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Abstract

Many interesting real world domains involve
reinforcement learning (RL) in partially ob-
servable environments. Efficient learning
in such domains is important, but existing
sample complexity bounds for partially ob-
servable RL are at least exponential in the
episode length. We give, to our knowledge,
the first partially observable RL algorithm
with a polynomial bound on the number of
episodes on which the algorithm may not
achieve near-optimal performance. Our al-
gorithm is suitable for an important class of
episodic POMDPs. Our approach builds on
recent advances in method of moments for
latent variable model estimation.

1 INTRODUCTION

A key challenge in artificial intelligence is how to ef-
fectively learn to make a sequence of good decisions
in stochastic, unknown environments. Reinforcement
learning (RL) is a subfield specifically focused on how
agents can learn to make good decisions given feedback
in the form of a reward signal. In many important ap-
plications such as robotics, education, and healthcare,
the agent cannot directly observe the state of the envi-
ronment responsible for generating the reward signal,
and instead only receives incomplete or noisy observa-
tions.

One important measure of an RL algorithm is its sam-
ple efficiency: how much data/experience is needed
to compute a good policy and act well. One way to
measure sample complexity is given by the Probably
Approximately Correct framework; an RL algorithm

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

is said to be PAC if with high probability, it selects
a near-optimal action on all but a number of steps
(the sample complexity) which is a polynomial func-
tion of the problem parameters. There has been sub-
stantial progress on PAC RL for the fully observable
setting [Brafman and Tennenholtz, 2003, Strehl and
Littman, 2005, Kakade, 2003, Strehl et al., 2012, Lat-
timore and Hutter, 2012], but to our knowledge there
exists no published work on PAC RL algorithms for
partially observable settings.

This lack of work on PAC partially observable RL is
perhaps because of the additional challenge introduced
by the partial observability of the environment. In
fully observable settings, the world is often assumed
to behave as a Markov decision process (MDP). An
elegant approach for proving that a RL algorithm for
MDPs is PAC is to compute finite sample error bounds
on the MDP parameters. However, because the states
of a partially observable MDP (POMDP) are hidden,
the naive approach of directly treating the POMDP as
a history-based MDP yields a state space that grows
exponentially with the horizon, rather than polyno-
mial in all POMDP parameters [Even-Dar et al., 2005].

On the other hand, there has been substantial recent
interest and progress on method of moments and spec-
tral approaches for modeling partially observable sys-
tems [Anandkumar et al., 2012, 2014, Hsu et al., 2008,
Littman et al., 2001, Boots et al., 2011]. The majority
of this work has focused on inference and prediction,
with little work tackling the control setting. Method of
moments approaches to latent variable estimation are
of particular interest because for a number of models
they obtain global optima and provide finite sample
guarantees on the accuracy of the learned model pa-
rameters.

Inspired by the this work, we propose a POMDP RL
algorithm that is, to our knowledge, the first PAC
POMDP RL algorithm for episodic domains (with no
restriction on the policy class). Our algorithm is ap-
plicable to a restricted but important class of POMDP
settings, which include but are not limited to informa-
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tion gathering POMDP RL domains such as preference
elicitation [Boutilier, 2002], dialogue management slot-
filling domains [Ko et al., 2010], and medical diagnosis
before decision making [Amato and Brunskill, 2012].
Our work builds on method of moments inference tech-
niques, but requires several non-trivial extensions to
tackle the control setting. In particular, there is a
subtle issue of latent state alignment: if the models for
each action are learned as independent hidden Markov
models (HMMs), then it is unclear how to solve the
correspondence issue across latent states, which is es-
sential for performing planning and selecting actions.
Our primary contribution is to provide a theoretical
analysis of our proposed algorithm, and prove that it
is possible to obtain near-optimal performance on all
but a number of episodes that scales as a polynomial
function of the POMDP parameters. Similar to most
fully observable PAC RL algorithms, directly instan-
tiating our bounds would yield an impractical number
of samples for a real application. Nevertheless, we be-
lieve understanding the sample complexity may help
to guide the amount of data required for a task, and
also similar to PAC MDP RL work, may motivate new
practical algorithms that build on these ideas.

2 BACKGROUND AND RELATED
WORK

The inspiration for pursuing PAC bounds for
POMDPs came about from the success of PAC bounds
for MDPs [Brafman and Tennenholtz, 2003, Strehl
and Littman, 2005, Kakade, 2003, Strehl et al., 2012,
Lattimore and Hutter, 2012]. While algorithms
have been developed for POMDPs with finite sample
bounds [Peshkin and Mukherjee, 2001, Even-Dar et al.,
2005], unfortunately these bounds are not PAC as they
have an exponential dependence on the horizon length.

