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Abstract

We present a novel approach for non-stationary
Gaussian process regression (GPR), where the
three key parameters – noise variance, signal
variance and lengthscale – can be simultaneously
input-dependent. We develop gradient-based in-
ference methods to learn the unknown function
and the non-stationary model parameters, with-
out requiring any model approximations. For
inferring the full posterior distribution we use
Hamiltonian Monte Carlo (HMC), which con-
veniently extends the analytical gradient-based
GPR learning by guiding the sampling with the
gradients. The MAP solution can also be learned
with gradient ascent. In experiments on several
synthetic datasets and in modelling of tempo-
ral gene expression, the non-stationary GPR is
shown to give major improvement when model-
ing realistic input-dependent dynamics.

1 Introduction

Gaussian process regression has emerged as a power-
ful, yet practical class of non-parametric Bayesian mod-
els that quantify the uncertainties of the underlying process
using Gaussian distributions (Rasmussen and Williams,
2006). Gaussian processes are commonly applied to time-
series interpolation, regression and classification, where the
GP can provide predictive distributions (Rasmussen and
Williams, 2006).

The standard GP model assumes that the model parame-
ters stay constant over the input space. This includes the
observational noise variance ω2, as well as the signal vari-
ance σ2 and the lengthscale ` of the covariance function.
The signal variance determines the signal amplitude, while
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the characteristic lengthscale defines the local ‘support’
neighborhood of the function. In many real world prob-
lems either the noise variance or the signal smoothness, or
both, vary over the input space, implying a heteroscedas-
tic noise model or non-stationary function dynamics, re-
spectively (Le et al., 2005; Wang and Neal, 2012). In
both cases, the analytical posterior of the GP becomes in-
tractable (Tolvanen et al., 2014). For instance, in biologi-
cal studies, rapid signal changes are often observed quickly
after perturbations, with the signal becoming smoother in
time (Heinonen et al., 2015).

Non-stationary models have been introduced from several
perspectives. The treed GP model contains multiple piece-
wise GPs of varying covariances (Gramacy, 2005). Sev-
eral authors have proposed transforming or warping the in-
put space to achieve effective non-stationarity (Sampson
and Guttorp, 1992; Schmidt and O’Hagan, 2003). Snoek
et al. (2014) infer parametric warpings for multi-task GPs.
In spatial statistics, spatial warpings have been extensively
studied (Anderes and Stein, 2008). Another approach is to
model the temporal evolution of the GP covariance matrix
directly with generalised Wishart processes (Wilson and
Ghahramani, 2011).

Several authors have proposed extending GPs directly with
input-dependent parameters. These latent parameters are
treated as separate Gaussian processes and inferred jointly
with the unknown function (Tolvanen et al., 2014). In a het-
eroscedastic noise GPs, a latent noise variance is inferred
in a maximum likelihood (ML) (Kersting et al., 2007) or
maximum a posteriori (MAP) fashion (Quadrianto et al.,
2009). Fully Bayesian inference methods include MCMC
sampling (Goldberg et al., 1997) and variational and expec-
tation propagation approximations of the posterior (Lazaro-
Gredilla and Titsias, 2011; Tolvanen et al., 2014). Non-
stationarities can also be included in the signal variance or
lengthscale by the use of non-stationary variants of kernel
functions (Gibbs, 1997). Non-stationary lengthscales for
Gaussian processes were introduced by Gibbs (1997) and
further extended by Paciorek and Schervish (2004) with
MCMC inference. Recently, Tolvanen et al. (2014) intro-
duced a non-stationary signal variance using expectation
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propagation and approximate variational inference.

In this paper we introduce the first non-stationary and het-
eroscedastic GP regression framework, in which the three
main components (noise variance, signal variance and the
lengthscale) can be simultaneously input-dependent, with
direct GP priors. We propose an inference method for the
exact joint posterior of the underlying signal, under the
Gaussian likelihood, and all three latent functions, avoiding
the need for introducing variational or expectation propa-
gation approximations (Lazaro-Gredilla and Titsias, 2011;
Tolvanen et al., 2014). We use HMC-NUTS, which can
effectively sample the posterior guided by the analytical
model gradients. Furthermore, an exact MAP solution
arises as a simple gradient ascent on the posterior. We dra-
matically improve the performance of both approaches by
posterior whitening using Cholesky decompositions of the
latent function priors. Our experiments demonstrate the
necessity of non-stationary GPR to model realistic input-
dependent dynamics, while in simpler conditions the pro-
posed method performs comparably to conventional sta-
tionary or previous non-stationary GPR models.

