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Here we introduce two lemmas. The first describes
the random projection construction which we use in
the distributed setting.

Lemma 2 (Summing random features). Consider

the singular value decomposition X = U⌃V>
where

U 2 Rn⇥r
and V 2 Rp⇥r

have orthonormal columns

and ⌃ 2 Rr⇥r
is diagonal; r = rank(X). c

0

is a

fixed positive constant. In addition to the raw features,

let X̄k 2 Rn⇥(⌧+⌧subs)
contain random features which

result from summing the K � 1 random projections

from the other workers. Furthermore, assume without

loss of generality that the problem is permuted so that

the raw features of worker k’s problem are the first ⌧
columns of X and X̄k. Finally, let

⇥S =


I⌧ 0
0 ⇧

�
2 Rp⇥(⌧+⌧subs)

such that X̄k = X⇥S .

With probability at least 1�
�
� + p�⌧

er

�

kV>⇥S⇥
>
SV �V>Vk

2



s
c
0

log(2r/�)r

⌧subs
.

Proof. See Appendix B.

Definition 1. For ease of exposition, we shall rewrite

the dual problems so that we consider minimizing con-

vex objective functions. More formally, the original

problem is then given by

↵⇤ = argmin
↵2Rn

(
D(↵) :=

nX

i=1

f⇤
i (↵i) +

1

2n�
↵>K↵

)
.

(9)

The problem worker k solves is described by

↵̃ = argmin
↵2Rn

(
D̃k(↵) :=

nX

i=1

f⇤
i (↵i) +

1

2n�
↵>K̃k↵

)
.

(10)
Recall that K̃k = X̄kX̄>

k , where X̄k is the concatena-

tion of the ⌧ raw features and ⌧subs random features

for worker k.

To proceed we need the following result which relates
the solution of the original problem to that of the ap-
proximate problem solved by worker k.

Lemma 3 (Adapted from Lemma 1 [17]). Let ↵⇤
and

↵̃ be as defined in Definition 1. We obtain

1

�
(↵̃�↵⇤)>

⇣
K� K̃k

⌘
↵⇤
�

1

�
(↵̃�↵⇤)>K̃k(↵̃�↵⇤).

(11)

Proof. See [17].

For our main result, we rely heavily on the following
variant of Theorem 1 in [17] which bounds the di↵er-
ence between the coe�cients estimated by worker k,
b�k and the corresponding coordinates of the optimal
solution vector �⇤

k.

Lemma 4 (Local optimization error. Adapted from

[17]). For ⇢ =
q

c
0

log(2r/�)r
⌧subs

the following holds

k

b�k � �⇤
kk2 

⇢

1� ⇢
k�⇤
k

2

with probability at least 1�
�
� + p�⌧

er

�
.

The proof closely follows the proof of Theorem 1 in [17]
which we restate here identifying the major di↵erences.

Proof. Let the quantities D̃k(↵), K̃k, be as in Defini-
tion 1. For ease of notation, we shall omit the subscript
k in D̃k(↵) and K̃k in the following.

By the SVD we have X = U⌃V>. So K = U⌃⌃U>

and K̃ = U⌃V>⇧⇧>V⌃U>. We can make the fol-
lowing definitions

�⇤ = ⌃U>↵⇤, �̃ = ⌃U>↵̃.

Defining M̃ = V>⇧⇧>V and plugging these into
Lemma 3 we obtain

(�̃ � �⇤)>(I� M̃)�⇤
� (�̃ � �⇤)>M̃(�̃ � �⇤). (12)

We now bound the spectral norm of I � M̃ using
Lemma 2. Recall that Lemma 2 bounds the di↵er-
ence between a matrix and its approximation by a dis-

tributed dimensionality reduction using the SRHT.

Using the Cauchy-Schwarz inequality we have for the
l.h.s. of (12)

(�̃ � �⇤)>
⇣
I� M̃

⌘
�⇤
 ⇢k�⇤

k

2

k�̃ � �⇤
k

2

For the r.h.s. of (12), we can write

(�̃ � �⇤)>M̃(�̃ � �⇤)

= k�̃ � �⇤
k

2

2

� (�̃ � �⇤)>
⇣
I� M̃

⌘
(�̃ � �⇤)

� k�̃ � �⇤
k

2

2

� ⇢k�̃ � �⇤
k

2

2

= (1� ⇢)k�̃ � �⇤
k

2

2

.
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Combining these two expressions and inequality (12)
yields

(1� ⇢)k�̃ � �⇤
k

2

2

 ⇢k�⇤
k

2

k�̃ � �⇤
k

2

(1� ⇢)k�̃ � �⇤
k

2

 ⇢k�⇤
k

2

. (13)

From the definition of �⇤ and �̃ above and �⇤ and �̃,
respectively we have

�⇤ = �
1

n�
V�⇤, �̃ = �

1

n�
V�̃

so 1

n�k�
⇤
k

2

= k�⇤
k

2

and k�̃ � �⇤
k

2

= 1

n�k�̃ � �⇤
k

2

due to the orthonormality of V. Plugging this into
(13) and using the fact that k�⇤

� �̃k
2

� k�⇤
k �

b�kk2

we obtain the stated result.

