A of vector sets all within
distance 2 of center set Ac ∈ A and at mutual inter-set
distance at least 1. We will show that |A| = 2O(kd)mk,
from which the item follows. To prove this, take in
turn each subset A′c ⊂ Ac of size k (there are

(
m
k

)
< mk

such subsets), and let A′ contain all sets A′i ⊂ Ai of
size k for which Hk(A′c, A

′
i) = Hk(Ac, Ai). A′ has ra-

dius 2 and inter-set distance at least 1. To complete
the proof, we will show that n = |A′| ≤ 2O(d+k), from
which it follows that |A| < |A′|mk = 2O(kd)mk:

Since Hk(A′c, A
′
i) ≤ 2 for all A′i ∈ A′, we have that

hk(A′i, A
′
c) ≤ 2, and so every vector is within Euclidean

distance 2 of one of the k vectors of A′c. Let each vec-
tor of A′c be the center of a 2-radius Euclidean ball.
Clearly, the vectors of each A′i fall into k different Eu-
clidean balls, and A′i falls into one of 2k different ball
configurations. Let C ⊂ A′ (p = |C|) include all sets
falling into some specific configuration. Within each
Euclidean ball, an optimal configuration clusters vec-
tors from the p sets into 2O(d) groups, so that the in-
tergroup distance is at least 1, and the intragroup size
is p

2O(d) . Repeated over k balls, we require p
2O(kd) ≤ 1,

and so p ≤ 2O(kd) and n ≤ 2kp = 2O(kd).

We leave it as an open problem to improve on the
dependence of k in our bound of the density dimension
of the Hausdorff distance.

We conclude this section with an illustration of how
the theory developed in this paper explains the suc-
cess of the greedy net-based compression algorithm,
even in the case of semimetrics. We present results
for the Hausdorff semimetric applied to the Covertype
dataset, found in the UCI Machine Learning Repos-
itory.2 This dataset contains 7 different label types,
which we treated as 21 separate binary classification
problems; we report results for labels 2 vs. 5, 1 vs. 4,
and 4 vs. 7.

data set original size down to %
Covertype 2 vs. 5 2000 97
Covertype 1 vs. 4 2000 25
Covertype 4 vs. 7 2000 2

Figure 2: Summary of the performance of semimetric
sample compression algorithm.
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