In Section 2 we introduce the non-stationary GP model. In
its subsections we first introduce MAP and HMC inference,
discuss model whitening and finally define the predictive
distributions. Section 3 presents experimental results on
several synthetic and one real biological datasets, and we
conclude in Section 4. The implementation is available at
github.com/markusheinonen/adaptivegp.

2 Heteroscedastic non-stationary GP model

Let y = (yi)
n
i=1 ∈ Rn be an observation vector over n in-

puts x = (xi)
n
i=1 ∈ Rn. We assume an additive regression

model,

y(x) = f(x) + ε(x), ε(x) ∼ N (0, ω(x)2),

where both the underlying signal f(x) and the zero-mean
observation noise variance ω(x)2 are unknown functions to
be learned1. We proceed by first placing a zero mean GP
prior on the unknown function f(x),

f(x) ∼ GP (0,Kf (x, x′)), (1)

which assumes that cov(f(x), f(x′)) = Kf (x, x′). We use
a non-stationary generalisation of the squared exponential
kernel (Gibbs, 1997),

Kf (x, x′) = σ(x)σ(x′)

√
2`(x)`(x′)

`(x)2 + `(x′)2

× exp

(
− (x− x′)2

`(x)2 + `(x′)2

)
, (2)

1We assume univariate inputs throughout this paper. See Sup-
plementary Material for a generalisation into multivariate inputs.

where x, x′ ∈ R, and σ(x) and `(x) are input-dependent
signal variance and lengthscale functions, respectively. The
kernel reduces into a standard squared exponential kernel
if both are constant. We show the kernel (2) is positive
definite in the Supplementary Material.

We model the lengthscale, signal variance and noise vari-
ance with latent functions. We are interested in smoothly
varying latent functions and thus we place separate GP pri-
ors on them:

log(`(t)) ≡ ˜̀(t) ∼ GP (µ`,K`(x, x
′))

log(σ(t)) ≡ σ̃(t) ∼ GP (µσ,Kσ(x, x′))

log(ω(t)) ≡ ω̃(t) ∼ GP (µω,Kω(x, x′)),

where we set the priors on the logarithms to ensure their
positivity. We select separate standard squared exponential
covariances for each,

Kc(x, x
′) = α2

c exp

(
− (x− x′)2

2β2
c

)
,

where c ∈ {`, σ, ω}. The model has nine hyper-parameters
θ = (µ`, µσ, µω, α`, ασ, αω, β`, βσ, βω) that define the
prior for the three latent functions ˜̀, σ̃ and ω̃. The means µ
determine latent function means, while the α’s are scaling
terms. The β’s are the characteristic lengthscales of the pri-
ors. In practice, the µ’s and α’s have a small effect on the
models, whereas the β’s have a large effect on the model by
determining the smoothness of the latent functions. They
can be set based on prior knowledge or using grid-search
over suitable values.

Given a dataset (x,y), the model can equivalently be writ-
ten as f |`,σ ∼ N (0,Kf ), where f = (f(xi))

n
i=1 is a la-

tent function vector at the observed points x and Kf ∈
Rn×n has elements [Kf ]ij = Kf (xi, xj) computed using
eq. (2) with signal standard deviations σ = (σ(xi))

n
i=1 and

lengthscales ` = (`(xi))
n
i=1. Finally, the data likelihood is

y|`,σ,ω ∼ N (0,Kf + Ω), where Ω = diagω2 ∈ Rn×n
is a diagonal noise matrix and ω2 = (ω(xi)

2)ni=1 are the
noise variances. We note that no current method has stud-
ied a non-stationary parameterisation with all three input-
dependent parameters.

To infer latent functions from the full posterior
p(f , ˜̀, σ̃, ω̃|y,θ) we introduce two approaches in the
next two Sections2. We propose to learn the MAP esti-
mate p(f |˜̀MAP, σ̃MAP, ω̃MAP,y), or infer the full posterior
using HMC sampling. Both approaches are based on the
analytical gradients of the latent functions.

