Supplementary Information for Dual-LOC: Distributing Statistical Estimation Using Random Projections

A Supplementary Results

Here we introduce two lemmas. The first describes the random projection construction which we use in the distributed setting.

Lemma 2 (Summing random features). Consider the singular value decomposition $X = USV^T$ where $U \in \mathbb{R}^{n \times r}$ and $V \in \mathbb{R}^{p \times r}$ have orthonormal columns and $\Sigma \in \mathbb{R}^{r \times r}$ is diagonal; $r = \text{rank}(X)$. c_0 is a fixed positive constant. In addition to the raw features, let $X_k \in \mathbb{R}^{n \times (r + \tau_{subs})}$ contain random features which result from summing the $K - 1$ random projections from the other workers. Furthermore, assume without loss of generality that the problem is permuted so that the raw features of worker k’s problem are the first τ columns of X and X_k. Finally, let

$$\Theta_S = \begin{bmatrix} I_r & 0 \\ 0 & \Pi \end{bmatrix} \in \mathbb{R}^{p \times (r + \tau_{subs})}$$

such that $X_k = X \Theta_S$.

With probability at least $1 - (\delta + \frac{\rho - 1}{\rho})$

$$\|V^T \Theta_S ^2 V - V^T V\|_2 \leq \sqrt{\frac{c_0 \log(2r/\delta)r}{\tau_{subs}}}.$$

Proof. See Appendix B.

Definition 1. For ease of exposition, we shall rewrite the dual problems so that we consider minimizing convex objective functions. More formally, the original problem is then given by

$$\alpha^* = \arg\min_{\alpha \in \mathbb{R}^n} \left\{ D(\alpha) := \sum_{i=1}^n f_i^*(\alpha_i) + \frac{1}{2n\lambda} \alpha^T K\alpha \right\}. \tag{9}$$

The problem worker k solves is described by

$$\tilde{\alpha} = \arg\min_{\alpha \in \mathbb{R}^n} \left\{ \tilde{D}_k(\alpha) := \sum_{i=1}^n f_i^*(\alpha_i) + \frac{1}{2n\lambda} \tilde{K}_k\alpha \right\}. \tag{10}$$

Recall that $\tilde{K}_k = \tilde{X}_k \tilde{X}_k^T$, where \tilde{X}_k is the concatenation of the τ raw features and τ_{subs} random features for worker k.

To proceed we need the following result which relates the solution of the original problem to that of the approximate problem solved by worker k.

Lemma 3 (Adapted from Lemma 1 [17]). Let α^* and $\tilde{\alpha}$ be as defined in Definition 1. We obtain

$$\frac{1}{\lambda}(\tilde{\alpha} - \alpha^*)^T (K - \tilde{K}_k)\alpha^* \geq \frac{1}{\lambda}(\tilde{\alpha} - \alpha^*)^T \tilde{K}_k(\tilde{\alpha} - \alpha^*). \tag{11}$$

Proof. See [17].

For our main result, we rely heavily on the following variant of Theorem 1 in [17] which bounds the difference between the coefficients estimated by worker k, β_k and the corresponding coordinates of the optimal solution vector β^*_k.

Lemma 4 (Local optimization error. Adapted from [17]). For $\rho = \sqrt{\frac{c_0 \log(2r/\delta)r}{\tau_{subs}}}$, the following holds

$$\|\tilde{\beta}_k - \beta_k\|_2 \leq \frac{\rho}{1 - \rho} \|\beta^*_k\|_2$$

with probability at least $1 - (\delta + \frac{\rho - 1}{\rho})$.

The proof closely follows the proof of Theorem 1 in [17] which we restate here identifying the major differences.

Proof. Let the quantities $\tilde{D}_k(\alpha_k, \tilde{K}_k)$, be as in Definition 1. For ease of notation, we shall omit the subscript k in $\tilde{D}_k(\alpha)$ and \tilde{K}_k in the following.