B Proof of Row Summing Lemma

Proof of Lemma 2 . Let Vk contain the first ⌧ rows of
V and let V

(�k) be the matrix containing the remain-
ing rows. Decompose the matrix products as follows

V>V = V>
k Vk +V>

(�k)V(�k)

and

V>⇥S⇥
>
SV = V>

k Vk + Ṽ>
k Ṽk

with Ṽ>
k = V>

(�k)⇧. Then

kV>⇥S⇥
>
SV �V>Vk

2

= kV>
k Vk + Ṽ>

k Ṽk �V>
k Vk �V>

(�k)V(�k)k2

= kV>
(�k)⇧⇧>V

(�k) �V>
(�k)V(�k)k2.

Since ⇥S is an orthogonal matrix, from Lemma 3.3
in [13] and Lemma 5, summing (K � 1) independent
SRHTs from ⌧ to ⌧subs is equivalent to applying a sin-
gle SRHT from p�⌧ to ⌧subs. Therefore we can simply
apply Lemma 1 of [15] to the above to obtain the re-
sult.

Lemma 5 (Summed row sampling). Let W be an n⇥p
matrix with orthonormal columns. Let W

1

, . . . ,WK

be a balanced, random partitioning of the rows of W
where each matrix Wk has exactly ⌧ = n/K rows.

Define the quantity M := n ·maxj=1,...n ke
>
j Wk

2

2

. For

a positive parameter ↵, select the subsample size

l ·K � ↵M log(p).

Let STk 2 Rl⇥⌧
denote the operation of uniformly

at random sampling a subset, Tk of the rows of Wk

by sampling l coordinates from {1, 2, . . . ⌧} without re-

placement. Now denote SW as the sum of the sub-

sampled rows

SW =
KX

k=1

(STkWk) .

Then

r
(1� �)l ·K

n
 �p(SW)

and

�
1

(SW) 

r
(1 + ⌘)l ·K

n

with failure probability at most

p ·


e��

(1� �)1��

�↵ log p

+ p ·


e⌘

(1 + ⌘)1+⌘

�↵ log p

Proof. Define w>
j as the jth row of W and M := n ·

maxj kwjk
2

2

. Suppose K = 2 and consider the matrix

G
2

: = (S
1

W
1

+ S
2

W
2

)>(S
1

W
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W
2

)

= (S
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2
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W
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W
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).

In general, we can express G := (SW)>(SW) as

G :=
KX

k=1

X

j2Tk

0

@wjw
>
j +

X

k0 6=k

X

j02T 0
k

wjw
>
j0

1

A .

By the orthonormality of W, the cross terms cancel as
wjw>

j0 = 0, yielding

G := (SW)> (SW) =
KX

k=1

X

j2Tk

wjw
>
j .

We can consider G as a sum of l ·K random matrices

X(1)

1

, . . . ,X(K)

1

, . . . ,X(1)

l , . . . ,X(K)

l

sampled uniformly at random without replacement
from the family X :=

�
wiw>

i : i = 1, . . . , ⌧ ·K
 
.

To use the matrix Cherno↵ bound in Lemma 6, we
require the quantities µ

min

, µ
max

and B. Noticing that
�
max

(wjw>
j ) = kwjk

2

2



M
n , we can set B M/n.

Taking expectations with respect to the random par-
titioning (EP ) and the subsampling within each par-
tition (ES), using the fact that columns of W are or-
thonormal we obtain

E
h
X(k)

1

i
= EPESX

(k)
1

=
1

K

1

⌧

K⌧X

i=1

wiw
>
i =

1

n
W>W =

1

n
I

Recall that we take l samples in K blocks so we can
define

µ
min

=
l ·K

n
and µ

max

=
l ·K

n
.
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Plugging these values into Lemma 6, the lower and
upper Cherno↵ bounds respectively yield

P
⇢
�
min

(G)  (1� �)
l ·K

n

�

 p ·


e��

(1� �)1��

�l·K/M

for � 2 [0, 1), and

P
⇢
�
max

(G) � (1 + �)
l ·K

n

�

 p ·


e�

(1 + �)1+�

�l·K/M

for � � 0.

