Supplementary Information for DUAL-LOCO: Distributing Statistical Estimation Using Random Projections

A Supplementary Results

Here we introduce two lemmas. The first describes the random projection construction which we use in the distributed setting.

Lemma 2 (Summing random features). Consider the singular value decomposition $\mathbf{X} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top}$ where $\mathbf{U} \in \mathbb{R}^{n \times r}$ and $\mathbf{V} \in \mathbb{R}^{p \times r}$ have orthonormal columns and $\mathbf{\Sigma} \in \mathbb{R}^{r \times r}$ is diagonal; $r = \operatorname{rank}(\mathbf{X})$. c_0 is a fixed positive constant. In addition to the raw features, let $\bar{\mathbf{X}}_k \in \mathbb{R}^{n \times (\tau + \tau_{subs})}$ contain random features which result from summing the K - 1 random projections from the other workers. Furthermore, assume without loss of generality that the problem is permuted so that the raw features of worker k's problem are the first τ columns of \mathbf{X} and $\bar{\mathbf{X}}_k$. Finally, let

$$\Theta_S = \begin{bmatrix} \mathbf{I}_{\tau} & 0\\ 0 & \mathbf{\Pi} \end{bmatrix} \in \mathbb{R}^{p \times (\tau + \tau_{subs})}$$

such that $\bar{\mathbf{X}}_k = \mathbf{X}\Theta_S$.

With probability at least $1 - \left(\delta + \frac{p-\tau}{e^r}\right)$

$$\|\mathbf{V}^{\top}\Theta_{S}\Theta_{S}^{\top}\mathbf{V}-\mathbf{V}^{\top}\mathbf{V}\|_{2} \leq \sqrt{\frac{c_{0}\log(2r/\delta)r}{\tau_{subs}}}.$$

Proof. See Appendix B.

Definition 1. For ease of exposition, we shall rewrite the dual problems so that we consider minimizing convex objective functions. More formally, the original problem is then given by

$$\boldsymbol{\alpha}^* = \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^n} \left\{ D(\boldsymbol{\alpha}) := \sum_{i=1}^n f_i^*(\alpha_i) + \frac{1}{2n\lambda} \boldsymbol{\alpha}^\top \mathbf{K} \boldsymbol{\alpha} \right\}.$$
(9)

The problem worker k solves is described by

$$\tilde{\boldsymbol{\alpha}} = \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^n} \left\{ \tilde{D}_k(\boldsymbol{\alpha}) := \sum_{i=1}^n f_i^*(\alpha_i) + \frac{1}{2n\lambda} \boldsymbol{\alpha}^\top \tilde{\mathbf{K}}_k \boldsymbol{\alpha} \right\}.$$
(10)

Recall that $\mathbf{\tilde{K}}_k = \mathbf{\bar{X}}_k \mathbf{\bar{X}}_k^{\top}$, where $\mathbf{\bar{X}}_k$ is the concatenation of the τ raw features and τ_{subs} random features for worker k.

To proceed we need the following result which relates the solution of the original problem to that of the approximate problem solved by worker k. **Lemma 3** (Adapted from Lemma 1 [17]). Let α^* and $\tilde{\alpha}$ be as defined in Definition 1. We obtain

$$\frac{1}{\lambda} (\tilde{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*)^\top \left(\mathbf{K} - \tilde{\mathbf{K}}_k \right) \boldsymbol{\alpha}^* \ge \frac{1}{\lambda} (\tilde{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*)^\top \tilde{\mathbf{K}}_k (\tilde{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*).$$
(11)

Proof. See
$$[17]$$
.

For our main result, we rely heavily on the following variant of Theorem 1 in [17] which bounds the difference between the coefficients estimated by worker k, $\hat{\beta}_k$ and the corresponding coordinates of the optimal solution vector β_k^* .

Lemma 4 (Local optimization error. Adapted from [17]). For $\rho = \sqrt{\frac{c_0 \log(2r/\delta)r}{\tau_{subs}}}$ the following holds

$$\|\widehat{\boldsymbol{eta}}_k - \boldsymbol{eta}_k^*\|_2 \leq rac{
ho}{1-
ho} \|\boldsymbol{eta}^*\|_2$$

with probability at least $1 - \left(\delta + \frac{p-\tau}{e^r}\right)$.

The proof closely follows the proof of Theorem 1 in [17] which we restate here identifying the major differences.