By the SVD we have $X = USV^T$. So $K_k = U\Sigma_k U^T$ and $\tilde{K}_k = \tilde{U}\Sigma_k \tilde{U}^T$. We can make the following definitions

$$\gamma^* = \Sigma U^T \alpha^*, \quad \tilde{\gamma} = \Sigma U^T \tilde{\alpha}.$$

Defining $\tilde{M} = V^T \Pi \Pi^T V$ and plugging these into Lemma 3 we obtain

$$(\tilde{\gamma} - \gamma^*)^T (I - \tilde{M}) \gamma^* \geq (\tilde{\gamma} - \gamma^*)^T \tilde{M}(\tilde{\gamma} - \gamma^*). \tag{12}$$

We now bound the spectral norm of $I - \tilde{M}$ using Lemma 2. Recall that Lemma 2 bounds the difference between a matrix and its approximation by a distributed dimensionality reduction using the SRHT.

Using the Cauchy-Schwarz inequality we have for the l.h.s. of (12)

$$(\tilde{\gamma} - \gamma^*)^T (I - \tilde{M}) \gamma^* \leq \rho \|\gamma^*\|_2 \|\tilde{\gamma} - \gamma^*\|_2$$

For the r.h.s. of (12), we can write

$$(\tilde{\gamma} - \gamma^*)^T \tilde{M}(\tilde{\gamma} - \gamma^*)$$

$$= \|\tilde{\gamma} - \gamma^*\|_2^2 - (\tilde{\gamma} - \gamma^*)^T (I - \tilde{M})(\tilde{\gamma} - \gamma^*)$$

$$\geq \|\tilde{\gamma} - \gamma^*\|_2^2 - \rho \|\tilde{\gamma} - \gamma^*\|_2^2$$

$$= (1 - \rho) \|\tilde{\gamma} - \gamma^*\|_2^2.$$
Combining these two expressions and inequality (12) yields
\[
(1 - \rho)\|\hat{\gamma} - \gamma^*\|^2_2 \leq \rho\|\gamma^*\|_2\|\hat{\gamma} - \gamma^*\|_2 \\
(1 - \rho)\|\hat{\gamma} - \gamma^*\|_2 \leq \rho\|\gamma^*\|_2.
\] (13)

From the definition of \(\gamma^*\) and \(\hat{\gamma}\) above and \(\beta^*\) and \(\hat{\beta}\), respectively we have
\[
\beta^* = \frac{1}{n\lambda} V\gamma^*, \quad \hat{\beta} = \frac{1}{n\lambda} V\hat{\gamma}
\]
so \(\frac{1}{n\lambda}\|\gamma^*\|_2 = \|\beta^*\|_2\) and \(\|\hat{\beta} - \beta^*\|_2 = \frac{1}{n\lambda}\|\hat{\gamma} - \gamma^*\|_2\) due to the orthonormality of \(V\). Plugging this into (13) and using the fact that \(\|\beta^* - \hat{\beta}\|_2 \geq \|\beta_k^* - \hat{\beta}_k\|_2\) we obtain the stated result. \(\square\)

B Proof of Row Summing Lemma

Proof of Lemma 2. Let \(V_k\) contain the first \(\tau\) rows of \(V\) and let \(V_{(-k)}\) be the matrix containing the remaining rows. Decompose the matrix products as follows
\[
V^T V = V_k^T V_k + V_{(-k)}^T V_{(-k)}
\]
and
\[
V^T \Theta_S \Theta_S^T V = V_k^T V_k + \hat{V}_k^T \hat{V}_k
\]
with \(\hat{V}_k^T = V_{(-k)}^T \Pi\). Then
\[
\|V^T \Theta_S \Theta_S^T V - V^T V\|_2 \\
= \|V_k^T V_k + \hat{V}_k^T \hat{V}_k - V_k^T V_k - V_{(-k)}^T V_{(-k)}\|_2 \\
= \|V_{(-k)}^T \Pi \Pi^T V_{(-k)} - V_{(-k)}^T V_{(-k)}\|_2.
\]