Alternatively, Bayesian methods [Ross et al., 2011,
Doshi-Velez, 2012] are very popular for solving
POMDPs. For MDPs, there exist Bayesian meth-
ods that have PAC bounds [Kolter and Ng, 2009, As-
muth et al., 2009]; however there have been no PAC
bounds for Bayesian methods for POMDPs. That
said, Bayesian methods are optimal in the Bayesian
sense of making the best decision given the posterior
over all possible future observations, which does not
translate to a frequentist finite sample bound.

We build on method of moments (MoM) work for es-
timating HMMs [Anandkumar et al., 2012] in order to
provide a finite sample bound for POMDPs. MoM is
able to obtain a global optimum, and has finite sample
bounds on the accuracy of their estimates, unlike the
popular Expectation-Maximization (EM) that is only
guaranteed to find a local optima, and offers no finite

sample guarantees. MLE approaches for estimating
HMMs [Abe and Warmuth, 1992] also unfortunately
do not provide accuracy guarantees on the estimated
HMM parameters. As POMDP planning methods typ-
ically require us to have estimates of the underlying
POMDP parameters, it would be difficult to use such
MLE methods for computing a POMDP policy and
providing a finite sample guarantee1.

Aside from the MoM method in Anandkumar et al.
[2012], another popular spectral method involves us-
ing Predictive State Representations (PSRs) [Littman
et al., 2001, Boots et al., 2011], to directly tackle the
control setting; however it only has asymptotic conver-
gence guarantees and no finite sample analysis. There
is also another method of moments approach to trans-
fer across a set of bandits tasks, but the latent variable
estimation problem is substantially simplified because
the state of the system is unchanged by the selected
actions [Azar et al., 2013].

Fortunately, due to the polynomial finite sample
bounds from MoM, we can achieve a PAC (polyno-
mial) sample complexity bound for POMDPs.

3 PROBLEM SETTING

We consider a partially observable Markov decision
process (POMDP) which is described as the tuple
(S,A,R, T, Z, b,H) where we have a set of discrete
states S, discrete actions A, discrete observations Z,
discrete rewards R, initial belief b (more details be-
low), and episode length H. The transition model is
represented by a set of |A| matrices Ta(i, j) : |S| × |S|
where the (i, j)-th entry is the probability of transi-
tioning from si to sj under action a. With a slight
abuse of notation, we use Z to denote both the finite
set of observations and the observation model captured
by the set of |A| observation matrices, Za where the
(i, j)-th entry represents the probability of observing
zi given the agent took action a and transitioned to
state sj . We similarly do a slight abuse of notation
and let R denote both the finite set of rewards, and
the reward matrices Ra where the (i, j)-th entry in a
matrix denotes the probability of obtaining reward ri

1Abe and Warmuth [1992]’s MLE approach guaran-
tees that the estimated probability over H-length obser-
vation sequences has a bounded KL-divergence from the
true probability of the sequence under the true parameters,
which is expressed as a function of the number of underly-
ing data samples used to estimate the HMM parameters.
We think it may be possible to use such estimates in the
control setting when modeling hidden state control systems
as PSRs, and employing a forward search approach to plan-
ning; however, there remain a number of subtle issues to
address to ensure such an approach is viable and we leave
this as an interesting direction for future work.
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when taking action a in state sj . Note that in our
setting we also treat the reward as an additional ob-
servation2.

The objective in POMDP planning is to compute a
policy π that achieves a large expected sum of future
rewards, where π is a mapping from histories of prior
sequences of actions, observations, and rewards, to ac-
tions. In many cases we capture prior histories using
a sufficient statistic called the belief b where b(s) rep-
resents the probability of being in a particular state s
given the prior history of actions, observations and re-
wards. One popular method for POMDP planning in-
volves representing the value function by a finite set of
α-vectors, where α(s) represents the expected sum of
future rewards of following the policy associated with
the α-vector from initial state s. POMDP planning
then proceeds by taking the first action associated with
the policy of the α-vector which yields the maximum
expected value for the current belief state, which can
be computed for a particular α-vector using the dot
product 〈b, α〉.

In the reinforcement learning setting, the transition,
observation, and/or reward model parameters are ini-
tially unknown. The goal is to learn a policy that
achieves large sum of rewards in the environment with-
out advance knowledge of how the world works.