Proof. Let the quantities $\tilde{D}_k(\boldsymbol{\alpha})$, $\tilde{\mathbf{K}}_k$, be as in Definition 1. For ease of notation, we shall omit the subscript k in $\tilde{D}_k(\boldsymbol{\alpha})$ and $\tilde{\mathbf{K}}_k$ in the following.

By the SVD we have $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$. So $\mathbf{K} = \mathbf{U} \mathbf{\Sigma} \mathbf{\Sigma} \mathbf{U}^{\top}$ and $\tilde{\mathbf{K}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \mathbf{\Pi} \mathbf{\Pi}^{\top} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\top}$. We can make the following definitions

$$\gamma^* = \Sigma \mathbf{U}^\top \boldsymbol{\alpha}^*, \qquad \tilde{\gamma} = \Sigma \mathbf{U}^\top \tilde{\boldsymbol{\alpha}}.$$

Defining $\tilde{\mathbf{M}} = \mathbf{V}^{\top} \mathbf{\Pi} \mathbf{\Pi}^{\top} \mathbf{V}$ and plugging these into Lemma 3 we obtain

$$(\tilde{\gamma} - \gamma^*)^\top (\mathbf{I} - \tilde{\mathbf{M}}) \gamma^* \ge (\tilde{\gamma} - \gamma^*)^\top \tilde{\mathbf{M}} (\tilde{\gamma} - \gamma^*).$$
 (12)

We now bound the spectral norm of $\mathbf{I} - \tilde{\mathbf{M}}$ using Lemma 2. Recall that Lemma 2 bounds the difference between a matrix and its approximation by a *distributed* dimensionality reduction using the SRHT.

Using the Cauchy-Schwarz inequality we have for the l.h.s. of (12)

$$(\tilde{\gamma} - \gamma^*)^{\top} \left(\mathbf{I} - \tilde{\mathbf{M}} \right) \gamma^* \le \rho \|\gamma^*\|_2 \|\tilde{\gamma} - \gamma^*\|_2$$

For the r.h.s. of (12), we can write

$$(\tilde{\gamma} - \gamma^*)^\top \tilde{\mathbf{M}} (\tilde{\gamma} - \gamma^*)$$

= $\|\tilde{\gamma} - \gamma^*\|_2^2 - (\tilde{\gamma} - \gamma^*)^\top (\mathbf{I} - \tilde{\mathbf{M}}) (\tilde{\gamma} - \gamma^*)$
 $\geq \|\tilde{\gamma} - \gamma^*\|_2^2 - \rho \|\tilde{\gamma} - \gamma^*\|_2^2$
= $(1 - \rho) \|\tilde{\gamma} - \gamma^*\|_2^2$.

Combining these two expressions and inequality (12) yields

$$(1-\rho)\|\tilde{\gamma}-\gamma^*\|_2^2 \le \rho \|\gamma^*\|_2 \|\tilde{\gamma}-\gamma^*\|_2 (1-\rho)\|\tilde{\gamma}-\gamma^*\|_2 \le \rho \|\gamma^*\|_2.$$
(13)

From the definition of γ^* and $\tilde{\gamma}$ above and β^* and β , respectively we have

$$\boldsymbol{\beta}^* = -\frac{1}{n\lambda} \mathbf{V} \boldsymbol{\gamma}^*, \qquad \tilde{\boldsymbol{\beta}} = -\frac{1}{n\lambda} \mathbf{V} \tilde{\boldsymbol{\gamma}}$$

so $\frac{1}{n\lambda} \|\gamma^*\|_2 = \|\beta^*\|_2$ and $\|\tilde{\beta} - \beta^*\|_2 = \frac{1}{n\lambda} \|\tilde{\gamma} - \gamma^*\|_2$ due to the orthonormality of **V**. Plugging this into (13) and using the fact that $\|\beta^* - \tilde{\beta}\|_2 \ge \|\beta^*_k - \hat{\beta}_k\|_2$ we obtain the stated result.

B Proof of Row Summing Lemma

Proof of Lemma 2. Let \mathbf{V}_k contain the first τ rows of \mathbf{V} and let $\mathbf{V}_{(-k)}$ be the matrix containing the remaining rows. Decompose the matrix products as follows

$$\mathbf{V}^{\top}\mathbf{V} = \mathbf{V}_{k}^{\top}\mathbf{V}_{k} + \mathbf{V}_{(-k)}^{\top}\mathbf{V}_{(-k)}$$

and
$$\mathbf{V}^{\top}\Theta_{S}\Theta_{S}^{\top}\mathbf{V} = \mathbf{V}_{k}^{\top}\mathbf{V}_{k} + \tilde{\mathbf{V}}_{k}^{\top}\tilde{\mathbf{V}}_{k}$$