Noting that �
min

(G) = �p(G)2, similarly for �
max

and
using the identity for G above obtains the desired re-
sult.

For ease of reference, we also restate the Matrix Cher-
no↵ bound from [13, 24] but defer its proof to the
original papers.

Lemma 6 (Matrix Cherno↵ from [13]). Let X be a

finite set of positive-semidefinite matrices with dimen-

sion p, and suppose that

max
A2X

�
max

(A)  B

Sample {A
1

, . . . ,Al} uniformly at random from X

without replacement. Compute

µ
min

= l·�
min

(EX
1

) and µ
max

= l·�
max

(EX
1

)

Then

P
(
�
min

 
X

i

Ai

!
 (1� �)µ

min

)

 p ·


e��

(1� �)1��

�µ
min

/B

for � 2 [0, 1), and

P
(
�
max

 
X

i

Ai

!
� (1 + �)µ

max

)

 p ·


e�

(1 + �)1+�

�µ
max

/B

for � � 0.

Algorithm K TEST MSE TRAIN MSE

Dual-Loco 0.5 12 0.0343 (3.75e-03) 0.0344 (2.59e-03)

Dual-Loco 0.5 24 0.0368 (4.22e-03) 0.0344 (3.05e-03)

Dual-Loco 0.5 48 0.0328 (3.97e-03) 0.0332 (2.91e-03)

Dual-Loco 0.5 96 0.0326 (3.13e-03) 0.0340 (2.67e-03)

Dual-Loco 0.5 192 0.0345 (3.82e-03) 0.0345 (2.69e-03)

Dual-Loco 1 12 0.0310 (2.89e-03) 0.0295 (2.28e-03)

Dual-Loco 1 24 0.0303 (2.87e-03) 0.0307 (1.44e-03)

Dual-Loco 1 48 0.0328 (1.92e-03) 0.0329 (1.55e-03)

Dual-Loco 1 96 0.0299 (1.07e-03) 0.0299 (7.77e-04)

Dual-Loco 2 12 0.0291 (2.16e-03) 0.0280 (6.80e-04)

Dual-Loco 2 24 0.0306 (2.38e-03) 0.0279 (1.24e-03)

Dual-Loco 2 48 0.0285 (6.11e-04) 0.0293 (4.77e-04)

CoCoA+

12 0.0282 (4.25e-18) 0.0246 (2.45e-18)

CoCoA+

24 0.0278 (3.47e-18) 0.0212 (3.00e-18)

CoCoA+

48 0.0246 (6.01e-18) 0.0011 (1.53e-19)

CoCoA+

96 0.0254 (5.49e-18) 0.0137 (1.50e-18)

CoCoA+

192 0.0268 (1.23e-17) 0.0158 (6.21e-18)

Table 1: Dogs vs Cats data: Normalized training and test
MSE: mean and standard deviations (based on 5 repeti-
tions).

C Supplementary Material for

Section 5

Algorithm 2 Dual-Loco – cross validation

Input: Data: X, Y , no. workers: K, no. folds: v
Parameters: ⌧subs, �1

, . . .�l

1: Partition {p} into K subsets of equal size ⌧ and
distribute feature vectors in X accordingly over K
workers.

2: Partition {n} into v folds of equal size.
3: for each fold f do
4: Communicate indices of training and test

points.
5: for each worker k 2 {1, . . .K} in parallel do
6: Compute and send Xtrain

k,f ⇧k,f .
7: Receive random features and construct

X̄train
k,f .

8: for each �j 2 {�
1

, . . .�l} do
9: ↵̃k,f,�j  LocalDualSolver(X̄train

k,f , Y train
f ,�j)

10: b�k,f,�j
= � 1

n�j
Xtrain

k,f
>
↵̃k,f,�j

11: Ŷ test
k,f,�j

= Xtest
k,f
b�k,f,�j

12: Send Ŷ test
k,f,�j

to driver.
13: end for
14: end for
15: for each �j 2 {�

1

, . . .�l} do

16: Compute Ŷ test
f,�j

=
PK

k=1

Ŷ test
k,f,�j

.

17: Compute MSEtest
f,�j

with Ŷ test
f,�j

and Y test
f .

18: end for
19: end for
20: for each �j 2 {�

1

, . . .�l} do
21: Compute MSE�j = 1

v

Pv
f=1

MSEf,�j .
22: end for

Output: Parameter �j attaining smallest MSE�j