2.1 Maximum a posteriori estimation

As the first approach, we follow the approaches by Kersting
et al. (2007) and Quadrianto et al. (2009), and resort to find-

2In the following we omit the hyperparameters θ for notational
clarity
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ing the MAP solution of the latent posterior p(˜̀, σ̃, ω̃|y),

˜̀
MAP, σ̃MAP, ω̃MAP = arg max

˜̀,σ̃,ω̃

p(˜̀, σ̃, ω̃|y),

where f has been marginalised out. Using Bayes’ theorem
this is equivalent to maximizing the marginal likelihood

L = p(y|˜̀, σ̃, ω̃)p(˜̀, σ̃, ω̃), (3)

which evaluates to

N (y|0,Kf+Ω)N (˜̀|µ`,K`)N (σ̃|µσ,Kσ)N (ω̃|µω,Kω),

and whose logarithm we denote as the marginal log likeli-
hood (MLL).

The partial derivatives of the log of marginal likelihood (3)
with respect to the latent functions are analytical:

∂ logL
∂˜̀

i

=
1

2
tr

(
(aaT −K−1

y )
∂Ky

∂˜̀
i

)
− [K−1

˜̀ (˜̀− µ˜̀)]i

∂ logL
∂σ̃

= diag
(
(aaT −K−1

y )Kf

)
−K−1

σ̃ (σ̃ − µσ̃)

(4)
∂ logL
∂ω̃

= diag
(
(aaT −K−1

y )Ω
)
−K−1

ω̃ (ω̃ − µω̃)

where a = (Kf + Ω)−1y and ∂Ky

∂˜̀
i

is given in the Supple-
mentary Material.

We perform gradient ascent over the MLL, logL. The so-
lution is only guaranteed to converge to a local optimum,
and hence we perform multiple restarts from random ini-
tial conditions. The MAP solution is adequate when the
posterior is close to unimodal.

Given the MAP solution, the function posterior
p(f |˜̀MAP, σ̃MAP, ω̃MAP) ∼ N (mMAP,ΣMAP) is a Gaus-
sian with

mMAP = KT
f (Kf + ΩMAP)

−1y

ΣMAP = Kf −KT
f (Kf + ΩMAP)

−1Kf ,

where Kf has been computed with eq. (2) using MAP la-
tent vectors log(`) = ˜̀

MAP and log(σ) = σ̃MAP, and ΩMAP

with log(ω) = ω̃MAP.

2.2 HMC inference

As a second approach we sample the latent poste-
rior p(˜̀, σ̃, ω̃|y) using Hamiltonian Monte Carlo (HMC)
(Hoffman and Gelman, 2014; Neal, 2011). In HMC, an
additional momentum variable is introduced for each of
the model variables, and the extended model is interpreted
as a Hamiltonian system. Time evolution of the Hamil-
tonian dynamics is simulated to produce proposals for the
Metropolis algorithm. The latent posterior p(˜̀, σ̃, ω̃|y) is
proportional to the marginal likelihood in eq. (3), and thus

the HMC sampling of (˜̀, σ̃, ω̃) uses the same gradients(
∂ logL
∂˜̀ , ∂ logL

∂σ̃ , ∂ logL
∂ω̃

)
from eq. (4) as the MAP solution.

Thus, we only need to do HMC sampling over the three la-
tent vectors (˜̀, σ̃, ω̃) and the posterior of f for each sample
follows analytically as a Gaussian, leading to a mixture of
m Gaussians.

The function posterior p(f |y) can then be approximated
with the HMC samples

p(f |y) =

∫∫∫
p(f |˜̀, σ̃, ω̃,y)p(˜̀, σ̃, ω̃|y)d˜̀dσ̃dω̃

≈ 1

m

m∑

i=1

p(f |˜̀i, σ̃i, ω̃i,y), (5)

where

˜̀
i, σ̃i, ω̃i ∼ p(˜̀, σ̃, ω̃|y) (6)

are m HMC samples of the latent posterior. The function
posterior p(f |˜̀i, σ̃i, ω̃i,y) = N (mi,Σi) for each HMC
sample is a Gaussian with

mi = KT
fi(Kfi + Ωi)

−1y

Σi = Kfi −KT
fi(Kfi + Ωi)

−1Kfi ,

where Kfi is a non-stationary kernel matrix computed us-
ing ˜̀

i and σ̃i, and Ωi is the diagonal noise covariance ma-
trix of ω̃i.