We make the following assumptions about the domain
and problem setting:

1. We consider episodic, finite horizon partially ob-
servable RL (PORL) settings

2. It is possible to achieve a non-zero probability of
being in any state in two steps from the initial
belief.

3. For each action a, the transition matrix Ta is full
rank, and the observation matrix Za and reward
matrix Ra are full column rank.

The first assumption on the setting is satisfied by many
real world situations involving an agent repeatedly do-
ing a task: for example, an agent may sequentially in-
teract with many different customers each for a finite
amount of time. The key restrictions on the setting
are captured in assumptions 2 and 3. Assumption 2

2In planning problems the reward is typically a real-
valued scalar, but in PORL we must learn the reward
model. This requires assuming some mapping between
states and rewards. For simplicity we assume multinomial
distribution over a discrete set of rewards. Note that we
can always discretized a real-valued reward into a finite set
of values with bounded error on the resulting value func-
tion estimates, and our choice makes very little restrictions
on the underlying setting.

is similar to a mixing assumption and is necessary in
order for MoM to estimate dynamics for all states.
Assumption 3 is necessary for MoM to uniquely deter-
mine the transition, observation, and reward dynam-
ics. The second assumption may sound quite strong,
as in some POMDP settings states are only reachable
by a complex sequence of carefully chosen actions, such
as in robotic navigation or video games. However, as-
sumption 2 is commonly satisfied in many important
POMDP settings that primarily involve information
gathering. For example, in preference elicitation or
user modeling, POMDPs are commonly used to iden-
tify the, typically static, hidden intent or preference or
state of the user, before taking some action based on
the resulting information [Boutilier, 2002]. Examples
of this include dialog systems [Ko et al., 2010], medical
diagnosis and decision support [Amato and Brunskill,
2012], and even human-robot collaboration preference
modeling [Nikolaidis et al., 2015]. In such settings, the
belief commonly starts out non-zero over all possible
user states, and slowly gets narrowed down over time.
The third assumption is also significant, but is still sat-
isfied by an important class of problems that overlap
with the settings captured by assumption 2. Informa-
tion gathering POMDPs where the state is hidden but
static automatically satisfy the full rank assumption
on the transition model, since it is an identity matrix.
Assumption 3 on the observation and reward matrices
imply that the cardinality of the set of observations
(and rewards) is at least as large as the size of the
state space. A similar assumption has been made in
many latent variable estimation settings (e.g. [Anand-
kumar et al., 2012, 2014, Song et al., 2010]) including
in the control setting [Boots et al., 2011]. Indeed, when
the observations consist of videos, images or audio sig-
nals, this assumption is typically satisfied [Boots et al.,
2011], and such signals are very common in dialog
systems and the user intent and modeling situations
covered by assumption 2. Satisfying that the reward
matrix has full rank is typically trivial as the reward
signal is often obtained by discretizing a real-valued
reward. Therefore, while we readily acknowledge that
our setting does not cover all generic POMDP rein-
forcement learning settings, we believe it does cover
an important class of problems that are relevant to
real applications.

4 ALGORITHM

Our goal is to create an algorithm that can achieve
near optimal performance from the initial belief on
each episode. Prior work has shown that the error
in the POMDP value function is bounded when us-
ing model parameter estimates that themselves have
bounded error [Ross et al., 2009, Fard et al., 2008];
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Algorithm 1: EEPORL

input: S,A,Z,R,H,N, c, πrest
1 Let πexplore be the policy where a1, a2 are

uniformly random, and
p(at+2|at) = 1

1+c|A| (I + c1|A|×|A|) ;

2 X ← ∅ ;
// Phase 1:

3 for episode i← 1 to N do
4 Follow πexplore for 4 steps ;
5 Let xt = (at, rt, zt, at+1) ;
6 X ← X ∪ {(x1, x2, x3)} ;
7 Execute πrest for the rest of the steps ;

// Phase 2:

8 Get T̂ , Ô, ŵ for the induced HMM from X
through our extended MoM method ;

9 Using the labeling from Algorithm 2 with Ô,
compute estimated POMDP parameters.;

10 Call Algorithm 3 with estimated POMDP
parameters to estimate a near optimal policy π̂
;

11 Execute π̂ for the rest of the episodes ;

Algorithm 2: LabelActions

input: Ô
1 foreach column i of Ô do

2 Find a row j such that Ô(i, j) ≥ 2
3|R||Z| ;

3 Let the observation associated with row j be
(a, r′, z′, a′), label column i with (a, a′) ;

Algorithm 3: FindPolicy

input: b̂(s(a0,a1)), p̂(z|a, s(a,a′)), p̂(r|s(a,a′), a
′),

p̂(s(a′,a′′)|s(a,a′), a
′)