with $\tilde{\mathbf{V}}_k^{\top} = \mathbf{V}_{(-k)}^{\top} \mathbf{\Pi}$. Then

$$\begin{split} \|\mathbf{V}^{\top}\Theta_{S}\Theta_{S}^{\top}\mathbf{V}-\mathbf{V}^{\top}\mathbf{V}\|_{2} \\ &=\|\mathbf{V}_{k}^{\top}\mathbf{V}_{k}+\tilde{\mathbf{V}}_{k}^{\top}\tilde{\mathbf{V}}_{k}-\mathbf{V}_{k}^{\top}\mathbf{V}_{k}-\mathbf{V}_{(-k)}^{\top}\mathbf{V}_{(-k)}\|_{2} \\ &=\|\mathbf{V}_{(-k)}^{\top}\mathbf{\Pi}\mathbf{\Pi}^{\top}\mathbf{V}_{(-k)}-\mathbf{V}_{(-k)}^{\top}\mathbf{V}_{(-k)}\|_{2}. \end{split}$$

Since Θ_S is an orthogonal matrix, from Lemma 3.3 in [13] and Lemma 5, summing (K-1) independent SRHTs from τ to τ_{subs} is equivalent to applying a single SRHT from $p-\tau$ to τ_{subs} . Therefore we can simply apply Lemma 1 of [15] to the above to obtain the result.

Lemma 5 (Summed row sampling). Let \mathbf{W} be an $n \times p$ matrix with orthonormal columns. Let $\mathbf{W}_1, \ldots, \mathbf{W}_K$ be a balanced, random partitioning of the rows of \mathbf{W} where each matrix \mathbf{W}_k has exactly $\tau = n/K$ rows. Define the quantity $M := n \cdot \max_{j=1,\ldots,n} \|\mathbf{e}_j^\top \mathbf{W}\|_2^2$. For a positive parameter α , select the subsample size

$$l \cdot K \ge \alpha M \log(p).$$

Let $\mathbf{S}_{T_k} \in \mathbb{R}^{l \times \tau}$ denote the operation of uniformly at random sampling a subset, T_k of the rows of \mathbf{W}_k by sampling l coordinates from $\{1, 2, \ldots \tau\}$ without replacement. Now denote **SW** as the sum of the subsampled rows

$$\mathbf{SW} = \sum_{k=1}^{K} (\mathbf{S}_{T_k} \mathbf{W}_k)$$

Then

$$\sqrt{\frac{(1-\delta)l\cdot K}{n}} \le \sigma_p(\mathbf{SW})$$
and
$$\sigma_1(\mathbf{SW}) \le \sqrt{\frac{(1+\eta)l\cdot K}{n}}$$

with failure probability at most

$$p \cdot \left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{\alpha \log p} + p \cdot \left[\frac{e^{\eta}}{(1+\eta)^{1+\eta}}\right]^{\alpha \log p}$$

Proof. Define \mathbf{w}_j^{\top} as the j^{th} row of \mathbf{W} and $M := n \cdot \max_j \|\mathbf{w}_j\|_2^2$. Suppose K = 2 and consider the matrix

$$\begin{split} \mathbf{G}_2 &:= (\mathbf{S}_1 \mathbf{W}_1 + \mathbf{S}_2 \mathbf{W}_2)^\top (\mathbf{S}_1 \mathbf{W}_1 + \mathbf{S}_2 \mathbf{W}_2) \\ &= (\mathbf{S}_1 \mathbf{W}_1)^\top (\mathbf{S}_1 \mathbf{W}_1) + (\mathbf{S}_2 \mathbf{W}_2)^\top (\mathbf{S}_2 \mathbf{W}_2) \\ &+ (\mathbf{S}_1 \mathbf{W}_1)^\top (\mathbf{S}_2 \mathbf{W}_2) + (\mathbf{S}_2 \mathbf{W}_2)^\top (\mathbf{S}_1 \mathbf{W}_1). \end{split}$$

In general, we can express $\mathbf{G} := (\mathbf{SW})^{\top} (\mathbf{SW})$ as

$$\mathbf{G} := \sum_{k=1}^{K} \sum_{j \in T_k} \left(\mathbf{w}_j \mathbf{w}_j^\top + \sum_{k' \neq k} \sum_{j' \in T'_k} \mathbf{w}_j \mathbf{w}_{j'}^\top \right).$$