2.3 Posterior whitening

The posterior of the latent vectors is, by definition, highly
correlated due to Gaussian priors, leading to inefficient
Monte Carlo sampling. To ease the sampling, we perform
the sampling over the whitened latent vectors (Kuss and
Rasmussen, 2005),

˚̀ = L−1
`

˜̀, K` = L`L
T
`

σ̊ = L−1
σ σ̃, Kσ = LσL

T
σ

ω̊ = L−1
ω ω̃, Kω = LωL

T
ω ,

with Cholesky decompositions of the corresponding GP
prior covariances, which are fixed based on the hyperpa-
rameters θ. The derivatives of the MLL with respect to
the whitened parameters can be retrieved analytically. E.g.
the lengthscale becomes ∂ logL

∂̊`
= ∂ logL

∂L`̊`

∂L`̊`

∂̊`
= LT` ∇˜̀L,

where the last term is the standard gradient of the non-
whitened model defined in eq. (4). The two other parame-
ters follow the same procedure. In practice the whitening
leads to several orders of magnitude improvement on infer-
ence speed.

2.4 Making predictions

Both the MAP solution and the HMC sampler infer val-
ues of the latent functions only at the n observed inputs
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x. To extrapolate the values of the unknown function
and the latent functions over arbitrary target points x? ∈
Rn? , we approximate the predictive distribution (Goldberg
et al., 1997) by extrapolating the latent functions ˜̀, σ̃, ω̃ to
˜̀
?, σ̃?, ω̃? independently of the data y, and then express

the function posterior f? with them. That is, we approx-
imate p(˜̀?|˜̀MAP,y) by p(˜̀?|˜̀MAP) and p(σ̃?|σ̃MAP,y) by
p(σ̃?|σ̃MAP), which have analytical forms. With the MAP
solution we have

p(f?|˜̀MAP, σ̃MAP, ω̃MAP,y) (7)

≈
∫∫

p(f?|˜̀MAP, ˜̀?, σ̃MAP, σ̃?, ω̃MAP,y)

× p(˜̀?|˜̀MAP)p(σ̃?|σ̃MAP)d˜̀?dσ̃?

≈ 1

s

s∑

j=1

p(f?|˜̀MAP, ˜̀j? , σ̃MAP, σ̃j? , ω̃MAP,y)

where we approximate the integral by drawing s samples
{˜̀j?}sj=1, {σ̃j?}sj=1 of n? dimensions from the conditional
Gaussians ˜̀

?|˜̀MAP and σ̃?|σ̃MAP (See Supplementary Ma-
terial). This results in a mixture of s corresponding Gaus-
sians N (mMAP,j? ,ΣMAP,j?), where

mMAP,j? = KT
MAP,j?(KMAP,MAP + ΩMAP)

−1y

ΣMAP,j? = Kj?,j? −KT
MAP,j?(KMAP,MAP + ΩMAP)

−1KMAP,j? ,

and where Kj?,j? ∈ Rn?×n? , KMAP,j? ∈ Rn×n? and
KMAP,MAP ∈ Rn×n are computed with eq. (2) over the latent
vectors (˜̀MAP, σ̃MAP) over inputs x, or using (˜̀j? , σ̃j?) over
inputs x?. The simplest approximation is to denote the con-
ditional means ˜̀

j? = E[˜̀?|˜̀MAP] and σ̃j? = E[σ̃?|σ̃MAP] as
the sole samples with s = 1. This is a sufficient approxi-
mation if the inputs x are sufficiently dense.

The predictive distribution given the HMC sample
{˜̀i, σ̃i, ω̃i} is derived analogously. We average over the
m HMC samples instead of a single MAP solution, and
over the s samples {˜̀ij?}sj=1 and {σ̃ij?}sj=1 from the con-
ditionals, resulting in

p(f?|y) ≈ p(f?|{˜̀i, σ̃i, ω̃i},y) (8)

≈ 1

ms

m∑

i=1

s∑

j=1

p(f?|˜̀i, ˜̀ij? , σ̃i, ˜̀ij? , ω̃i,y)

≈ 1

ms

m∑

i=1

s∑

j=1

N (mi,j? ,Σi,j?)

where mi,j? = KT
i,j?

(Ki + Ωi)
−1y and Σi,j? = Kj?,j? −

KT
i,j?