1 ∀a−, a ∈ A, Γ
a−,a
1 = {β̂a1 (s(a−,a))} ;

2 for t← 2 to H do

3 ∀a, a′ ∈ A,Γa,a
′

t = ∅ ;
4 for a, a′ ∈ A do

5 for ft(r, z) ∈ (|R| × |Z| → Γa,a
′

t−1) do
// all mappings from an

observation pair to a

previous β-vector
6 ∀a− ∈ A,Γa−,at =

Γ
a−,a
t ∪ {βa,ftt (s(a−,a))} ;

7 Return arg maxa0,a1,βH(s(a0,a1)))∈Γ
a0,a1
H

(̂b · βH) ;

however, this work takes a sensitivity analysis perspec-
tive, and does not address how such model estimation
errors themselves could be computed or bounded.3

3 Fard et al. [2008] assume that labels of the hidden
states are provided, which removes the need for latent vari-

Figure 1: POMDP (left) analogous to induced HMM
(right). Gray nodes show fully observed variables,
whereas white nodes show latent states.

In contrast, many PAC RL algorithms for MDPs
have shown that exploration is critical in order to get
enough data to estimate the model parameters. How-
ever in MDPs, algorithms can directly observe how
many times every action has been tried in every state,
and can use this information to steer exploration to-
wards less explored areas. In partially observable set-
tings it is more challenging, as the state itself is hid-
den, and so it is not possible to directly observe the
number of times an action has been tried in a latent
state. Fortunately, recent advances in method of mo-
ments (MoM) estimation procedures for latent variable
estimation (see e.g. [Anandkumar et al., 2012, 2014])
have demonstrated that in certain uncontrolled set-
tings, including many types of hidden Markov models
(HMMs), it is still possible to achieve accuracy esti-
mates of the underlying latent variable model param-
eters as a function of the amount of data samples used
to perform the estimation. For some intuition about
this, consider starting in a belief state b which has
non-zero probability over all possible states. If one
can repeatedly take the same action a from same be-
lief b, given a sufficient number of samples, we will
have actually taken action a in each state many times
(even if we don’t know the specific instances on which
action a was taken in a state s).

The control setting is more subtle than the uncon-
trolled setting which has been the focus of the ma-
jority of recent MoM spectral learning research, be-
cause we wish to estimate not just the transition and
observation models of a HMM, but to estimate the
POMDP model parameters. Our ultimate interest is
in being able to select good actions. A naive approach
is to independently learn the transition, observation,
and reward parameters for each separate action, by re-
stricting the POMDP to only execute a single action,
thereby turning the POMDP into an HMM. However,
this simple aproach fails because the returned parame-
ters can correspond to a different labeling of the hidden
states. For example, the first column of the transition
matrix for action a1 may actually correspond to the
state s2, while the first column of the transition ma-

able estimation.
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trix for action a2 may truly correspond to s5. We
require that the labeling must be consistent for all ac-
tions since we wish to compute what happens when
different actions are executed consecutively. An un-
satisfactory way to match up the labels for different
actions is by requiring that the initial belief state have
probabilities that are unique and well separated per
state. Then we can use the estimated initial belief
from each action to match up the labels. However,
this is a very strong assumption on the starting belief
state which is unlikely to be realized.

To address this challenge of mismatched labels, we
transform our POMDP into an induced HMM (see
Figure 1) by fixing the policy to πexplore (for a few
steps, during a certain number of episodes), and create
an alternate hidden state representation that directly
solves the problem of alignment of hidden states across
actions. Specifically, we make the hidden state at time
t of the induced HMM, denoted by ht, equal to the tu-
ple of the action at time step t, the next state, and the
subsequent action, ht = (at, st+1, at+1). We denote
the observations of the induced HMM by x, and the
observation associated with a hidden state ht is the
tuple xt = (at, rt, zt, at+1). Figure 1 shows how the
graphical model of our original POMDP is related to
the graphical model of the induced HMM. In making
this transformation, our resulting HMM still satisfies
the Markov assumption: the next state is only a func-
tion of the prior state, and the observation is only a
function of the current state. But, this transformation
also has the desired property that it is now possible to
directly align the identity of states across selected ac-
tions. This is because HMM parameters now depend
on both state and action, so there is a built-in corre-
lation between different actions. We will discuss this
more in the theoretical analysis.

We are now ready to describe our algorithm for
episodic finite horizon reinforcement learning in
POMDPs, EEPORL (Explore then Exploit Partially
Observable RL, which is shown in Algorithm 1). Our
algorithm is model-based and proceeds in two phases.
In the first phase, it performs exploration to collect
samples of trying different actions in different (latent)
states. After the first phase completes, we extend a
MoM approach [Anandkumar et al., 2012] to compute
estimates of the induced HMM parameters. We use
these estimates to obtain a near-optimal policy.