Since \(\Theta_S\) is an orthogonal matrix, from Lemma 3.3 in [13] and Lemma 5, summing \((K - 1)\) independent SRHTs from \(\tau\) to \(\tau_{subs}\) is equivalent to applying a single SRHT from \(p - \tau\) to \(\tau_{subs}\). Therefore we can simply apply Lemma 1 of [15] to the above to obtain the result. \(\square\)

Lemma 5 (Summed row sampling). Let \(W\) be an \(n \times p\) matrix with orthonormal columns. Let \(W_1, \ldots, W_K\) be a balanced, random partitioning of the rows of \(W\) where each matrix \(W_k\) has exactly \(\tau = n/K\) rows. Define the quantity \(M := n \cdot \max_j \|w_j\|_2^2\). For a positive parameter \(\alpha\), select the subsample size
\[
l \cdot K \geq \alpha M \log(p).
\]
Let \(S_{T_k} \in \mathbb{R}^{l \times \tau}\) denote the operation of uniformly at random sampling a subset, \(T_k\) of the rows of \(W_k\) by sampling \(l\) coordinates from \(\{1, 2, \ldots, \tau\}\) without replacement. Now denote \(SW\) as the sum of the subsampled rows
\[
SW = \sum_{k=1}^K (S_{T_k} W_k).
\]

Then
\[
\sqrt{\frac{(1 - \delta)l \cdot K}{n}} \leq \sigma_p(SW)
\]
and
\[
\sigma_1(SW) \leq \sqrt{\frac{(1 + \eta)l \cdot K}{n}}
\]
with failure probability at most
\[
p \cdot \left[\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}} \right]^{\alpha \log p} + p \cdot \left[\frac{e^{\eta}}{(1 + \eta)^{1 + \eta}} \right]^{\alpha \log p}
\]

Proof. Define \(w_j^T\) as the \(j\)th row of \(W\) and \(M := n \cdot \max_j \|w_j\|_2^2\). Suppose \(K = 2\) and consider the matrix
\[
G_2 := (S_1 W_1 + S_2 W_2)^T (S_1 W_1 + S_2 W_2) \\
= (S_1 W_1)^T (S_1 W_1) + (S_2 W_2)^T (S_2 W_2) \\
+ (S_1 W_1)^T (S_2 W_2) + (S_2 W_2)^T (S_1 W_1).
\]

In general, we can express \(G := (SW)^T (SW)\) as
\[
G := \sum_{k=1}^K \sum_{j \in T_k} (w_j w_j^T + \sum_{k' \neq k, j' \in T_{k'}} w_j w_{j'}^T).
\]

By the orthonormality of \(W\), the cross terms cancel as \(w_j w_{j'}^T = 0\), yielding
\[
G := (SW)^T (SW) = \sum_{k=1}^K \sum_{j \in T_k} w_j w_j^T.
\]

We can consider \(G\) as a sum of \(l \cdot K\) random matrices
\[
X^{(1)}_1, \ldots, X^{(K)}_1, \ldots, X^{(1)}_{\tau}, \ldots, X^{(K)}_{\tau}
\]
sampled uniformly at random without replacement from the family \(X := \{w_i w_i^T : i = 1, \ldots, \tau \cdot K\}\).

To use the matrix Chernoff bound in Lemma 6, we require the quantities \(\mu_{\min}, \mu_{\max}\) and \(B\). Noticing that \(\lambda_{\max}(w_j w_j^T) = \|w_j\|_2^2 \leq \frac{M}{n}\), we can set \(B = \frac{M}{n}\).