(Ki + Ωi)
−1Ki,j? , and where the kernel matrices are

computed using ˜̀
i, σ̃i and ˜̀

ij? , σ̃ij? .

We note that a slower but perhaps more elegant alternative
is to model latent functions jointly over concatenated inputs
xt ≡ (x,x?), resulting in `t ≡ (`, `?), and analogously for
the other functions. In this case the function posterior con-
tains the predictive posterior with the approximation used
in eq. (7), but the latent vector sizes increase to n+ n?.

Table 1: Datasets with varying forms of non-stationarities.
The column ‘n’ defines the total number of data points and
the column ‘ntrain’ the number of training points.

Dataset Non-stationary functions n ntrain

Dσ σ(t) 100 50
D` `(t) 150 75
Dσ,ω σ(t), ω(t) 100 50
D`,ω `(t), ω(t) 150 75
D`,σ,ω `(t), σ(t), ω(t) 90 45
Mω ω(t) 133 67
Tσ,ω ω(t), σ(t) 500 250
J N/A 101 50

3 Experiments

We assess the performance of the proposed method on sev-
eral synthetic and real datasets. We experiment with five
simulated datasets, four empirical datasets and a gene ex-
pression time series dataset (Heinonen et al., 2015). The
empirical datasets contain the SP500 index S, the motorcy-
cle dataset M (Silverman, 1985), the 3rd ‘jump’ dataset J
from Paciorek and Schervish (2004) and a non-stationary
dataset T from GPstuff demo_epinf (Vanhatalo et al.,
2013). The five additional simulated datasets were gener-
ated with different combinations of non-stationarities (See
Table 1). We expect datasets exhibiting specific types of
input-dependent characteristics to require a model with a
corresponding input-dependent parameter.

We scale all outputs to range [−1, 1] and the inputs to range
[0, 1]. For each dataset, we use half of the data as training
data and the rest as test data. We will assess the perfor-
mance on the test data with mean squared error MSE =

1
ntest

∑
i(y

test
i − [m?]i)

2 and with the mean log-predictive
density NLPD = −∑i log p(ytesti |[m?]i, [Σ?]ii), where
smaller value is better. For consistency, we model the
stationary parameters as vectors c1 of length ntrain for
c = {ω, σ, `} whenever a parameter is not set as non-
stationary.

We run MAP optimisation from 10 different initial condi-
tions and choose the one with the highest MLL value. We
run 10 chains of 1000 samples of HMC-NUTS sampling
using model whitening (Algorithm 3 of Hoffman and Gel-
man (2014), ε = 0.01, maximum tree depth 10). For our
datasets setting s = 1 with the conditional means was suf-
ficient for obtaining an accurate predictive posteriors. We
define all hyperparameters µ to be the mean of their corre-
sponding parameter functions. We set all hyperparameters
α to a large value of 1, which allows high freedom in the
range of the corresponding parameters. We empirically se-
lect the hyperparameters β from a set {0.05, 0.1, 0.2}, and
fixed β` = βσ = 0.1 and βω = 0.2 throughout the ex-
periments, which gave good results on all datasets. The
MAP inference is approximately as fast as vanilla GP re-
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Table 2: Test MSE and NLPD results on the synthetic datasets over various MAP models. Optimal values are in boldface.
The optimal or second to optimal NLPD values follow a diagonal line. Smaller value is better for both quantities.

Mω Dσ D` Dω,σ Dω,` Dω,σ,` J Tω,σ
Method MSE NLPD MSE NLPD MSE NLPD MSE NLPD MSE NLPD MSE NLPD MSE NLPD MSE NLPD

GP 3.91 0.11 0.21 −1.31 0.71 −0.85 0.44 −0.86 0.54 −1.04 0.16 −1.25 1.48 −0.32 17.83 0.10
(ω)-GP 3.91 −0.22 0.21 −1.27 2.46 −0.47 0.45 −0.98 2.69 −1.28 0.33 −1.73 3.51 −0.58 17.35 0.01
(σ)-GP 3.93 0.17 0.18 −1.37 0.64 −0.93 0.43 −0.94 0.52 −1.07 0.17 −0.42 1.38 1.04 16.84 0.07
(`)-GP 3.94 0.16 0.18 −1.38 0.53 −1.05 0.44 −0.88 0.41 −1.16 0.17 −0.34 1.35 −0.72 17.63 0.09