4.1 Phase 1

The first phase consists of the first N episodes. Let
πexplore be a fixed open-loop policy for the first four
actions of an episode. In πexplore actions a1, a2

are selected uniformly at random, and p(at+2|at) =

1
1+c|A| (I+ c1|A|×|A|) where c can be any positive real

number. For our proof, we pick c = O(1/|A|). Note
that πexplore only depends on previous actions and not
on any observations. The definition of p(at+2|at) for
what will work for the proof only requires it to be
full-rank and having some minimum probability over
all actions. We chose a perturbed identity matrix for
simplicity. Since πexplore is a fixed policy, the POMDP
process reduces to a HMM for these first four steps.
During these steps we store the observed experience
as (x1, x2, x3), where xt = (at, rt, zt, at+1) is an obser-
vation of our previously defined induced HMM. The
algorithm then follows policy πrest for the remaining
steps of the episode. All of these episodes will be con-
sidered as potentially non-optimal, and so the choice
of πrest does not impact the theoretical analysis. How-
ever, empirically πrest could be constructed to encour-
age near optimal behavior given the observed data col-
lected up to the current episode.

4.2 Parameter Estimation

After Phase 1 completes, we have N samples of the
tuple (x1, x2, x3). We then apply our extension to
the MoM algorithm for HMM parameter estimation by
Anandkumar et al. [2012]. Our extension computes es-

timates and bounds on the transition model T̂ which is
not computed in the original method. To summarize,
this procedure yields an estimated transition matrix
T̂ , observation matrix Ô, and belief vector ŵ for the
induced HMM. The belief ŵ is over the second hidden
state, h2.

As mentioned before as one major challenge, label-
ing of the states h of the induced HMM is arbi-
trary; however it is consistent between T̂ , Ô, ŵ since
this is a single HMM inference problem. Recall that
a hidden state in our induced HMM is defined as
ht = (at, st+1, at+1). Since the actions are fully ob-
servable, it is possible to label each state h = (a, s′, a′)

(i.e. the columns of Ô, the rows and columns of T̂ , and
the rows of ŵ) with two actions (a, a′) that are associ-
ated with that state. This is possible because the true
observation matrix entries for the actions of a hidden
state must be non-zero, and the true value of all other
entries (for other actions) must be zero; therefore, as
long as we have sufficiently accurate estimates of the
observation matrix, we can use the observation matrix
parameters to augment the states h with their associ-
ated action pair. This procedure is performed by Algo-
rithm 2. This labeling provides a connection between
the HMM state h and the original POMDP state. For
a particular pair of actions a, a′, there are exactly |S|
HMM states that correspond to them. Thus looking at
the columns of Ô from left-to-right, and only picking
out the columns that are labeled with a, a′ results in a
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specific ordering of the states (a, ·, a′), which is a per-
mutation of the POMDP states, which we denote as
{s(a,a′),1, s(a,a′),2, . . . , s(a,a′),|S|}. We will also use the
notation s(a,a′) to implicitly refer to a vector of states
in the order of the permutation.

The algorithm proceeds to estimate the original
POMDP parameters in order to perform planning and
compute a policy. Note that the estimated parameters
use the computed s(a,a′) permutations of the state. Let

Ôa,a
′

be the submatrix where the rows and columns
correspond to the actions (a, a′) and T̂ a,a

′,a′′ be the
submatrix where the rows correspond to the actions
(a′, a′′) and columns correspond to the actions (a, a′).
Then the estimated POMDP parameters can be com-
puted as follows:

b̂(s(a0,a1)) = normalize((T̂−1T̂−1ŵ)(a0, ·, a1))

p̂(z|a, s(a,a′)) = normalize(
∑
r

Ôa,a
′
)

p̂(r|s(a,a′), a
′) = normalize(

∑
z

Ôa,a
′
)

p̂(s(a′,a′′)|s(a,a′), a
′) = normalize(T̂ a,a

′,a′′)

Note that we require an additional normalize() proce-
dure since the MoM approach we leverage is not guar-
anteed to return well formed probability distributions.
The normalization procedure just divides by the sum
to make them into valid probability distributions (if
there are negative values we can either set them to
zero or even just use the absolute value).

