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Abstract

Variational methods have been recently con-
sidered for scaling the training process of
Gaussian process classifiers to large datasets.
As an alternative, we describe here how to
train these classifiers efficiently using expec-
tation propagation (EP). The proposed EP
method allows to train Gaussian process clas-
sifiers on very large datasets, with millions of
instances, that were out of the reach of pre-
vious implementations of EP. More precisely,
it can be used for (i) training in a distributed
fashion where the data instances are sent to
different nodes in which the required com-
putations are carried out, and for (ii) maxi-
mizing an estimate of the marginal likelihood
using a stochastic approximation of the gra-
dient. Several experiments involving large
datasets show that the method described is
competitive with the variational approach.

1 INTRODUCTION

Gaussian process classification is a framework that can
be used to predict the class label associated to a new
instance (Rasmussen and Williams, 2006). In the bi-
nary case it is considered a non-linear latent function f
whose sign at each input location determines the cor-
responding label. Moreover, a Gaussian process prior
is assumed for f . A practical difficulty is, however,
that making inference about f is infeasible due to the
non-Gaussian likelihood. Nevertheless, very efficient
methods can be used to carry out the required compu-
tations in an approximate way (Kuss and Rasmussen,
2005; Nickisch and Rasmussen, 2008). The result is
a non-parametric classifier that becomes more expres-
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sive as the number of training instances increases. Un-
fortunately, the training cost is O(n3), where n is the
number of instances. This cost can be improved by us-
ing a sparse representation for f (Quiñonero Candela
and Rasmussen, 2005). A popular approach in this set-
ting introduces additional data instances in the form of
m � n inducing points or pseudoinputs, whose loca-
tion in input space determines the regions where f can
change significantly (Snelson and Ghahramani, 2006;
Naish-Guzman and Holden, 2008). Sparse representa-
tions lead to a training cost that scales like O(nm2).

In order for Gaussian process classification to work
well, good hyper-parameters for the prior on f (e.g.,
the level of noise, the length-scales and the amplitude)
and good inducing point locations must be learned
from the data. This is often done by maximizing an
estimate of the marginal likelihood. A limitation of
existing methods is, however, that the estimate of the
marginal likelihood cannot be expressed as a sum over
the data instances (Naish-Guzman and Holden, 2008).
This prevents using efficient techniques for maximiza-
tion, such as stochastic gradient ascent or distributed
computations. An exception to this is the recent
work by Hensman et al. (2015), which combines ideas
from stochastic variational inference (Hoffman et al.,
2013) and from variational Gaussian processes (Tit-
sias, 2009) to provide a scalable method for Gaussian
process classification that can be applied to datasets
with millions of data instances. Nevertheless, a disad-
vantage of the work of Hensman et al. (2015) is that
one-dimensional quadratures are strictly needed since
some of the computations do not have a closed form.

In this paper we introduce an alternative to the vari-
ational approach described by Hensman et al. (2015)
that is based on expectation propagation (EP) (Minka,
2001). The proposed method allows to train Gaussian
process classifiers on very large datasets that were out
of the reach of previous approaches based on EP. For
this, we show that in EP it is possible to update the
posterior approximation for the Gaussian process f
and the model hyper-parameters, including the induc-
ing points, at the same time. Furthermore, in our EP
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formulation the estimate of the marginal likelihood is
expressed as a sum over the data. This enables using
stochastic gradient ascent to maximize such an esti-
mate to find good model hyper-parameters and induc-
ing points. We also show that the EP updates can
also be implemented in a distributed fashion, by split-
ting the data across several computational nodes. In
summary, our new EP formulation for Gaussian pro-
cess classification has the same advantages as the vari-
ational approach of Hensman et al. (2015), with the
convenience that all computations are tractable and
one-dimensional quadrature methods are not required.
Furthermore, our experiments, involving datasets with
millions of instances, show that both approaches for
Gaussian process classification perform very similar.