(ω, σ)-GP 3.87 −0.23 0.18 −1.30 0.65 −0.86 0.43 −1.07 0.56 −1.51 0.15 −1.61 1.60 −0.66 16.33 −0.02
(ω, `)-GP 4.02 −0.19 0.19 −1.31 0.53 −0.93 0.42 −0.99 0.40 −1.83 0.17 −0.90 1.38 −0.47 9.30 0.01

(ω, σ, `)-GP 3.90 −0.21 0.19 −1.32 0.53 −0.90 0.45 −0.98 0.43 −1.70 0.16 −1.79 1.47 −0.32 9.77 −0.00

MSE
0 1 2 3 4 5

N
LP

D

-2

-1.5

-1

-0.5

0

0.5
MAP vs HMC

MAP solutions
HMC solutions

(a) All datasets and models
MSE

0.45 0.5 0.55 0.6 0.65 0.7

N
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D

-1.15

-1.1

-1.05

-1

-0.95

-0.9
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-0.8
Dataset Dl with l-GP

HMC samples
HMC mean
MAP solution

(b) D` dataset with `-GP model

Figure 1: The MSE and NLPD performance of the HMC posterior samples. (a) Comparison of test errors between MAP
and HMC mean solutions over all datasets and methods (8× 7 = 56, x-axis limited to 5 for clarity). (b) Test errors of the
HMC samples compared to the HMC mean and MAP solution on a single D` dataset with `-GP model.

gression, while HMC sampling took several hours on the
tested datasets (data not shown).

3.1 Regression performance

Table 2 shows the MSE and NLPD performance on the
test folds of the synthetic datasets using MAP GP mod-
els with different combinations of non-stationary parame-
ters. For each dataset, the model with the lowest NLPD, or
second lowest NLPD value, is the one where the model’s
non-stationarities match those of the dataset. For instance,
the dataset T contains heteroscedastic noise and input-
dependent signal variance σ. For this, the best NLPD
performance is obtained with a matching ω, σ-GP, and
with a fully non-stationary ω, σ, `-GP as well. The vanilla
(stationary) GP performance is always surpassed by non-
stationary models on datasets with non-stationary dynam-
ics.

Adding ‘unnecessary’ non-stationarities retains or only
slightly worsens the performance, with the major exception
being the dataset J. Here, the lengthscale is clearly input-
dependent (NLPD −0.72, optimal), while in contrast the

non-stationary signal variance σ is unable to model the data
(NLPD 1.04). Adding heteroscedastic weakens the model,
giving a strong indication of a homoscedastic noise model.

3.2 HMC performance

We explored the difference between the MAP solution and
the HMC sampling. In practice we found the MAP to be
slightly better on average regarding the MSE and NLPD
values (See Figure 1a). However, the sampling is able to
explore the multimodality of the latent posterior (See Fig-
ure 5). Figure 1b shows the test errors of the individual
HMC samples in comparison to the MAP solution with the
D` dataset using the `-GP model. The HMC solution in-
cludes numerous samples that are better, while on average
being slightly worse than MAP.

The dataset D` contains several latent modes (See Fig-
ure 4, bottom), which the HMC sampler captures. These
modes include latent functions that imply a ‘shortcut’ or
a ‘zigzag’ signal around timepoints 0.18 or 0.75, or both.
The HMC samples are centered mostly around the shortcut
profile at the earlier timepoint, while only a few samples
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Figure 2: Comparison of the MLL, MSE and NLPD values (x-axis) of the stationary GP, ω-GP and (ω, σ, `)-GP over the
205 gene expression time series (x-axis) against the heteroscedastic GP on the y-axis. Each row contains a triplet of values
corresponding to the three GP models of the same time series.
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Figure 3: Comparison of three GP models on an example gene expression time series.

with the shortcut profile exist at the later timepoint. The
MAP solution has chosen both zigzags. The latent posterior
shows largest variance in the signal variance σ(t) compo-
nent, while the lengthscale `(t) and noise variance ω have
tighter distributions.

