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Abstract

This document contains supplementary ma-
terial to the paper Inverse Reinforcement
Learning with Simultaneous Estimation of
Rewards and Dynamics with more detailed
derivations, additional proofs to lemmata
and theorems as well as larger illustrations
and plots of the evaluation task.

1 Partial Derivative of the Policy
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2 Partial Derivative of the Soft
Q-Function with Respect to the
Individual Parameter Types

The partial derivative can be further simplified if it
is taken with respect to the three individual param-
eter types: the feature weights, the agent’s dynamics
parameters, and the parameters of the true environ-
ment’s dynamics:
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3 Proof: Soft Q-iteration is a
Contraction Mapping

It has to be shown that the soft Q-iteration is a fixed
point iteration with only one fixed point, since this
is a requirement of our algorithm. Bloem et al. have
shown in Bloem and Bambos (2014) that the soft value
iteration operator is a contraction mapping. It has to
be proven that the same holds for the soft Q-iteration
operator T softθ (Q). Therefore, we adjust their proof
to be valid for the Q-iteration.
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The soft Q-iteration operator is defined as

T softθ (Q)(s, a) = θᵀRf(s, a)
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.

We will begin with deriving proofs for necessary auxil-
iary definitions and lemmata. In order to argue about
the monotonicity of multidimensional functions, a par-
tial order on RA×B is introduced. Then, a prop-
erty of the softmax function is derived and afterwards
the monotonicity of the operator T softθ (Q)(s, a) :
R|S|×|A| → R|S|×|A| with respect to the introduced
partial order is proven.

Definition 3.1. For x,y ∈ RA×B with A,B ∈ N+,
the partial order � is defined as x � y ⇔ ∀a ∈ A, b ∈
B : xa,b ≤ ya,b.
Lemma 3.2. The softmax function has the prop-
erty that for any x ∈ RN and d ∈ R it holds that
softmax
xi∈x

(xi + d) = softmax
xi∈x

(xi) + d.

Proof. The property can be easily shown by extracting
the variable d from the softmax formulation:
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Lemma 3.3. The soft Q-iteration operator
T softθ (Q)(s, a) is monotone, satisfying ∀Qm,Qn ∈
R|S|×|A| : Qm � Qn → T softθ (Qm) � T softθ (Qn).

Proof. The partial derivative of the T softθ (Q)(s, a)
with respect to a single value Q(si, ai) is

∂
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T softθ (Q)(s, a)

= γPθTA
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exp (Q (si, ai))∑
aj∈A exp (Q (si, aj))

.

From the definition of the MDP it follows that γ ∈
[0, 1) and the probability distribution PθTA

(si|s, a) ∈
[0, 1]. As ∀xi ∈ R : exp(xi) ∈ (0,+∞), all

terms of the partial derivative ∂
∂Q(si,ai)

T softθ (Q)(s, a)

are positive or zero, which finishes the proof that
∂

∂Q(si,ai)
T softθ (Q)(s, a) ≥ 0.

Based on Lemma 3.2 and 3.3 it is possible to derive the
proof that the soft Q-iteration is a contraction map-
ping. We transfer the proof of Bloem et al. Bloem
and Bambos (2014) for the value iteration and adjust
it, such that it applies for the Q-iteration.

Theorem 3.4. The soft Q-iteration operator
T softθ (Q)(s, a) is a contraction mapping with only
one fixed point. Therefore, it is Lipschitz continuous
||T softθ (Qm) − T softθ (Qn)||∞ ≤ L||Qm − Qn||∞ for
all Qm,Qn ∈ R|S|×|A| with a Lipschitz constant
L ∈ [0, 1).

Proof. Consider Qm,Qn ∈ R|S|×|A|. There exists a
distance d under the supremum norm, for which ∃d ∈
R+

0 : ||Qm −Qn||∞ = d holds and therefore

−d1 � Qm −Qn � d1

with 1 = (1)k,l, where 1 ≤ k ≤ |S|, 1 ≤ l ≤ |A|.
Since d bounds the components of the vector difference
Qm −Qn, it can be derived that Qm � Qn + d1 and
Qn � Qm + d1. For both cases, the monotonicity
condition of Lemma 3.3 is satisfied, which allows for
the following inequality: T softθ (Qm) � T softθ (Qn+d1).
By applying Lemma 3.2, it follows that ∀s ∈ S, a ∈ A

T softθ (Qm)(s, a)
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+ γd

= T softθ (Qn)(s, a) + γd

In vector notation this results in T softθ (Qm) �
T softθ (Qn) + γd1. As from the symmetric defini-
tion of −d1 � Qm − Qn � d1, it has been de-
rived that Qn � Qm + d, it consequently follows that

T softθ (Qn) � T softθ (Qm) + γd1. To finish the proof, it
has to be shown that the soft Q-iteration operator is
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Lipschitz continuous with L ∈ [0, 1). This can be done
by combining the related inequations of the operator:

−γd1 � T softθ (Qm)− T softθ (Qn) � γd1

||T softθ (Qm)− T softθ (Qn)||∞ ≤ γd

||T softθ (Qm)− T softθ (Qn)||∞ ≤ γ||Qm −Qn||∞

This proves that the soft Q-iteration operator
T softθ (Q) is Lipschitz continuous with a Lipschitz con-
stant L = γ and γ ∈ [0, 1), resulting in a contraction
mapping. As this holds for the whole input space of
R|S|×|A|, two points would always contract, so there
cannot exist two fixed points.

