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Abstract

In this paper, we present a nonconvex alternat-
ing minimization optimization algorithm for
low-rank and sparse structure pursuit. Com-
pared with convex relaxation based methods,
the proposed algorithm is computationally
more e�cient for large scale problems. In our
study, we define a notion of bounded di↵er-
ence of gradients, based on which we rigorously
prove that with suitable initialization, the pro-
posed nonconvex optimization algorithm en-
joys linear convergence to the global optima
and exactly recovers the underlying low rank
and sparse matrices under standard conditions
such as incoherence and sparsity conditions.
For a wide range of statistical models such
as multi-task learning and robust principal
component analysis (RPCA), our algorithm
provides a principled approach to learning the
low rank and sparse structures with provable
guarantee. Thorough experiments on both
synthetic and real datasets backup our the-
ory.

1 Introduction

In many machine learning problems, the data are gen-
erated from models which have inherent low rank and
sparse structures. One example is multi-task learn-
ing [11], which exploits the relationships among multi-
ple related tasks to improve the generalization perfor-
mance. A common assumption in multi-task learning is
that all tasks should share some common structures in
model parameters. Typical common structures include
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low rank subspace sharing [26], (group) sparse feature
set sharing [3, 25, 24, 19], as well as both low-rank and
sparse parameter sharing [13, 1]. Another example is
finding low-dimensional structure in high-dimensional
data. For instance, it has been observed that principal
component analysis (PCA) is sensitive to outliers. To
overcome this problem, Candès et al. [9] proposed a
robust principal component analysis (RPCA). The goal
of robust PCA is to remove sparse corruptions from
the input matrix and obtain a low-rank approximation
of the input matrix.

In this paper, motivated by the above applications, we
consider the following general model, with its parameter
matrix being the superposition of a low rank matrix
and sparse matrix1:

Y = X(L⇤ + S⇤), (1.1)

where X 2 Rn⇥d1 is a general design matrix, L⇤ 2
Rd1⇥d2 is an unknown low rank matrix with rank(L⇤) =
r, and S⇤ 2 Rd1⇥d2 is an unknown sparse matrix with
kS⇤k0,0 = s⇤ nonzero elements, Y 2 Rn⇥d2 is the re-
sponse matrix. Similar models have been considered
in [12, 1, 33] with or without noise. In order to recover
the low rank component L⇤ and the sparse compo-
nent S⇤ together based on X and Y, the most widely
used method is based on convex relaxation, solving the
following convex problem:

argmin
L,S

1

2
kY � X(L + S)k2

F + �kLk⇤ + µkSk1,1.

(1.2)

Here kLk⇤ is the nuclear norm of L, the tightest convex
relaxation of rank(L). Meanwhile, kSk1,1 is the elemen-
twise `1 norm of S, the tightest convex relaxation of
kSk0,0. Besides, �, µ > 0 are the regularization param-
eters. The relaxed problem in (1.2) can be solved by

1For the ease of presentation, we consider the noiseless
case, while our algorithm is directly applied to the case with
additive noise, and our theory can be generalized straight-
forwardly as well.
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convex optimization algorithms such as proximal gra-
dient descent [36] and alternating direction method of
multipliers (ADMM) [23]. While these convex optimiza-
tion algorithms enjoy good convergence guarantees, due
to the nuclear norm regularization, they involve a sin-
gular value decomposition at each iteration, which is
computationally very expensive for high dimensional
problems with large d1 and d2.

In our study, to overcome computational limitations
of existing optimization algorithms for low-rank and
sparse matrix learning, we reparameterize the unknown
low-rank matrix L as the product of two much smaller
matrices, i.e., L = UV> where U 2 Rd1⇥r and
V 2 Rd2⇥r, such that the low-rank constraint is au-
tomatically satisfied. This gives rise to the following
constrained problem

argmin
U,V,S

1

2
kY � X(UV> + S)k2

F subject to kSk0,0  s,

(1.3)

where s > 0 is a tuning parameter. The resulting opti-
mization problem can be solved very e�ciently through
alternating minimization, i.e., solving U (resp. V and S)
while the other two variables are fixed until convergence.
Despite the great empirical success of this reparame-
terization [20, 29], the theoretical understanding of the
algorithms for the factorization based formulation is
fairly limited because the theoretical properties of non-
convex optimization algorithms are more di�cult to
analyze. In this paper, we establish the linear conver-
gence rate of the proposed algorithm. At the core of our
theory is the notion of bounded di↵erence of gradients,
which provides a su�cient condition for the convergence
of nonconvex optimization. Based on this notion, we
show that under certain conditions, the alternating min-
imization algorithm converges exponentially fast to the
global optima of the non-convex optimization problem
in (1.3), and thus recovers the true low-rank and the
sparse matrices. Extensive experiments on synthetic
and real datasets corroborate our theory.