By the orthonormality of \mathbf{W} , the cross terms cancel as $\mathbf{w}_j \mathbf{w}_{i'}^{\top} = \mathbf{0}$, yielding

$$\mathbf{G} := \left(\mathbf{S}\mathbf{W}\right)^{\top} \left(\mathbf{S}\mathbf{W}\right) = \sum_{k=1}^{K} \sum_{j \in T_k} \mathbf{w}_j \mathbf{w}_j^{\top}.$$

We can consider **G** as a sum of $l \cdot K$ random matrices

$$\mathbf{X}_1^{(1)}, \dots, \mathbf{X}_1^{(K)}, \dots, \mathbf{X}_l^{(1)}, \dots, \mathbf{X}_l^{(K)}$$

sampled uniformly at random without replacement from the family $\mathcal{X} := \{ \mathbf{w}_i \mathbf{w}_i^\top : i = 1, \dots, \tau \cdot K \}.$

To use the matrix Chernoff bound in Lemma 6, we require the quantities μ_{\min} , μ_{\max} and B. Noticing that $\lambda_{\max}(\mathbf{w}_j \mathbf{w}_j^{\top}) = \|\mathbf{w}_j\|_2^2 \leq \frac{M}{n}$, we can set $B \leq M/n$.

Taking expectations with respect to the random partitioning (\mathbb{E}_P) and the subsampling within each partition (\mathbb{E}_S) , using the fact that columns of **W** are orthonormal we obtain

$$\mathbb{E}\left[\mathbf{X}_{1}^{(k)}\right] = \mathbb{E}_{P}\mathbb{E}_{S}\mathbf{X}_{1}^{(k)} = \frac{1}{K}\frac{1}{\tau}\sum_{i=1}^{K\tau}\mathbf{w}_{i}\mathbf{w}_{i}^{\top} = \frac{1}{n}\mathbf{W}^{\top}\mathbf{W} = \frac{1}{n}\mathbf{I}$$

Recall that we take l samples in K blocks so we can define

$$\mu_{\min} = \frac{l \cdot K}{n} \quad \text{and} \quad \mu_{\max} = \frac{l \cdot K}{n}.$$

Plugging these values into Lemma 6, the lower and upper Chernoff bounds respectively yield

$$\mathbb{P}\left\{\lambda_{\min}\left(\mathbf{G}\right) \leq (1-\delta)\frac{l\cdot K}{n}\right\}$$

$$\leq p \cdot \left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{l\cdot K/M} \text{ for } \delta \in [0,1), \text{ and}$$

$$\mathbb{P}\left\{\lambda_{\max}\left(\mathbf{G}\right) \geq (1+\delta)\frac{l\cdot K}{n}\right\}$$

$$\leq p \cdot \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{l\cdot K/M} \text{ for } \delta \geq 0.$$

Noting that $\lambda_{\min}(\mathbf{G}) = \sigma_p(\mathbf{G})^2$, similarly for λ_{\max} and using the identity for \mathbf{G} above obtains the desired result.

For ease of reference, we also restate the Matrix Chernoff bound from [13, 24] but defer its proof to the original papers.

Lemma 6 (Matrix Chernoff from [13]). Let \mathcal{X} be a finite set of positive-semidefinite matrices with dimension p, and suppose that

$$\max_{\mathbf{A}\in\mathcal{X}}\lambda_{\max}(\mathbf{A})\leq B$$

Sample $\{\mathbf{A}_1, \ldots, \mathbf{A}_l\}$ uniformly at random from \mathcal{X} $without\ replacement.\ Compute$

$$\mu_{\min} = l \cdot \lambda_{\min}(\mathbb{E}\mathbf{X}_1) \quad and \quad \mu_{\max} = l \cdot \lambda_{\max}(\mathbb{E}\mathbf{X}_1)$$

Then

$$\mathbb{P}\left\{\lambda_{\min}\left(\sum_{i} \mathbf{A}_{i}\right) \leq (1-\delta)\mu_{\min}\right\}$$
$$\leq p \cdot \left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{\mu_{\min}/B} \text{ for } \delta \in [0,1), \text{ and}$$

$$\mathbb{P}\left\{\lambda_{\max}\left(\sum_{i} \mathbf{A}_{i}\right) \geq (1+\delta)\mu_{\max}\right\}$$
$$\leq p \cdot \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu_{\max}/B} \text{ for } \delta \geq 0.$$