Algorithm 3 then uses these estimated POMDP pa-
rameters to compute a policy. The algorithm con-
structs β-vectors (see Definition 1) that represent the
expected sum of rewards of following a particular
policy starting with action a′ given an input per-
muted state s(a,a′). Aside from this slight modifica-
tion, β-vectors are analogous to α-vectors in standard
POMDP planning. The β-vectors form an approxi-
mate value function for the underlying POMDP and
can be used in a similar way to standard α-vectors.

4.3 Phase 2

In phase 2, after estimating the POMDP parameters
and β-vectors, we use the estimated POMDP value
function to extract a policy for acting, and we will
shortly prove sufficient conditions for this policy to be
near-optimal for all remaining episodes.

The policy followed depends on the computed value
function. If computationally tractable, one can com-
pute β-vectors incrementally for all possible H-step
policies. In this case, control proceeds by finding the
best β-vector for the estimated initial belief b̂(s(a0,a1))
(largest dot product of the β-vector with the initial

belief) and then following the associated policy π̂. π̂ is
then followed for the entire episode with no additional
belief updating required as the policy itself encodes
the conditional branching.

However, in practical circumstances, it will not be pos-
sible to enumerate all possible H-step policies. In
this case, one can use point-based approaches or other
methods that use α-vectors to enumerate only a sub-
set of possible policies. In this case there will be an
additional error εplanning in the final error bound due
to finite set of policies considered. In our analysis we
omit εplanning for simplicity and assume that we enu-
merate all H-step policies.

Definition 1. A β-vector taking as input s(a,a′) with
root action a′ and t-step conditional policies ft(r, z)
for each observation pair (r, z) is defined as

βa
′

1 (s(a,a′)) =
∑
r

p(r|s(a,a′), a) · r

βa
′,ft
t+1 (s(a,a′)) =

∑
r,z,s(a′,ft(r,z))

(r + γβ
ft(r,z)
t (s(a′,ft(r,z))))

· p(r|s(a,a′), a)p(z|s(a′,ft(r,z)), a)p(s(a′,ft(r,z))|s(a,a′), a)

where ft(r, z) can also denote the root action of the
policy ft(r, z) used in terms like s(a,ft(r,z)).

5 THEORY

5.1 PAC Theorem Setup

We now state our primary result. For full details,
please refer to our tech report4. Before doing so, we
define some additional notation. Let V π(b) =

∑H
i=1 rt

starting from belief b be the total undiscounted re-
ward following policy π for an episode. Let σ1,a(Ta) =
maxa σ1(Ta) and similarly for σ1,a(Ra) and σ1,a(Za).
Let σa(Ta) = mina σ|S|(Ta) and similarly for σa(Ra)
and σa(Za). Assume σa(Ta), σa(Ra), and σa(Za) are
all at most 1 (otherwise each term can be replaced by
1 in the final sample complexity bound below).

5.2 PAC Theorem

Theorem 1. For POMDPs that satisfy the stated as-
sumptions defined in the problem setting, executing
EEPORL will achieve an expected episodic reward of
V (b0) ≥ V ∗(b0) − ε on all but a number of episodes
that is bounded by

O

H4V 2
max|A|12|R|4|Z|4|S|12

(
1 +

√
log( 3

δ )
)2

log
(

3
δ

)
Cd,d,d

(
δ
3

2
)
σa(Ta)6σa(Ra)8σa(Za)8ε2


4http://www.cs.cmu.edu/~zguo/#publications

http://www.cs.cmu.edu/~zguo/#publications
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with probability at least 1− δ, where

Cd,d,d(δ) = min(C1,2,3(δ), C1,3,2(δ))

C1,2,3(δ) = min

(
mini 6=j ||M3(~ei − ~ej)||2 · σk(P1,2)2

||P1,2,3||2 · k5 · κ(M1)4

· δ

log(k/δ)
,
σk(P1,3)

1

)
C1,3,2(δ) = min

(
mini 6=j ||M2(~ei − ~ej)||2 · σk(P1,3)2

||P1,3,2||2 · k5 · κ(M1)4

· δ

log(k/δ)
,
σk(P1,2)

1

)
The quantities C1,2,3, C1,3,2 directly arise from using
the previously referenced MoM method for HMM pa-
rameter estimation [Anandkumar et al., 2012] and in-
volve singular values of the moments of the induced
HMM and the induced HMM parameters (see [Anand-
kumar et al., 2012] for details).