Notation and Organization of This Paper

Let A = [Aij ] 2 Rd⇥d be a d ⇥ d matrix and
x = [x1, . . . , xd]

> 2 Rd be a d-dimensional vec-
tor. For 0 < q < 1, we define the `0, `q and `1
vector norms as kxk0 =

Pd
i=1 I(xi 6= 0), kxkq =

(
Pd

i=1 |xi|q)
1
q , and kxk1 = max1id |xi|, where I(·)

represents the indicator function. We use the following
notation for the matrix `q, `max and `F norms: kAkq =
maxkxk=1 kAxkq, kAkmax = maxij |Aij |, kAk1 =Pd

i,j=1 |Aij |, and kAkF = (
P

ij |Aij |2)
1
2 . Moreover, we

define the nuclear norm of A, i.e., kAk⇤ to be the sum
of all singular values of A. We use the notation � to
denote the element-wise product.

The remainder of this paper is organized as follows: Sec-
tion 2 is devoted to two application examples and the
related work. We present the nonconvex optimization
algorithm in Section 3. The main theoretical results
are provided in Section 4 and the proof is sketched in
Section 5. The numerical experiments are reported in
Section 6. Section 7 concludes the paper.

2 Examples and Related Work

In this section, we introduce two examples of the model
introduced in (1.1), followed which we review a sequence
of related work.

2.1 Examples

As we mentioned in the introduction, there are two
widely studied problems, which fit in our model in (1.1).

Example 2.1 (Multi-Task Learning). In multi-task
learning, we are given a collection of d2 regression prob-
lems in Rd1 , each of which takes the form yj = X�⇤

j

for j = 1, 2, . . . , d2. Here each �⇤
j 2 Rd1 is an unknown

regression vector, and X 2 Rn⇥d1 is the design matrix.
We refer to each regression problem as a task. This
family of models can be written in a convenient matrix
form as Y = XB⇤, where Y = [y1, . . . ,yd2

] 2 Rn⇥d2

and B⇤ = [�⇤
1 , . . . ,�⇤

d2
] 2 Rd1⇥d2 is a matrix of regres-

sion vectors. Each row of B⇤ corresponds to a feature.
We assume that some subset of features are shared
across tasks, and some other subset of features vary
substantially across tasks. This kind of structure can be
captured by assuming that the unknown regression ma-
trix B⇤ has a low-rank plus sparse decomposition [1, 13],
i.e., B⇤ = L⇤+S⇤, where L⇤ is low-rank and S⇤ is sparse,
with a relatively small number of non-zero entries, cor-
responding to feature/task pairs that di↵er significantly
across tasks.

Example 2.2 (Robust Principal Component Analysis).
In Robust PCA [9], the observation matrix Y 2 Rd1⇥d2

is assumed to be the superposition of a low rank matrix
L⇤ and an error matrix S⇤, where the error matrix
S⇤ can be arbitrary in magnitude, but is assumed to
be sparsely supported, a↵ecting only a fraction of the
entries in L⇤, i.e., Y = L⇤ +S⇤. It is easy to see that it
is a special case of the model in (1.1), with the design
matrix X chosen as the identity matrix I 2 Rn⇥n, and
n = d1.

2.2 Related Work

Despite the superior empirical performance of the non-
convex alternating minimization algorithm, its theo-
retical analysis is relatively lagging behind. Only until
recently has there been significant process on its the-
ory. In particular, alternating optimization has been
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recently analyzed for matrix completion [18, 16, 6, 35],
dictionary learning [2], sparse coding [4], phase re-
trieval [27], and expectation maximization (EM) al-
gorithm [5, 30]. However, the proof techniques in [18,
16, 6, 2, 27] are built up on perturbed power methods,
and cannot be applied to our algorithm due to the
existence of the sparse component.