4 Proof: The Converged Soft
Q-Function is Differentiable

Theorem 4.1. The converged soft Q-function is dif-
ferentiable with respect to θ.

Proof. Since we provide an iterative formula for the
gradient of the converged soft Q-function Q̃(s, a), we

need to revisit the soft Q-iteration operator T softθ (Q) :
RS×A 7→ RS×A, element-wise defined as

T softθ (Q(s′, a′))[s, a] = θᵀRf(s, a)

+ γ
∑
s′∈S

[
PθTA

(s′|s, a) log(
∑
a′∈A

exp(Q(s′, a′))
]
.

It is ensured that repeatedly applying T softθ (Q) to

an initial Q0 converges to a fixed-point Q̃ given γ ∈
[0, 1), as the soft Q-operator converges [see Section 3].

T softθ (Q) is differentiable with respect to both Q and
θ as being the composition of differentiable functions.
This requires the transition model PθTA

to be differ-
entiable with respect to θ, too. We now apply the
implicit function theorem Krantz and Parks (2002) to
compute the derivative ∂

∂θ Q̃θ given by the equation

T softθ (Q)(s, a)−Q(s, a) = 0.

The theorem states that if the Jacobian ∂
∂Q [T softθ (Q)−

Q] is invertible at Q̃θ, the derivative ∂
∂θ Q̃θ exists and

is given by

∂

∂θ
Q̃θ =

( ∂

∂Q
[T softθ (.)− .]

)−1 ∂
∂θ
T softθ (.) (Q̃θ).

Since the partial derivative of the operator T softθ (Q)
has already been derived in Section 3, the Jacobian of

T softθ (Q)−Q is

∂

∂Q
[T softθ (Q̃θ)− Q̃θ]([s, a], [s′, a′])

= −δ(a′ = a, s′ = s) + γPθTA
(s′|s, a)

· 1∑
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exp(Q(s′, a′))

= −δ(a′ = a, s′ = s) + γ π(a′|s′)PθTA
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M[s,a],[s′,a′]

.

It holds 1 > γ ≥ ||γM ||∞ in the L∞ induced

matrix-norm defined as ||A||∞ := maxx
|Ax|∞
|x|∞ =

maxi
∑
j |Ai,j |, as

max
[s,a]

∑
[s′,s′]

|γM[s,a],[s′,a′]|

= max
[s,a]

∑
[s′,a′]

|γπ(a′|s′)Pθ(s′|a, s)| = γ.

Hence, (γM −I)−1 exists and is given by the Neuman
operator-series −

∑∞
i=0(γM)i. Since the Jacobian is

invertible it is proven that the partial derivative of the
converged soft Q-function ∂

∂θ Q̃θ with respect to the
parameters θ exists.

5 Grid World Terrain Motion Task

This section provides larger illustrations and results
for the evaluation task. Figure 1 and 2 illustrate the
environment of the training and transfer task. The re-
sults are summarized in Figure 3, where (a), (b), (c)
are results on the training task and (d) presents the
performance on the transfer task. We used Welch’s t-
test Welch (1947) to verify that the differences of the
mean log likelihood of the demonstrations under the
trained models in Figure 3 (a) and (d) are statisti-
cally significant (p < 0.05). In the training task, the
performance of SERD against the other approaches
is statistically significant for sample set sizes that are
larger than 3, while in the transfer task statistical sig-
nificance is given at least for demonstration set sizes
larger than 12.
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(a) (b) (c)

(d) (e) (f)

Figure 1: The training and test task. (a) Environment, Map data: Google. (b) Discretized state space. The
goal state is indicated in green and start states in red. (c) Forest states are indicated in a dark-gray color and
open terrain in light gray. Furthermore, plot (d) shows the reward, (e) the resulting value function, and (f) the
expected state frequency.

(a) (b) (c)

(d) (e) (f)

Figure 2: The transfer task. (a) Environment, Map data: Google. (b) Discretized state space. The goal state is
indicated in green and start states in red. (c) Forest states are indicated in a dark-gray color and open terrain in
light gray. Furthermore, plot (d) shows the reward, (e) the resulting value function, and (f) the expected state
frequency.
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(a) Log likelihood of the demonstrations
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(b) KL divergence of the transition model
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(c) KL divergence of the policy
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(d) Log likelihood of the demonstrations (transfer)

Figure 3: (a) Average log likelihood of demonstrations drawn from the true model under the estimated model. (b)
Average Kullback-Leibler divergence between the estimated dynamics and the true ones. (c) Average Kullback-
Leibler divergence between the trained stochastic policy and the true one. (d) Average log likelihood of demon-
strations drawn from the true model under the estimated model in the transfer task environment.
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