Algorithm	Κ	TEST MSE	TRAIN MSE	
Dual-Loco 0.5	12	0.0343 (3.75e-03)	0.0344 (2.59e-03)	
Dual-Loco 0.5	24	0.0368 (4.22e-03)	0.0344 (3.05e-03)	
Dual-Loco 0.5	48	0.0328 (3.97e-03)	0.0332 (2.91e-03)	
Dual-Loco 0.5	96	0.0326 (3.13e-03)	0.0340 (2.67e-03)	
Dual-Loco 0.5	192	0.0345 (3.82e-03)	0.0345 (2.69e-03)	
Dual-Loco 1	12	0.0310 (2.89e-03)	0.0295 (2.28e-03)	
Dual-Loco 1	24	0.0303 (2.87e-03)	0.0307 (1.44e-03)	
Dual-Loco 1	48	0.0328 (1.92e-03)	0.0329 (1.55e-03)	
Dual-Loco 1	96	0.0299 (1.07e-03)	0.0299 (7.77e-04)	
Dual-Loco 2	12	0.0291 (2.16e-03)	0.0280 (6.80e-04)	
Dual-Loco 2	24	0.0306 (2.38e-03)	0.0279 (1.24e-03)	
Dual-Loco 2	48	0.0285 (6.11e-04)	0.0293 (4.77e-04)	
CoCoA ⁺	12	0.0282 (4.25e-18)	0.0246 (2.45e-18)	
CoCoA ⁺	24	0.0278 (3.47e-18)	0.0212 (3.00e-18)	
CoCoA ⁺	48	0.0246 (6.01e-18)	0.0011 (1.53e-19)	
CoCoA+	96	0.0254 (5.49e-18)	0.0137 (1.50e-18)	
CoCoA ⁺	192	0.0268 (1.23e-17)	0.0158 (6.21e-18)	
		· /	· /	

Table 1: Dogs vs Cats data: Normalized training and test MSE: mean and standard deviations (based on 5 repetitions).

С Supplementary Material for Section 5

Algorithm 2 DUAL-LOCO – cross validation							
Input:	Data:	$\mathbf{X},$	Y, no.	workers:	K, no. for	olds: v	

Parameters: $\tau_{subs}, \lambda_1, \ldots \lambda_l$

- 1: Partition $\{p\}$ into K subsets of equal size τ and distribute feature vectors in \mathbf{X} accordingly over Kworkers.
- 2: Partition $\{n\}$ into v folds of equal size.
- 3: for each fold f do

9:

10:11:

12:13:14:15:16:17:18:19: 20:21:

- 4: Communicate indices of training and test points.
- 5:for each worker $k \in \{1, \ldots K\}$ in parallel do
- Compute and send $\mathbf{X}_{k,f}^{train} \mathbf{\Pi}_{k,f}$. 6:
- 7: Receive random features and construct $\bar{\mathbf{X}}_{k,f}^{train}$.
- 8: for each $\lambda_j \in \{\lambda_1, \ldots, \lambda_l\}$ do

$$ilde{lpha}_{k,f,\lambda_j} \leftarrow extsf{LocalDualSolver}(\mathbf{X}_{k,f}^{train}, Y_f^{train}, \lambda_j)$$

10:
$$\widehat{\boldsymbol{\beta}}_{k,f,\lambda_{j}} = -\frac{1}{n\lambda_{j}} \mathbf{X}_{k,f}^{train^{\top}} \widetilde{\boldsymbol{\alpha}}_{k,f,\lambda_{j}}$$
11:
$$\widehat{Y}_{k,f,\lambda_{j}}^{test} = \mathbf{X}_{k,f}^{test} \widehat{\boldsymbol{\beta}}_{k,f,\lambda_{j}}$$
12: Send $\widehat{Y}_{k,f,\lambda_{j}}^{test}$ to driver.
13: end for
14: end for
15: for each $\lambda_{j} \in \{\lambda_{1}, \dots, \lambda_{l}\}$ do
16: Compute $\widehat{Y}_{f,\lambda_{j}}^{test} = \sum_{k=1}^{K} \widehat{Y}_{k,f,\lambda_{j}}^{test}$.
17: Compute $\mathrm{MSE}_{f,\lambda_{j}}^{test}$ with $\widehat{Y}_{f,\lambda_{j}}^{test}$ and Y_{f}^{test} .
18: end for
19: end for
20: for each $\lambda_{j} \in \{\lambda_{1}, \dots, \lambda_{l}\}$ do
21: Compute $\mathrm{MSE}_{\lambda_{j}} = \frac{1}{v} \sum_{f=1}^{v} \mathrm{MSE}_{f,\lambda_{j}}$.

Output: Parameter λ_j attaining smallest MSE_{λ_j}