3.3 Biological dataset

We demonstrate the method with a biological dataset of
205 gene expression time series measurements of human
endothelial cells after irradiation at time t = 0. Due to
the irradiation the dataset exhibits non-stationary dynam-
ics as the cells try to repair themselves and revert back to
steady states. The gene expressions are measured over 8
days (0.5, 1, 2, 3, 4, 7, 14, 21) in three replicates (Heinonen
et al., 2015). The goal is to construct a realistic model of
the underlying gene expression process and the underlying
dynamics with no knowledge of the ‘true’ expression lev-
els, given only the small number of sparse measurements.

We modeled the dataset using stationary GP, heteroscedas-
tic ω-GP and three non-stationary GPs: (ω, σ)-GP, (ω, `)-
GP and with (ω, σ, `)-GP. We found the performance of
the three non-stationary GPs to be similar. Figure 2 indi-
cates the MLL, MSE and NLPD values of the 205 time-
series under stationary, heteroscedastic or completely non-
stationary models. Addition of heteroscedasticity greatly

increases the model fits, while also improving the data
likelihoods against the function posterior. Finally the
completely non-stationary GP still improves model fits,
while consistently improving the NLPD values, with simi-
lar MSE performance compared to the HGP. Figure 3 com-
pares the three models learned from an example gene ex-
pression time series (See Supplementary Material for addi-
tional models).

3.4 Latent function reconstruction

An interesting application of the proposed method is to
learn the ‘true’ input-dependent parameters of the data gen-
erating process, with only samples of the function f and no
samples of the underlying parameters. The key question is
how accurately the parameters of the non-stationary model
can be inferred in this setting. Due to the lack of empiri-
cal datasets with ‘gold-standard’ input-dependent parame-
ter values, we show promising results on parameter recon-
struction error on simulated data.

We simulate a noisy sample where true generating latent
parameter functions `(·), σ(·), ω(·) are known. We infer
both the MAP solution and sample the posterior of the la-
tent parameter processes `, σ, ω and the unknown function
f . Figure 5 highlights the MAP and HMC solutions in
comparison to the generating parameters, and to the state-
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Figure 4: The set of function posteriors corresponding to the latent function samples are plotted in gray, and the MAP
solution in green, along with the training and test data (top). The latent function sample is drawn with green (σ), red (`)
and blue (ω) colors, with the MAP solution highlighted with bold lines (bottom).

of-the-art σ, ω-GP model of Tolvanen et al. (2014). Given
only a single noisy time series from a generating function, a
range of matching parameter processes can be inferred. As
shown in Figure 5, the obtained HMC parameter samples
overlap with the generating parameters, while the MAP so-
lution differs slightly due to the inherent randomness in the
noise and in data sampling.

4 Discussion

In this paper, we have proposed a fully non-stationary
Gaussian process regression framework, where all three
key components can be input-dependent. Our approach
uses analytical gradient-based techniques to perform infer-
ence with HMC sampling and MAP estimation. We are
able to effectively sample from the exact posterior of the la-
tent functions. We have shown that the method is able to in-
fer the underlying latent functions and improve regression
performance when the datasets truly are non-stationary, and
achieve equivalent performance to a stationary model when
they are not.

The interplay between the signal variance and the length-
scale is an interesting topic (Diggle et al., 1998; Zhang,
2004). When modeling the ‘jump’ dataset the non-

stationary signal variance was unable to model dynamics,
while a non-stationary lengthscale produced a good model.
This is natural since the signal variance serves as a linear
amplitude over the function f , while the lengthscale has
a possibly non-linear effect on the function model. In ad-
dition, the non-stationary squared exponential kernel can
be changed into any differentiable non-stationary covari-
ance function with input-dependent parameters, e.g. the
non-stationary Matérn kernel could be used (Paciorek and
Schervish, 2004).

The gradient-based HMC is a powerful inference tool
for Gaussian processes, and could be further enhanced
by utilizing natural gradients or position-dependent mass
matrices with Riemannian Manifold HMC (Girolami and
Calderhead, 2011). We note that the method could be ex-
tended by also inferring the hyperparameters θ using HMC.
However, proper care has to be taken to set their priors.
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Figure 5: Latent function reconstruction errors (top) over a non-stationary simulated dataset with known non-stationary
dynamics. Completely non-stationary GP model (bottom) posteriors, MAP solution (dashed line) and generating latent
functions (black solid lines) with 150 data points. The latent lengthscales and noises are estimated correctly, while signal
variance is approximately matched. Dashed black lines shows the comparison to the state-of-the-art σ, ω-GP model of
Tolvanen et al. (2014).
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