We now briefly overview the proof. Detailed proofs
are available in the supplemental material. We first
show that by executing EEPORL we obtain param-
eter estimates of the induced HMM, and bounds on
these estimates, as a function of the number of data
points (Lemma 2). We then prove that we can use the
induced HMM to obtain estimated parameters of the
underlying POMDP (Lemma 4). Then we show that
we can compute policies that are equivalent (in struc-
ture and value) to those from the original POMDP
(Lemma 5). We then bound the error in the resulting
value function estimates of the resulting policies due
to the use of approximate (instead of exact) model
parameters (Lemma 6). This allows us to compute a
bound on the number of required samples (episodes)
necessary to achieve near-optimal policies, with high
probability, for use in phase 2.

We commence the proof by bounding the error in es-
timates of the induced HMM parameters. In order
to do that, we introduce Lemma 1, which proves that
samples taken in phase 1 belong to an induced HMM
where the transition and observation matrices are full
rank. This is a requirement for being able to apply
the MoM HMM parameter estimation procedure of
Anandkumar et al. [2012].

Lemma 1. The induced HMM has the observation
and transition matrices defined as

O(xit, h
j
t ) =

δ(ait, a
j
t )δ(a

i
t+1, a

j
t+1)p(zit+1|a

j
t , s

j
t+1)p(rit+1|s

j
t+1, a

j
t+1)

T (hit+1, h
j
t ) = δ(ait+1, a

j
t+1)p(sit+2|s

j
t+1, a

j
t+1)p(ait+2|a

j
t )

where i is the index over the rows and j is the in-
dex over the columns, and xit = (ait, z

i
t+1, r

i
t+1, a

i
t+1),

hit+1 = (ait+1, s
i
t+2, a

i
t+2), hjt = (ajt , s

j
t+1, a

j
t+1). T

and O are both full rank and w = p(h2) has posi-
tive probability everywhere. Furthermore the following

terms are bounded: ‖T‖2 ≤
√
|S|, ‖T−1‖2 ≤ 2(1+c|A|)

σa(Ta) ,

σmin(O) ≥ σa(Ra)σa(Za), and ‖O‖2 = σ1(O) ≤ |S|.

Next, we use Lemma 2, which is an extension of the
method of moments method by Anandkumar et al.
[2012] that provides a bound on the accuracies of the
estimated induced HMM parameters in terms of N ,
the number of samples collected. Our extension in-
volves computing T̂ (the original method only had Ô

and ÔT ) and bounding its accuracy.

Lemma 2. Given an HMM such that p(h2) has posi-
tive probability everywhere, the transition matrix is full
rank, and the observation matrix is full column rank,
then by gathering N samples of (x1, x2, x3), the esti-

mates T̂ , Ô, ŵ can be computed such that

||T̂ − T ||2 ≤ 18|A||S|4(σa(Ra)σa(Za))−4ε1

||Ô −O||2 ≤ |A||S|0.5ε1
||Ô −O||max ≤ ε1
||ŵ − w||2 ≤ 14|A|2|S|2.5(σa(Ra)σa(Za))−4ε1

where || · ||2 is the spectral norm for matrices, and
the euclidean norm for vectors, and w is the marginal
probability of h2, with probability 1− δ, as long as

N ≥ O

(
|A|2|Z||R|(1 +

√
log(1/δ))2

(Cd,d,d(δ))2 · ε21
log

(
1

δ

))

Next we proceed by showing how to bound the error
in the estimates of the POMDP parameters. The fol-
lowing Lemma 3 is a prerequisite for computing the
submatrices of Ô and T̂ needed for the estimates of
the POMDP parameters.

Lemma 3. Given Ô with max-norm error εO ≤
1

3|Z||R| , then the columns which correspond to HMM

states of the form h = (a, s′, a′) can be labeled with
their corresponding a, a′ using Algorithm 2.

With the correct labels, the submatrices of Ô and T̂
allow us to compute estimates of the original POMDP
parameters in terms of these permutations s(a,a′).
Lemma 4 bounds the error in these resulting estimates.

Lemma 4. Given T̂ , Ô, ŵ with max-norm errors
εT , εO, εw respectively, then the following bounds hold
on the estimated POMDP model parameters with prob-
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ability at least 1− δ

|p̂(s(a′,a′′)|s(a,a′), a
′)− p(s(a′,a′′)|s(a,a′), a

′)| ≤ 4|S|εT
ε2a

|p̂(z|a, s(a,a′))− p(z|a, s(a,a′))| ≤ 4|Z||R|εO
|p̂(r|s(a,a′), a

′)− p(r|s(a,a′), a
′)| ≤ 4|Z||R|εO

|̂b(s(a0,a1))− b(s(a0,a1))|
≤ 4|A|4|S|(||T−1||22εw + 6||T−1||32εT )

where εa = Θ(1/|A|)

We proceed by bounding the error in computing the
estimated β-vectors. Lemma 5 states that β-vectors
are equivalent under permutation to α-vectors.