Waters et al. [31] proposed a greedy algorithm for recov-
ering low-rank and sparse matrices from compressive
measurements. Kyrillidis and Cevher [21] proposed a
projected gradient method over non-convex sets for
recovering a sparse plus low-rank decomposition of
a matrix given noisy linear measurements. Yan et al.
[33] studied a similar model as ours but with additive
noise. They present a nonconvex alternating direction
algorithm to estimate the low-rank and sparse compo-
nents alternatively. However, they did not factorize L
as L = UV>, and therefore, their algorithm involves a
singular value decomposition in each iteration, which is
time consuming for high dimensional problems. More-
over, they only achieve sublinear convergence rate, e.g.,
O(1/

p
t), which is significantly slower than our algo-

rithm. For RPCA, there at least exist two related works,
which present nonconvex optimization algorithms. Feng
et al. [15] proposed an online algorithm for RPCA based
on the reparameterization L = UV> and `1 regular-
ization on S. However, they can only prove that their
algorithm converges to the optimal solution asymp-
totically. They do not provide any convergence rate
guarantee. Netrapalli et al. [28] proposed a nonconvex
optimization algorithm for RPCA with provable guar-
antee. Their algorithm involves alternating between
projecting the appropriate residuals onto the set of
low-rank matrices and the set of sparse matrices. Al-
though the algorithm also enjoys linear convergence
rate, it is specially designed for solving RPCA and it is
unclear whether it can be extended to solve the general
low-rank and sparse structure pursuit in (1.3). As we
will show, our algorithm enjoys a lower per iteration
computational complexity. Chen and Wainwright [14]
proposed a projected gradient descent algorithm for fast
low-rank matrix estimation with provable guarantee,
which includes RPCA as a special example. However,
they focus on symmetric positive semidefinite low rank
matrix problems. In contrast, our proposed algorithm
and theory are for general low rank matrix.

3 The Proposed Algorithm

In this section, we outline the nonconvex optimization
algorithm for solving (1.3). Let L(U,V,S) = 1/2kY�
X(UV> +S)k2

F be the shorthand for our loss function,
the algorithm is displayed in Algorithm 1. To handle
the sparsity constraint in (1.3), in line 9 of Algorithm
1, we perform a truncation step to enforce the sparsity

of the iterate S. In detail, we define the Truncate(·, s)
function in line 9 as
⇥
Truncate(S, s)

⇤
jk

= (3.1)
⇢

Sjk, if Sjk is among the top s large magnitudes,
0, otherwise.

Note that S(t+1) is the output of line 8 at the t-th itera-
tion of the algorithm. To obtain S(t+1), the truncation
step (line 9) preserves the entries of S(t+1) with the
top s large magnitudes and sets the rest to zero. Here
s is a tuning parameter that controls the sparsity level
(line 1). By iteratively performing the alternating mini-
mization and truncation step, the proposed algorithm
converges to the global optimal solutions. Here T is
the total number of iterations. The truncation step
enforces the sparse structure along the solution path.
It is worth noting that, the truncation strategy has
been previously adopted in power method [34]. Such a
truncation operation poses significant challenges for our
analysis. In addition, we apply QR decomposition to

factorize U(t+1) into U(t+1) and R
(t+1)
1 , where U(t+1)

is the orthonormal basis of U(t+1), and R
(t+1)
1 is the

corresponding upper triangular matrix. Note that the
QR decomposition in Algorithm 1 is not necessary in
practice, but only for the purpose of theoretical analy-
sis. The QR decomposition has also been employed in
[18, 16] for the theoretical analysis. In fact, they strictly
proved that QR decomposition does not a↵ect the solu-
tion. In other words, in our implementation, we do not
need QR. Also note that although the reparameteriza-
tion L = UV> makes the optimization problem less
easier to analyze, it significantly boosts the computa-
tional e�ciency. In fact, such kind of reparameterization
has been widely used in many literatures in practical
systems [20, 29].

Algorithm 1 Alternating Minimization for Low-rank
and Sparse Structure Pursuit

1: Inputs: Number of iterations T , rank parameter
k, sparsity parameter s

2: Initilize: V(0) 2 Rd2⇥k and S(0) 2 Rd1⇥d2

3: for t = 0 to T � 1 do
4: U(t+1) = argminU L(U,V(t),S(t)).

5:
�
U(t+1),R

(t+1)
1

 
= Thin QR(U(t+1)).

6: V(t+1) = argminV L(U(t+1),V,S(t)).

7:
�
V(t+1),R

(t+1)
2

 
= Thin QR(V(t+1)).

8: S(t+1) = argminS L(U(t+1),V(t+1),S).
9: S(t+1) = Truncate(S(t+1), s).