The EP algorithm proposed is not restricted to Gaus-
sian process classification. It may be also used for
efficient approximate inference in other models. More-
over, to our knowledge, this is the first time that the
hyper-parameters and the posterior approximation are
updated inside EP at the same time. Previous imple-
mentations run EP until convergence with fixed hyper-
parameters, to then update the hyper-parameters us-
ing a small gradient step. This process is repeated, po-
tentially re-using the last EP solution, until the hyper-
parameters no longer change. All major Gaussian pro-
cess toolboxes follow this approach (Rasmussen and
Nickisch, 2010; Vanhatalo et al., 2013; The GPy au-
thors, 2015). We show that such scheme is less effi-
cient since EP may take long time to converge at the
beginning, when the hyper-parameters are still very
poor. This is also the first work in which stochastic
gradients are used to update the hyper-parameters in
EP. This enables hyper-parameter learning within EP
on massive datasets. These advantages and the good
results of our method suggest that, in general, all EP
algorithms should be implemented as we propose here.

2 SCALABLE GAUSSIAN
PROCESS CLASSIFICATION

We introduce here Gaussian process classification and
the model considered. Then, we show that expectation
propagation can be used for distributed training and
that the model hyper-parameters can be inferred using
stochastic gradients. The full details of the proposed
EP method are found in the supplementary material.

2.1 Gaussian Process Classification

Assume some data in the form of a matrix of attributes
X = (x1, . . . ,xn)T with labels y = (y1, . . . , yn), where
yi ∈ {−1, 1}. The task is to predict the class label of
a new instance. For this, we assume the labeling rule
yi = sign(f(xi) + εi), where f(·) is a non-linear func-

tion and εi is standard Gaussian noise that accounts
for mislabeled instances. Furthermore, we assume a
Gaussian process prior over f with zero mean and
covariance function k(·, ·) (Rasmussen and Williams,
2006). That is, f ∼ GP(0, k(·, ·)). To make infer-
ence about f = (f(x1), . . . , f(xn))T given y, Bayes’
rule is used. Namely, p(f |y) = p(y|f)p(f)/p(y) where
p(f) is a multivariate Gaussian distribution and p(y),
the marginal likelihood, can be maximized to find the
parameters of the covariance function k(·, ·). The like-
lihood of f is p(y|f) =

∏n
i=1 Φ(yifi), where Φ(·) is

the cdf of a standard Gaussian and fi = f(xi). This
is a non-Gaussian likelihood which makes the poste-
rior intractable. However, there are several techniques
that can be used to get a Gaussian approximation of
p(f |y) (Kuss and Rasmussen, 2005; Nickisch and Ras-
mussen, 2008). They all result in a non-parametric
classifier. Unfortunately, all these methods scale like
O(n3), where n is the number of training instances.

A sparse representation for the Gaussian process f
can be used to reduce the training cost. A pop-
ular approach introduces a dataset of m � n in-
ducing points X = (x1, . . . ,xm)T with associated
values f = (f(x1), . . . , f(xm))T (Naish-Guzman and
Holden, 2008; Snelson and Ghahramani, 2006). The
aim of the inducing points, X, is to constrain
the form of f and to indicate where it can sig-
nificantly change. Given X, the prior for f is
then approximated as p(f) =

∫
p(f |f)p(f |X)df ≈∫ [∏n

i=1 p(fi|f)
]
p(f |X)df = pFITC(f |X), where the

Gaussian conditional p(f |f) is replaced by a factor-
ized distribution

∏n
i=1 p(fi|f). This approximation

is known as the full independent training conditional
(FITC) (Quiñonero Candela and Rasmussen, 2005),
and it leads to a Gaussian prior pFITC(f |X) with a
low-rank covariance matrix. This prior allows for ap-
proximate inference with cost O(nm2). Finally, the in-
ducing points X are regarded as hyper-parameters to
be learnt by maximizing the marginal likelihood p(y).

2.2 Model Specification and Expectation
Propagation

The original methods based on the FITC approxima-
tion do not express the estimate of the marginal likeli-
hood, p(y), as a sum across data instances. This makes
infeasible the use of efficient stochastic algorithms for
learning the model hyper-parameters. To avoid this,
we follow Titsias (2009) and do not marginalize the
values f associated to the inducing points. Specifically,
the posterior approximation we consider is p(f |y) ≈∫
p(f |f)q(f)df , where q is a Gaussian distribution that

approximates p(f |y), i.e., the posterior of the values
associated to the inducing points. To obtain q, we use
first on the exact posterior the FITC approximation
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pFITC(f |f) introduced in Section 2.1. In particular,

p(f |y) =

∫
p(y|f)p(f |f)dfp(f |X)

p(y|X)

≈
∫
p(y|f)pFITC(f |f)dfp(f |X)

p(y|X)