Lemma 5. Given the permutation of the states
s(a,a′),j = sφ((a,a′),j), β-vectors and α-vectors over
the same policy πt are equivalent i.e. βπt

t (s(a,a′),j) =
απt
t (sφ((a,a′),j))

The following lemma bounds the error in the resulting
α-vectors obtained by performing POMDP planning,
and follows from prior work [Fard et al., 2008, Ross
et al., 2009].

Lemma 6. Suppose we have approximate POMDP
parameters with errors |p̂(s′|s, a) − p(s′|s, a)| ≤ εT ,
|p̂(z|a, s′)−p(z|a, s′)| ≤ εZ , and |p̂(r|s, a)−p(r|s, a′)| ≤
εR. Then for any t-step conditional policy πt

|απt
t (s)− α̂πt

t (s)| ≤ t2Rmax(|R|εR + |S|εT + |Z|εZ).

We next prove that our EEPORL algorithm computes
a policy that is optimal for the input parameters5:

Lemma 7. Algorithm 3 finds the policy π̂ which
maximizes V π̂ (̂b(s1)) for a POMDP with parameters

b̂(s1), p̂(z|a, s′), p̂(r|s, a), and p̂(s′|s, a).

We now have all the key pieces to prove our result.

Proof. (Proof sketch of Theorem 1). Lemma 4 shows
that the error in the estimates of the POMDP pa-
rameters can be bounded in terms of the error in the
induced HMM parameters, which is itself bounded in
terms of the number of samples (Lemma 1). Lemma 5
and Lemma 6 together bound in the error in comput-
ing the estimated value function (as represented by
β-vectors) using estimated POMDP parameters.

We then need to bound the error from executing π̂
that Algorithm 3 returns compared to the optimal pol-
icy π∗. We know from Lemma 7 that Algorithm 3

5Again, we could easily modify this to account for ap-
proximate planning error, but leave this out for simplicity,
as we do not expect this to make a significant impact on
the resulting sample complexity, except in terms of minor
changes to the polynomial terms.

correctly identifies the best policy for the estimated
POMDP. Then let the initial beliefs b, b̂ have error
‖b − b̂‖∞ ≤ εb, and the bound over α-vectors of any
policy π, ‖απ − α̂π‖∞ ≤ εα be given. Then

V̂ π̂ (̂b) = b̂ · α̂π̂ ≥ b̂ · α̂π
∗

≥ b̂ · απ
∗
− |̂b · απ

∗
− b̂ · α̂π

∗
| ≥ b̂ · απ

∗
− εα

≥ b · απ
∗
− |b · απ

∗
− b̂ · απ

∗
| − εα

≥ b · απ
∗
− εbVmax − εα = V ∗(b)− εbVmax − εα

where the first inequality is because π̂ is the optimal
policy for b̂ and α̂, the second inequality is by the trian-
gle inequality, the third inequality is because ‖b̂‖1 = 1,
the fourth inequality is by the triangle inequality, the
fifth inequality is since α is at most Vmax. Next

V π̂(b) = b · απ̂ ≥ b̂ · απ̂ − |̂b · απ̂ − b · απ̂|

≥ b̂ · απ̂ − εbVmax

≥ b̂ · α̂π̂ − |̂b · α̂π̂ − b̂ · απ̂| − εbVmax

≥ b̂ · α̂π̂ − εα − εbVmax

where the first inequality is by triangle inequality, the
second inequality is because α is at most Vmax, the
third inequality is triangle inequality, and the fourth
inequality is due to ‖b̂‖1 = 1. Putting those two to-
gether results in

V π̂(b) ≥ V ∗(b)− 2εbVmax − 2εα

Letting ε = 2εbVmax + 2εα, and setting the number of
episodes N to the value specified in the theorem will
ensure that the resulting errors εb and εα are small
enough to obtain an ε-optimal policy as desired.

6 CONCLUSION

We have provided a PAC RL algorithm for an impor-
tant class of episodic POMDPs, which includes many
information gathering domains. To our knowledge this
is the first RL algorithm for partially observable set-
tings that has a sample complexity that is a polyno-
mial function of the POMDP parameters.

There are many areas for future work. We are inter-
ested in reducing the set of currently required assump-
tions, thereby creating PAC PORL algorithms that
are suitable to more generic settings. Such a direc-
tion may also require exploring alternatives to method
of moments approaches for performing latent variable
estimation. We also hope that our theoretical results
will lead to further insights on practical algorithms for
partially observable RL.
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