10: end for

In details, Table 1 compares the per-iteration com-
plexity our algorithm with existing methods for multi-
task regression and robust PCA, e.g., proximal gradient
descent and ADMM. Here without loss of generality,
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we assume that d1 � d2. It is obvious that our algo-
rithm enjoys much smaller per-iteration complexity
than convex relaxation methods. In next section, we
will prove that our algorithm attains linear convergence
rate. In contrast, proximal gradient descent only at-
tains linear convergence rate when the loss function is
strongly convex, which does not hold in the high dimen-
sional regime [32]. The argument applies to ADMM [17].
Therefore, in terms of both convergence rate and per-
iteration complexity, our algorithm is more e�cient
than the convex relaxation based methods. Further-
more, the per-iteration complexity of nonconvex RPCA
algorithm [28] is also much smaller than the convex re-
laxation methods, but slightly worse than our algorithm,
especially when the rank r is big. More importantly, it
is limited to RPCA and it is unclear whether it can be
applied to multi-task learning and other cases.

4 Main Theory

In this section, we present the main theory for the
nonconvex optimization algorithm in Algorithm 1.

Let the singular value decomposition of L⇤ 2 Rd1⇥d2

be L⇤ = U⇤⌃⇤V⇤>, where U⇤ 2 Rd1⇥r and V⇤ 2
Rd2⇥r are the left and right singular matrices, and
⌃⇤ = diag(�1, . . . , �r) 2 Rr⇥r is the diagonal singular
value matrix. Then we have Y = X(U⇤⌃⇤V⇤> + S⇤).
We denote the condition number of L⇤ by  =
�max(L

⇤)/�min(L
⇤) = �1/�r. Before we lay out the

main theory, we first make several assumptions, which
are necessary to our theoretical analysis.

The first assumption is known as incoherence condi-
tion [7, 9].

Assumption 4.1. We assume rank(L⇤)  r. L⇤ is
µ-incoherent, i.e., suppose the singular value decompo-
sition of L⇤ is L⇤ = U⇤⌃⇤V⇤>, it holds that

max
1id1

ke>i U⇤k2  µ

r
r

d1
,

max
1id2

ke>i V⇤k2  µ

r
r

d2
.

The incoherence assumption guarantees that L⇤ is not
too spiky. In other words, it precludes those matrices
which are sparse and have very few large entries. This
assumption has been widely made in the literature of
matrix completion [7] and decomposition [9].

The second assumption is known as the restricted isom-
etry property (RIP) [8].

Assumption 4.2. For any L 2 Rd1⇥d2 such that
rank(L)  r, the following holds

(1 � �r)kLk2
F  kX(L)k2

F  (1 + �r)kLk2
F

And for any S 2 Rd1⇥d2 such that kSk0,0  s, the
following holds

(1 � ⇣s)kSk2
F  kX(S)k2

F  (1 + ⇣s)kSk2
F

Assumption 4.2 is a common assumption. Many types of
design matrix X satisfy the RIP condition. For example,
several random matrix ensembles including Gaussian
ensemble satisfy RIP with high probability. In addition,
the identity design matrix satisfies the RIP with �r = 0
and ⇣s = 0.

Now we are ready to present the main theorem. The
following theorem establishes the linear convergence
rate of the nonconvex optimization algorithm in Al-
gorithm 1. Before we lay out the theorem, we lay out
several technical conditions that will greatly simplify
our notation. Let

⌫ = max
�p

(1 + �2r)(1 + ⇣2s), (1 + �1)/(1 � �1)
 
.

Condition 4.3. The dimension d = min(d1, d2) is
su�ciently large such that

d � max
�
120

p
2r⌫µ�1, 16

p
r/(7

p
2�1/16 � 1),

8µ
p

r/(3
p

2�1 � 3�1
p

r � 1)
 2/3

s⇤.

Meanwhile, �1 is su�ciently small such that �1 
8µ(s⇤/d)3/2.

For notational simplicity, we define

� =
3
p

2

1 � 24
p

2⌫µ
p

r(s⇤/d)3/2�1

, (4.1)

and

⇢ =
96

p
2⌫µ

p
r(s⇤/d)3/2�1

1 � 24
p

2⌫µ
p

r(s⇤/d)3/2�1

. (4.2)

Theorem 4.4. Suppose the sparsity parameter is cho-
sen as s = 4s⇤. Assume the initializations U(0), V(0)

and S(0) satisfy
��S(0) � S⇤��

2
 �1,

��V(0) � V⇤��
F
 2µ

s
(1 + ⇣2s)r

(1 + �2r)

✓
s

d

◆3/2

,

��U(0) � U⇤��
F

✓

3�1
p

r + µ

r
r

d1

s3/2

d2

◆
.