Taking expectations with respect to the random partitioning \((\mathbb{E}_P)\) and the subsampling within each partition \((\mathbb{E}_S)\), using the fact that columns of \(W\) are orthonormal we obtain
\[
\mathbb{E} \left[X^{(k)}_1 \right] = \mathbb{E}_P \mathbb{E}_S X^{(k)}_1 = \frac{1}{K \tau} \sum_{i=1}^{K \tau} w_i w_i^T = \frac{1}{n} W^T W = \frac{1}{n} I
\]

Recall that we take \(l\) samples in \(K\) blocks so we can define
\[
\mu_{\min} = \frac{l \cdot K}{n} \quad \text{and} \quad \mu_{\max} = \frac{l \cdot K}{n}.
\]
Plugging these values into Lemma 6, the lower and upper Chernoff bounds respectively yield

\[
P\left\{ \lambda_{\min}(G) \leq (1 - \delta) \frac{l \cdot K}{n} \right\} \leq p \cdot \left[\frac{e^{-\delta}}{(1 - \delta)^{1+\delta}} \right]^{l \cdot K / M} \quad \text{for } \delta \in [0, 1], \text{ and}
\]

\[
P\left\{ \lambda_{\max}(G) \geq (1 + \delta) \frac{l \cdot K}{n} \right\} \leq p \cdot \left[\frac{e^{\delta}}{(1 + \delta)^{1+\delta}} \right]^{l \cdot K / M} \quad \text{for } \delta \geq 0.
\]

Noting that \(\lambda_{\min}(G) = \sigma_p(G)^2 \), similarly for \(\lambda_{\max} \) and using the identity for \(G \) above obtains the desired result. \(\square \)

For ease of reference, we also restate the Matrix Chernoff bound from [13, 24] but defer its proof to the original papers.

Lemma 6 (Matrix Chernoff from [13]): Let \(\mathcal{X} \) be a finite set of positive-semidefinite matrices with dimension \(p \), and suppose that

\[
\max_{A \in \mathcal{X}} \lambda_{\max}(A) \leq B
\]

Sample \(\{A_1, \ldots, A_l\} \) uniformly at random from \(\mathcal{X} \) without replacement. Compute

\[
\mu_{\min} = l \cdot \lambda_{\min}(EX_1) \quad \text{and} \quad \mu_{\max} = l \cdot \lambda_{\max}(EX_1)
\]

Then

\[
P \left\{ \lambda_{\min} \left(\sum_i A_i \right) \leq (1 - \delta) \mu_{\min} \right\} \leq p \cdot \left[\frac{e^{-\delta}}{(1 - \delta)^{1+\delta}} \right]^{\mu_{\min} / B} \quad \text{for } \delta \in [0, 1], \text{ and}
\]

\[
P \left\{ \lambda_{\max} \left(\sum_i A_i \right) \geq (1 + \delta) \mu_{\max} \right\} \leq p \cdot \left[\frac{e^{\delta}}{(1 + \delta)^{1+\delta}} \right]^{\mu_{\max} / B} \quad \text{for } \delta \geq 0.
\]

Table 1: Dogs vs Cats data: Normalized training and test MSE: mean and standard deviations (based on 5 repetitions).

