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Here we introduce two lemmas. The first describes
the random projection construction which we use in
the distributed setting.

Lemma 2 (Summing random features). Consider
the singular value decomposition X = UV where
U € R"™" and V € RP*" have orthonormal columns
and X € R™" is diagonal; v = rank(X). c¢o is a
fized positive constant. In addition to the raw features,
let X, € R™(T+7subs) contain random features which
result from summing the K — 1 random projections
from the other workers. Furthermore, assume without
loss of generality that the problem is permuted so that
the raw features of worker k’s problem are the first T
columns of X and Xy,. Finally, let

— IT 0 PX(T+Tsubs)
Og = |:0 H] eR
such that X;, = XOg.
With probability at least 1 — (6 + E5T)

er

IVTOs0LV - VTV|, < M.

Tsubs

Proof. See Appendix B. O

Definition 1. For ease of exposition, we shall rewrite
the dual problems so that we consider minimizing con-
vex objective functions. More formally, the original
problem is then given by

* : L - * . L T
o = argmln{D(a) = Zfl (i) + 5 Ka} .

acR” i—1
(9)

The problem worker k solves is described by

n
- 1 -
A= in{ D = “(a;) + —a 'K .
& a(rxger]gm{ k() ;fz (o) + 5 ka}

} o B (10)
Recall that K;, = X;@X;—, where Xy, is the concatena-
tion of the T raw features and Tsyps random features
for worker k.

To proceed we need the following result which relates
the solution of the original problem to that of the ap-
proximate problem solved by worker k.

Lemma 3 (Adapted from Lemma 1 [17]). Let a* and
& be as defined in Definition 1. We obtain

1(d—a*)TK~k(d—a*).

(11)
Proof. See [17]. O

For our main result, we rely heavily on the following
variant of Theorem 1 in [17] which bounds the differ-
ence between the coefficients estimated by worker F,
B and the corresponding coordinates of the optimal
solution vector 3;,.

Lemma 4 (Local optimization error. Adapted from

[17]). For p= \/M the following holds

3 * 14 *
18k = Billz < ——118"|I2
k k 1*P

with probability at least 1 — (5 + p_T).

er

The proof closely follows the proof of Theorem 1 in [17]
which we restate here identifying the major differences.

Proof. Let the quantities Dy (cx), K, be as in Defini-
tion 1. For ease of notation, we shall omit the subscript
k in Dy(a) and Ky, in the following.

By the SVD we have X = UXV'. So K =UZXU'
and K = USVTIIITI'VEUT. We can make the fol-

lowing definitions
v =3UTa*, 5=%U"a.

Defining M = V'IIII'V and plugging these into
Lemma 3 we obtain

(3 =)@ -M)yy* = (-7 "ME 7). (12)

We now bound the spectral norm of I — M using
Lemma 2. Recall that Lemma 2 bounds the differ-
ence between a matrix and its approximation by a dis-
tributed dimensionality reduction using the SRHT.

Using the Cauchy-Schwarz inequality we have for the
Lh.s. of (12)

(G =" (T=M) 7 < pl 17 = "2

For the r.h.s. of (12), we can write
(5 =" M3 —~")
=17 =713 - G -7 (T- M) (5—7")
> 117 =715 = o7 =713
=1 =7 =I5
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Combining these two expressions and inequality (12)
yields

A =pIF =713 < plv*llzll7 = 712
L=2)17=7"ll2 < V"2 (13)
From the definition of v* and % above and 8* and S,
respectively we have
1 ~ 1
* VA - ——V~A
B —~Vr, B=-VY
so 2577 lle = 118%]l2 and 1B = B2 = 515 =72
due to the orthonormality of V. Plugging this into

(13) and using the fact that ||8* — B2 > 185 — Byl
we obtain the stated result. O

B Proof of Row Summing Lemma

Proof of Lemma 2 . Let Vi contain the first 7 rows of
V and let V(_j) be the matrix containing the remain-
ing rows. Decompose the matrix products as follows

VIV=VVi+V[ Vi
and

V'0s0iV=V]V,+V]V,
with V[ = V| TI. Then

IVTes0ilv - VvV,
= ViV +ViVi = VIV, =V Vil
= VLTIV gy =V Vg o

Since Og is an orthogonal matrix, from Lemma 3.3
in [13] and Lemma 5, summing (K — 1) independent
SRHTSs from 7 to 7Tsyps is equivalent to applying a sin-
gle SRHT from p—7 to Tgyups- Therefore we can simply
apply Lemma 1 of [15] to the above to obtain the re-
sult. O

Lemma 5 (Summed row sampling). Let W be an nxp
matriz with orthonormal columns. Let W1,...,Wg
be a balanced, random partitioning of the rows of W
where each matriz Wy, has exactly 7 = n/K rows.
Define the quantity M :=n-max;—i ||e;rW||§ For
a positive parameter «, select the subsample size

l-K > aMlog(p).

Let S, € RY7 denote the operation of uniformly
at random sampling a subset, Ty of the rows of Wy,
by sampling | coordinates from {1,2,...7} without re-
placement. Now denote SW as the sum of the sub-
sampled rows

(ST, W) .

K
SW = Z
k=1

Then

1-— - K
A=y K < 0,(SW)
n

and

1+nl-K

SW) <
o1(SW) < o

with failure probability at most

e’

alogp
} (1 4m)t*n

alogp
o> [t

Proof. Define W;r as the j*" row of W and M := n -
max; ||w;||3. Suppose K = 2 and consider the matrix

Gy :=(S1 W + S2W2)T(Slwl + S Ws)
= (S1W1) T (S1W1) + (SaW2) T (SaWy)
+ (S1W1) T (SaW3) + (Sa W) T (S1W1).