=

∏n
i=1 φi(f)p(f |X)

p(y|X)
, (1)

where p(y|f) =
∏n
i=1 Φ(yifi), pFITC(f |f) =∏n

i=1 p(fi|f) =
∏n
i=1N (fi|mi, si) and φi(f) =∫

Φ(yifi)N (fi|mi, si)dfi = Φ(yimi/
√
si + 1), with

mi = Kfif
K−1

f f
f and si = Kfifi −Kfif

K−1
f f

Kffi
. Fur-

thermore, Kf f is a matrix with the prior covariances

among the entries in f , Kfif
is a row vector with the

prior covariances between fi and f and Kfifi is the
prior variance of fi. Finally, N (·|m,Σ) denotes the
p.d.f of a multivariate Gaussian distribution with mean
vector equal to m and covariance matrix equal to Σ.

The r.h.s of (1) is an intractable posterior due to the
non-Gaussianity of each φi. We use expectation prop-
agation (EP) to obtain a Gaussian approximation q
(Minka, 2001). In EP, each φi is approximated by an
un-normalized Gaussian factor φ̃i which is defined as:

φ̃i(f) = s̃i exp
{
− ν̃i2 f

T
υiυ

T
i f + µ̃if

T
υi

}
, (2)

where υi = K−1
f f

Kffi
is a m dimensional vector, and

s̃i, ν̃i and µ̃i are parameters to be estimated by EP. Im-
portantly, φ̃i has a one-rank precision matrix, which
means that in practice only O(m) parameters need
to be stored per each φ̃i. This is not an approxima-
tion and the optimal Gaussian factor φ̃i approximat-
ing φi has this form (see the supplementary material
for more details). The posterior approximation q is
obtained by replacing in the r.h.s. of (1) each ex-
act factor φi with the corresponding approximate fac-
tor φ̃i. Namely, q(f) =

∏n
i=1 φ̃i(f)p(f |X)/Zq, where

Zq is a normalization constant that approximates the
marginal likelihood p(y|X). We note that all factors in
q are Gaussian, including the prior. Thus, q is a mul-
tivariate Gaussian distribution over m dimensions.

EP updates each φ̃i iteratively until-convergence as fol-
lows. First, φ̃i is removed from q by computing q\i ∝
q/φ̃i. Then, we minimize the Kullback-Leibler diver-
gence between Z−1i φiq

\i, and q, i.e., KL[Z−1i φiq
\i||q],

with respect to q, where Zi is the normalization con-
stant of φiq

\i. This involves matching the mean and
the covariances of Z−1i φiq

\i, which can be obtained
from the derivatives of logZi with respect to the (nat-
ural) parameters of q\i (Seeger, 2006). Given a new
distribution q, the approximate factor is φ̃i = Ziq/q

\i.
This enforces that φ̃i is similar to φi in regions of high

posterior probability as estimated by q\i. These up-
dates are done in parallel for efficiency reasons, i.e.,
we compute q\i and the new q, for i = 1 . . . , n, at the
same time, and then update φ̃i as before (Van Gerven
et al., 2009; Hernández-Lobato et al., 2011). The new
approximation q is obtained by multiplying all the φ̃i
and p(f |X). The normalization constant of q, Zq, is the
EP approximation of the marginal likelihood p(y|X).
The log of this constant is (Seeger, 2006):

logZq = g(θ)− g(θprior) +
∑n
i=1 log Z̃i , (3)

where log Z̃i = logZi + g(θ\i) − g(θ), with θ, θ\i

and θprior being the natural parameters of q, q\i and
p(f |X), respectively. Furthermore, Zi is the normal-
ization constant of φiq

\i, and g(θ) is the log-normalizer
of a multivariate Gaussian with natural parameters θ.

If EP converges (the φ̃i do not change), the gradient
of logZq with respect to the parameters of each φ̃i is
zero (Seeger, 2006). Thus, the gradient of logZq with
respect to a hyper-parameter ξj (i.e., a parameter of
the covariance function k(·, ·) or a component of X) is:

∂ logZq
∂ξj

=
(
ηT − ηT

prior

) ∂θprior
∂ξj

+
n∑

i=1

∂ logZi
∂ξj

, (4)

where η and ηprior are the expected sufficient statis-
tics under q and the prior p(f |X), respectively. See the
supplementary material. Using (4) the model hyper-
parameters can be estimated by maximizing logZq
via gradient ascent. Typically, one alternates be-
tween running EP until convergence for fixed hyper-
parameters, and updating the hyper-parameters using
a gradient step. After training, q gives a predictive
distribution for the label y? of a new instance x?:

p(y?|y,X) ≈
∫
p(y?|f?)p(f?|f)q(f)dfdf? . (5)

Because several simplifications occur when comput-
ing the derivatives with respect to the inducing points
(Snelson, 2007), the total training time is O(nm2).