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>K</th>
<th>TEST MSE</th>
<th>TRAIN MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEAL-LOCO 0.5</td>
<td>12</td>
<td>0.0300 (4.26e-03)</td>
<td>0.0300 (4.26e-03)</td>
</tr>
<tr>
<td>DEAL-LOCO 0.5</td>
<td>24</td>
<td>0.0300 (4.26e-03)</td>
<td>0.0300 (4.26e-03)</td>
</tr>
<tr>
<td>DEAL-LOCO 0.5</td>
<td>48</td>
<td>0.0300 (4.26e-03)</td>
<td>0.0300 (4.26e-03)</td>
</tr>
<tr>
<td>DEAL-LOCO 0.5</td>
<td>96</td>
<td>0.0300 (4.26e-03)</td>
<td>0.0300 (4.26e-03)</td>
</tr>
<tr>
<td>DEAL-LOCO 0.5</td>
<td>192</td>
<td>0.0300 (4.26e-03)</td>
<td>0.0300 (4.26e-03)</td>
</tr>
<tr>
<td>DEAL-LOCO 1</td>
<td>1</td>
<td>0.0310 (4.26e-03)</td>
<td>0.0310 (4.26e-03)</td>
</tr>
<tr>
<td>DEAL-LOCO 1</td>
<td>24</td>
<td>0.0300 (4.26e-03)</td>
<td>0.0300 (4.26e-03)</td>
</tr>
<tr>
<td>DEAL-LOCO 1</td>
<td>48</td>
<td>0.0300 (4.26e-03)</td>
<td>0.0300 (4.26e-03)</td>
</tr>
<tr>
<td>DEAL-LOCO 1</td>
<td>96</td>
<td>0.0300 (4.26e-03)</td>
<td>0.0300 (4.26e-03)</td>
</tr>
<tr>
<td>DEAL-LOCO 2</td>
<td>12</td>
<td>0.0300 (4.26e-03)</td>
<td>0.0300 (4.26e-03)</td>
</tr>
<tr>
<td>DEAL-LOCO 2</td>
<td>24</td>
<td>0.0300 (4.26e-03)</td>
<td>0.0300 (4.26e-03)</td>
</tr>
<tr>
<td>DEAL-LOCO 2</td>
<td>48</td>
<td>0.0300 (4.26e-03)</td>
<td>0.0300 (4.26e-03)</td>
</tr>
<tr>
<td>DEAL-LOCO 2</td>
<td>96</td>
<td>0.0300 (4.26e-03)</td>
<td>0.0300 (4.26e-03)</td>
</tr>
<tr>
<td>DEAL-LOCO 2</td>
<td>192</td>
<td>0.0300 (4.26e-03)</td>
<td>0.0300 (4.26e-03)</td>
</tr>
</tbody>
</table>

Algorithm 2 Dual-LOCO – cross validation

Input: Data: \(X, Y \), no. workers: \(K \), no. folds: \(v \)

Parameters: \(\tau_{subs} \), \(\lambda_1, \ldots, \lambda_l \)

1. Partition \(\{p\} \) into \(K \) subsets of equal size \(\tau \) and distribute feature vectors in \(X \) accordingly over \(K \) workers.
2. Partition \(\{n\} \) into \(v \) folds of equal size.
3. for each fold \(f \) do
4. Communicate indices of training and test points.
5. for each worker \(k \in \{1, \ldots, K\} \) in parallel do
6. Compute and send \(X_k^{train}, Y_k^{train} \) to driver.
7. Receive random features and construct \(X_k^{test} \).
8. for each \(\lambda_j \in \{\lambda_1, \ldots, \lambda_l\} \) do
9. \(\hat{\alpha}_{k,f,j} \leftarrow \text{LocalDualSolver}(X_k^{train}, Y_k^{train}, \lambda_j) \)
10. \(\hat{\beta}_{k,f,j} = -\frac{1}{n\lambda_j} X_k^{test} \hat{\alpha}_{k,f,j} \)
11. \(Y_k^{test} = X_k^{test} \hat{\beta}_{k,f,j} \)
12. Send \(Y_k^{test} \) to driver.
13. end for
14. end for
15. for each \(\lambda_j \in \{\lambda_1, \ldots, \lambda_l\} \) do
16. Compute \(Y_k^{test} \) with \(Y_k^{test} \) and \(Y_k^{test} \).
17. Compute MSE with MSE and MSE.
18. end for
19. end for
20. for each \(\lambda_j \in \{\lambda_1, \ldots, \lambda_l\} \) do
21. Compute MSE\(\lambda_j \).
22. end for

Output: Parameter \(\lambda_j \) attaining smallest MSE\(\lambda_j \)