In general, we can express G := (SW) ' (SW) as

K
Gi=> > |wiwj+> > wiw)

k=1j€T}, k'#k /€T

By the orthonormality of W, the cross terms cancel as
ijjT/ = 0, yielding

K

G:=(SW) (SW) =) > ww/.

k=1j€Ty
We can consider G as a sum of [ - K random matrices

1 K 1 K
x® . x xW L x
sampled uniformly at random without replacement
from the family X := {vviw;r i=1,...,7- K}

To use the matrix Chernoff bound in Lemma 6, we
require the quantities pimin, ftmax and B. Noticing that
)\max(ij;r) = ||w;[2 < 2 we can set B < M/n.

<
Taking expectations with respect to the random par-
titioning (Ep) and the subsampling within each par-
tition (Eg), using the fact that columns of W are or-
thonormal we obtain

Recall that we take [ samples in K blocks so we can
define

l-K I-K
- and Hmax = —-
n n

Hmin =
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Plugging these values into Lemma 6, the lower and
upper Chernoff bounds respectively yield

P Lo (@) < 1- 1K

n
I-K/M
676 ] /

S p- |:(1—6)1_6 for § S [071), and

P{Amax (G)>(1 +5)l K}

n
:|l‘K/M

5
gp-[w for 6 > 0.

Noting that Amin(G) = 0,(G)?, similarly for Apax and
using the identity for G above obtains the desired re-
sult. O

For ease of reference, we also restate the Matrix Cher-
noff bound from [13, 24] but defer its proof to the
original papers.

Lemma 6 (Matrix Chernoff from [13]). Let X be a
finite set of positive-semidefinite matrices with dimen-
sion p, and suppose that

max Amax(A) < B
AcXx

Sample {Aq,..., A} uniformly at random from X
without replacement. Compute

HMmin = l’)\min (Exl) and Hmax = l')\max(Exl)
Then
P {/\min <Z Az) S (1 - 5)/”'min}
675 Hfmin/B
<p.o |l
<p {(1—6)1—5] ford €[0,1), and
o () 200
66 Hmax/B
<pe|—" > 0.
<o |gigm) oz

Algorithm

TEST MSE

TRAIN MSE

Duar-Loco 0.5
Duar-Loco 0.5
Duar-Loco 0.5
DuaL-Loco 0.5
DuaL-Loco 0.5

0.0343 (3.75e-03)
0.0368 (4.22¢-03)
0.0328 (3.97¢-03)
0.0326 (3.13e-03)
0.0345 (3.82e-03)

0.0344 (2.59e-03)
0.0344 (3.05e-03)
0.0332 (2.91e-03)
0.0340 (2.67¢-03)
0.0345 (2.69e-03)

Duar-Loco 1
Duar-Loco 1
Duar-Loco 1
Duar-Loco 1

0.0310 (2.89e-03)
0.0303 (2.87e-03)
0.0328 (1.92¢-03)
0.0299 (1.07e-03)

0.0295 (2.28¢-03)
0.0307 (1.44e-03)
0.0329 (1.55¢-03)
0.0299 (7.77e-04)

Duar-Loco 2
Duar-Loco 2
DuaL-Loco 2

0.0291 (2.16e-03)
0.0306 (2.38¢-03)
0.0285 (6.11e-04)

0.0280 (6.80e-04)
0.0279 (1.24e-03)
0.0293 (4.77e-04)

CoCoAT
CoCoAt
CoCoAt
CoCoAt
CoCoAt

0.0282 (4.25¢-18)
0.0278 (3.47¢-18)
0.0246 (6.01e-18)
0.0254 (5.49¢-18)
0.0268 (1.23e-17)

0.0246 (2.45¢-18)
0.0212 (3.00e-18)
0.0011 (1.53e-19)
0.0137 (1.50e-18)
0.0158 (6.21e-18)

Table 1: Dogs vs Cats data: Normalized training and test
MSE: mean and standard deviations (based on 5 repeti-

tions).

C Supplementary Material for
Section 5

Algorithm 2 DUAL-LOCO — cross validation

Input: Data: X, Y, no. workers: K, no. folds: v

Parameters: Tgups, A1, - .-

1: Partition {p} into K subsets of equal size 7 and
distribute feature vectors in X accordingly over K

workers.
2: Partition {n} into v folds of equal size.
3: for each fold f do
4:  Communicate indices of training and test
points.
5. for each worker k € {1,... K} in parallel do
6: Compute and send X 4TI}, ;.
7 Receive random features and construct
Xtuun
8: for each Aj €{\,... N} do
9: QA fr; LocalDualSolver(Xm”" Yirem z;)
10: Bk,f,)\j = - Xtmm Q. f )
11: thef-gt)\ :Xk,f ﬂk,f7)\j
12: Send ktefsf\ to driver.
13: end for
14:  end for
15:  for each A; € {M, .. /\l} do

16: Compute Y. te” Zk 1 ,fe]fg\
17: Compute MSE'}?/\J_

18:  end for

19: end for

20: for each A; € {\q,...
21:  Compute MSEj,

22: end for

Al

>\l} do

with stff and Y;“t.

= % Z’;:l MSEfv)‘J' :

Output: Parameter \; attaining smallest MSEj