Then under Condition 4.3 we have that for all t, it holds
that

��U(t+1) � U⇤��
F

+ �
��V(t+1) � V⇤��

F

 ⇢
���U(t) � U⇤��

F
+ �

��V(t) � V⇤��
F

�
,

where � and ⇢ are defined in (4.1) and (4.2). In addition,
we have

��L(t+1) � L⇤��
F
 �1⇢

t
���U(0) � U⇤��

F

+ �
��V(0) � V⇤��

F

�
.
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Table 1: Comparison of our algorithm with convex relaxation based method in terms of per-iteration complexity.
N/A means the algorithm does not apply to the problem.

Methods Multi-task Learning RPCA

Convex Relaxation O(nd1d2 + d1d
2
2) O(d1d2 + d1d

2
2)

Noncovex RPCA [28] N/A O(r2d1d2)
Ours O(nd1r) O(rd1d2)

Remark 4.5. In Theorem 4.4, we require the initial
iterates are close enough to U⇤,V⇤ and S⇤, from where
it will converge. This requirement is easy to attain. For
example, we can always scale the design matrix X and
the response matrix Y such that �1 is su�ciently large.
Therefore,

��S(0) � S⇤��
2

can be satisfied. In addition,

the condition that the initial solutions U(0) and V(0)

are su�ciently close to the true solution is standard and
prevailing in existing literature [18, 16] on alternating
minimization. In practice, to satisfy this condition, one
often tries multiple random initializations, and chooses
the one that minimizes the objective function value.
In fact, this heuristic has been widely used in many
machine learning methods such as EM algorithm and
matrix factorization.

Remark 4.6. The result in Theorem 4.4 can be trans-
lated to the case of RPCA. In particular, in the case
of RPCA, since the design matrix is identity, we have
�2r = �1 = 0, and therefore ⌫ = 1. The sample complex-
ity of our algorithm for RPCA is O(µ4/34/3r2/3s⇤).
By comparing with [9], it is not optimal because its de-
pendence on µ and r is not optimal. In fact, the sample
complexity of the nonconvex optimization algorithm
is often suboptimal compared with convex relaxation
based methods [18, 16, 27]. The detailed derivation can
be found in the supplemental material.

5 Proof Sketch of the Main Theory

In this section, we present the proof sketch. The com-
plete detailed proofs can be found in the supplementary
material. We first provide some intuitions that explain
why alternating minimization algorithm in Algorithm 1
is guaranteed to converge to the global optimal solution.

The first key property that enables our algorithm to
converge is: for fixed V and S, the loss function is
strongly convex with respect to U under suitable con-
ditions. The same property is satisfied by V and S as
well. For the ease of presentation, we summarize this
property as the following lemma.

Lemma 5.1 (Strong Convexity). The function
L(U,V⇤,S⇤) is �1-strongly convex, the function
L(U⇤,V,S⇤) is �2-strongly convex, and the function
L(U⇤,V⇤,S) is �3-strongly convex. That is, for any

U1,U2,V1,V2,S1,S2, it holds that

L(U1,V
⇤,S⇤) � L(U2,V

⇤,S⇤)

� hrUL(U2,V
⇤,S⇤),U1 � U2i � �1/2 · kU1 � U2k2

F ,

L(U⇤,V1,S
⇤) � L(U⇤,V2,S

⇤)

� hrVL(U⇤,V2,S
⇤),V1 � V2i � �2/2 · kV1 � V2k2

F ,

L(U⇤,V⇤,S1) � L(U⇤,V⇤,S2)

� hrSL(U⇤,V⇤,S2),S1 � S2i � �3/2 · kS1 � S2k2
F .

It is easy to verify that Lemma 5.1 holds for both multi-
task learning and RPCA. For multi-task learning, it
holds with �1 = �2 = 1 � �2r and �3 = 1 � ⇣2s. For
RPCA, it holds with �1 = �2 = �3 = 1. We emphasize
that for many other design matrices, the loss function
satisfies the strong convexity.

The second key gradient that ensures our algorithm to
converge to the global optimal solution is referred to
as bounded di↵erence of gradients.

Definition 5.2 (Bounded Di↵erence of Gradients).
Let U(t+1) be the solution of r. Then there exists
L1, L

0
1, L2, L

0
2, L3, L

0
3 > 0 such that

��rUL
�
U(t+1),V

(t)
,S(t)

�
�rUL

�
U(t+1),V

⇤
,S⇤���

F

 L1

��V(t) � V⇤��
F

+ L0
1

��S(t) � S⇤��
F
,

��rVL(U(t+1),V(t+1),S(t)) �rVL(U⇤,V(t+1),S⇤)
��

F

 L2

��U(t+1) � U⇤��
F

+ L0
2

��S(t) � S⇤��
F
,

��rSL
�
U(t+1),V

(t+1)
,S(t+1)

�
�rSL

�
U⇤,V

⇤
,S(t+1)

���
F

 L3

��U(t+1) � U⇤��
F

+ L0
3

��V(t+1) � V⇤��
F
.

Note that the bounded di↵erence of gradients property
is similar to the Lipschitz property on gradient. A
similar conditions has been proposed in [10] for the
analysis of Wirtinger flow. Taking the first inequality in
Definition 5.2 for example. Here the Lipschitz gradient
property is defined only between the true parameters
V⇤,S⇤ and arbitrary V(t),S(t), rather than between
arbitrary pair of parameters V,S. Intuitively speaking,
if we set V and S to V⇤ and S⇤ respectively, and
optimize U by solving

rUL
�
U(t+1),V

⇤
,S⇤� = 0,
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we can immediately obtain U⇤ because of the
strong convexity in Lemma 5.1. However, in
practice, we do not know rUL

�
U(t+1),V

⇤
,S⇤�,

and we use rUL
�
U(t+1),V

(t)
,S(t)

�
to approx-

imate rUL
�
U(t+1),V

⇤
,S⇤�. In other words,

rUL
�
U(t+1),V

(t)
,S(t)

�
can be seen as an ap-

proximation of its convex counterpart, i.e.,
rUL

�
U(t+1),V

⇤
,S⇤�. As long as this approxi-

mation is su�ciently accurate, we still can gradually

approach U⇤ by solving rUL
�
U(t+1),V

(t)
,S(t)

�
= 0.

Similar arguments apply to V(t+1) and S(t+1) as well.
In the supplementary material, we will show that
the loss function satisfies the bounded di↵erence of
gradients property.

In Assumption 4.1, we assume that U⇤ and V⇤ are µ-
incoherent. The following lemma shows that the iterates
after orthonormalization in the process of alternating
minimization are also µ-incoherent.

Lemma 5.3 (Incoherence). Under the assumption
that kS(0) � S⇤k2  �1. We have

max
1id1

��e>i U(t+1)
��

2
 16�1µ

�r

r
r

d1
,

max
1id2

��e>i V(t+1)
��

2
 16�1µ

�r

r
r

d2
.

As we mentioned before, the truncation step in Algo-
rithm 1 is essential to take into account the sparsity
constraint. The following lemma characterizes the error
incurred by the truncation step in Algorithm 1. More
specifically, it ensure that the error after truncation
step S(t+1) � S⇤ can be upper bounded by the error
before truncation step S(t+1) �S⇤ up to some problem
dependent parameters.

Lemma 5.4 (Truncation). Suppose that we have��S(t+1) � S⇤��
F

 c
��S⇤��

F
for some c 2 (0.18, 5.8),

and s � 4c
(1�c)2 s⇤, then it holds that

��S(t+1) � S⇤��
F

�
1 + 2

p
s⇤/s

���S(t+1) � S⇤��
F
.

Lemma 5.4 indicates that in Algorithm 1, the parameter
s for the truncation step should be set su�ciently larger
than s⇤, e.g., s = 4s⇤.

The next lemma establishes the recurrence for the con-
vergence of U(t+1),U(t+1),V(t+1),V(t) and S(t).

Lemma 5.5. Under the same conditions of Theorem

4.4, we have

��U(t+1) � U⇤��
F
 ⌫µ

r
r

d2

s3/2

d1

��S⇤ � S(t)
��

F

+
�1

2
(1 + �2r)

��V⇤ � V(t)
��2

F
,

��V(t+1) � V⇤��
F
 ⌫

✓
3�1

p
r + µ

r
r

d1

s3/2

d2

◆��S⇤ � S(t)
��

F

+

p
1 + �2r(1 + �1)

3/2

1 � �1
�1kU(t+1) � U⇤kF ,

��S(t+1) � S⇤��
F
 (1 + 3�1)(1 + 2

p
s⇤/s)

·
h�

1 +
��U⇤ � U(t+1)

��
F

���V(t+1) � V⇤��
F

+ �1

��U⇤ � U(t+1)
��

F

i
.

The following lemma characterizes the e↵ect the or-
thonormalization step using the QR decomposition. In
other words, it bounds the distance between U(t+1)

(resp. V(t+1)) and U⇤ (resp. V⇤) by the distance be-
tween U(t+1) (resp. V(t+1)) and U⇤ (resp. V⇤).

Lemma 5.6. We have

��U(t+1) � U⇤��
F


p
2/�r

�
2�1 +

��S(t) � S⇤��
2

�

·
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F
.
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F

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�1

+
1 + 3�1
1 � �1
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2

◆��V(t+1) � V⇤��
F
.

Proof of Theorem 4.4. Recall that we have

��L(t+1) � L⇤��
F

=
��U(t+1)V(t+1)> � U⇤V⇤>��

F
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(5.1)

Since we assume that


1 +

1p
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Table 2: Comparison of our algorithm with convex relaxation based method for multi-task learning in terms of
kbL � L⇤kF (⇥10�2) and time (in second).

n = 100 n = 1000 n = 104

Methods Error Time Error Time Error Time
Proximal Gradient [36] 1.57±0.07 0.47 4.36±0.04 626.86 N/A N/A

Ours 0.00±0.00 0.07 0.00±0.00 4.45 0.00±0.00 293.24

Table 3: Comparison of optimizations algorithms for robust PCA in terms of kbL � L⇤kF (⇥10�2) and time (in
second). N/A means the algorithm did not output the solution in an hour.

d = 100, r = 5 d = 500, r = 20 d = 5000, r = 50
Methods Error Time Error Time Error Time
ADMM [23] 0.00±0.00 5.45 0.00±0.00 857.82 N/A N/A

Nonconvex [28] 4.45±0.97 0.57 6.48±0.67 1.05 16.6±3.6 266.05
Ours 0.00±0.00 0.15 0.00±0.00 2.16 0.00±0.00 92.51

the right hand side of (5.1) can be further bounded by

��L(t+1) � L⇤��
F

 �1kU(t+1) � U⇤��
F

+ 3
p

2
��V(t+1) � V⇤��

F

 �1

h
kU(t+1) � U⇤��

F
+ �

��V(t+1) � V⇤��
F

i

 �1⇢
h
kU(t) � U⇤��

F
+ �

��V(t) � V⇤��
F

i

 �1⇢
t
h
kU(0) � U⇤��

F
+ �

��V(0) � V⇤��
F

i
.

This completes the proof.

6 Experiments

In this section, we will present numerical results on both
synthetic and real datasets to verify the performance of
the proposed algorithms, and compare it with convex
relaxation based algorithm, i.e., ADMM. In particular,
we investigate both RPCA and multi-task learning. For
RPCA, besides ADMM [23], we also compare our al-
gorithm with the very recent nonconvex optimization
algorithm [28]. For multi-task learning, we compare
with proximal gradient descent [36]. The implementa-
tions of the baseline algorithms are downloaded from
the authors’ website. We use two measure to evaluate
the algorithms. The first measure is estimation error
based on Frobenius norm, i.e., kbL� L⇤kF . The second
measure is the computational time in second. For our
algorithm, we initialize U(1) as a semi-orthogonal ma-
trix, and S(1) as a zero matrix. We set r as the true
rank, and s as 4s⇤.

6.1 Synthetic Data

RPCA In the first experiment, following [9, 28], the low
rank matrix L⇤ = UV> is generated using normally
distributed U 2 Rd1⇥r and V 2 Rd2⇥r. In addition,
supp(S⇤) is generated by sampling a uniformly random

subset [d1]⇥[d2] with size kS⇤k0,0 = s, and each nonzero
element S⇤

ij is drawn i.i.d. from the uniform distribution

over [r/(2
p

d1d2), r/
p

d1d2]. In the simulation, we set
d1 = d2 = d. We study di↵erent settings, i.e., (1) d =
100, r = 5, (2) d = 500, r = 10, and (3) d = 5000, r = 50.
In all settings, we set s as 0.25d2. In other words, 25%
of the entries are corrupted with noise. For each setting,
we repeat the experiments for 20 times, and report the
mean and standard deviation of the estimation error, as
well as its average computational time in Table 3. Note
that we did not show kbS�S⇤kF because it is identical to

kbL�L⇤kF . We can see that our proposed algorithm can
exactly recover the low-rank and the sparse components.
This is consistent with our theory. In addition, our
algorithm is the fastest algorithm. ADMM [23] can also
exactly recovers the low-rank and the sparse matrices
for d = 100 and d = 500. However, it takes much longer
time and it cannot be scaled up to d = 5000. In addition,
the nonconvex algorithm proposed in [28] is also very
e�cient but still slower than our algorithm. However,
its estimation error is much worse and it cannot exactly
recover the low rank and sparse matrices.

Multi-task learning In the second experiment, we
compare our algorithm with proximal gradient descent
implemented in [36] for multi-task learning. We gener-
ate L⇤ and S⇤ using the same method as adopted in
RPCA. In addition, we generate each entry of X from
standard normal distribution. Then we can generate
Y from X,L⇤ and S⇤. In this experiment, we also set
d1 = d2 = d, and try three parameter settings: (1)
n = 100, d = 50, r = 5, (2) n = 1000, d = 500, r = 20,
and (3) n = 104, d = 2000, r = 50. For each setting,
we repeat the experiments for 20 times. Table 2 shows
the experimental results. We can see that our proposed
algorithm can exactly recover the low-rank and the
sparse components. This again confirms our theory. In
addition, our algorithm is much faster than the proxi-
mal gradient algorithm. In sharp contrast, the proximal
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(a) (b) (c) (d)

Figure 2: Background estimation for the “Hall of a business building” video. (a) One of the original image frame(b)
Background frame estimated by ADMM algorithm [23] for RPCA. (c) Background frame estimated by Nonconvex
method [28] for RPCA. (d) Background frame estimated by our proposed alternating minimization algorithm for
RPCA.

gradient algorithm [23] fails to exactly recovers the low-
rank and the sparse matrices. The main reason is that
it has two regularization parameters in (1.2), which are
di�cult to tune. Moreover, it cannot be scaled up to
n = 104, d = 2000, r = 50. Figure 1 illustrates the geo-
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Figure 1: Evolution of the estimation error
��bL(t)�L⇤��

F
(in logarithmic scale). (a) The alternating minimization
algorithm for RPCA. (b) The alternating minimization
algorithm for multi-task learning.

metric decay of Algorithm 1 for RPCA and multi-task
learning, as predicted by Theorem 4.4. In particular,
we plot the logarithm of

��bL�L⇤��
F

against the iteration
number t. It is obvious that our proposed algorithm
enjoys linear convergence rate.

6.2 Real Data

In this subsection, we evaluate the proposed RPCA for
background modeling [22]. Video frames with a static
background constitute a set of coherent images. It is
often desirable to detect any activity in the foreground
for surveillance purposes. A video sequence satisfies the
low-rank plus sparse structure, because backgrounds of
all the frames are related, while the variation and the
moving objects are sparse and independent. Therefore,
RPCA has been widely used to separate the foreground
pixels from the background [9, 37, 28]. We apply RPCA
to one surveillance video “Hall of a business building”
from [22]. In detail, this video is composed of 200 frames

with the resolution 144 ⇥ 176. We convert each frame
to a vector and use the first 200 frames of that video
to form a data matrix. Thus the resulting data ma-
trix X is of size 25, 344 ⇥ 200. We show the estimated
background frames by di↵erent algorithms of RPCA
(i.e., the low-rank matrix bL) in Figure2. The results
of ADMM, Nonconvex method and our algorithm are
comparable with each other. However, compared with
ADMM (about 18 minutes to process the video se-
quence) and Nonconvex method (about 1 minute to
process the video sequence), our algorithm only takes
around 22 seconds to process the video sequence. There-
fore, our algorithm is much faster. Since this is a real
data, those assumptions/conditions in our theory may
be violated on it. Nevertheless, our algorithm still out-
puts a good estimator as the state-of-art methods. This
verifies the e↵ectiveness of our algorithm on real data.

7 Conclusions

In this paper, we present a nonconvex optimization
algorithm for low-rank plus sparse structure pursuit
based on alternating minimization. We show that with
certain initialization, the proposed nonconvex optimiza-
tion algorithm enjoys linear convergence to the global
optima and exactly recovers the underlying low rank
and sparse matrices under standard conditions. We ap-
plied our algorithm to multi-task learning and RPCA
on synthetic datasets, and validate our theory.
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