2.3 Scalable Expectation Propagation

Current EP implementations re-run EP (re-using the
previous solution) after each single gradient ascent up-
date of the hyper-parameters since (4) is only valid if
EP has converged. Such a scheme is very inefficient at
the beginning, when the estimate of the model hyper-
parameters is often very poor, and EP may require
several iterations to converge. To circumvent this, we
propose to update the approximate factors φ̃i and the
model hyper-parameters ξj at the same time. That
is, after a parallel update of all the approximate fac-
tors, we update the hyper-parameters using gradient
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Figure 1: (left) Value of logZq obtained when updating the hyper-parameters after EP has converged (outer) and just

after each update of the approximate factors φ̃i (inner), when using the exact gradient, and the approximation (4),

which assumes matched moments between Z−1
i φiq

\i and q. m = 300. (right) Distribution of the EP updates across K

computational nodes storing a subset D1, . . . ,DK of the data. Best seen in color.

ascent assuming that each φ̃i is fixed. However, be-
cause EP has not converged, the moments of Z−1i φiq

\i

and q need not match. Thus, extra terms must be
added to (4) to get the exact gradient. In spite of this,
our experiments show that the extra terms are very
small and can be ignored. In practice, we use (4) for
the inner update of the hyper-parameters. Figure 1
(left) shows that the approach described successfully
maximizes logZq on the Pima dataset from the UCI
repository (A. Asuncion, 2007). Because we do not
wait for convergence in EP, the method is significantly
faster. The idea of why the approach described works
in practice is as follows. The EP update of each φ̃i can
be seen as a (natural) gradient ascent step on logZq
when all φ̃j , with j 6= i, remain fixed (Heskes and
Zoeter, 2002). Furthermore, those updates are very
effective for finding a stationary point of logZq with

respect to the parameters of each φ̃i since EP typically
converges. Thus, it is natural that an inner update of
the hyper-parameters when all φ̃i remain fixed is an
effective method for finding a maximum of logZq.

Distributed training: The method described is suit-
able for distributed computation using the ideas in
(Gelman et al., 2014; Xu et al., 2014). In particular,
the training data can be split in K subsets D1, . . . ,DK
which are sent to K computational nodes. A master
node stores the posterior approximation q, which is
sent to each computational node. Then, node k up-
dates each φ̃j with j ∈ Dk and returns

∏
j∈Dk

φ̃j to the
master node. After each node has done this, the mas-
ter node updates q using p(f |X) and the messages re-
ceived. Because the gradient of the hyper-parameters
(4) involves a sum over the data instances, its compu-
tation can also be distributed among the K computa-
tional nodes. Thus, the total training cost of the EP
method can be reduced by a factor of K toO(nm2/K).
Figure (1) (right) illustrates the scheme described.

Training using minibatches: The method de-
scribed is also suitable for stochastic optimization. For
this, the data are split in minibatches Mk of size
s � n, with n the total number of instances. For

each minibatch Mk, each φ̃j with j ∈ Mk is refined,
and q is updated afterwards. Next, the model hyper-
parameters are updated via gradient ascent using a
stochastic approximation of (4). Namely,

∂Zq
∂ξj
≈
(
ηT − ηT

prior

) ∂θprior
∂ξj

+ C
∑

l∈Mk

∂ logZl
∂ξj

, (6)

where C = n/|Mk|. After the update, q is re-
constructed. With this training scheme we update
the model hyper-parameters more frequently, and the
training cost scales like O(m3). The memory resources
scale, however, like O(nm), since we store m + 1 pa-
rameters per each approximate factor φ̃i.

3 RELATED WORK

A related method for binary classification with GPs
uses scalable variational inference (SVI) (Hensman
et al., 2015). Since p(y|f) =

∫
p(y|f)p(f |f)df , we ob-

tain the bound log p(y|f) ≥ Ep(f |f)[log p(y|f)] by tak-
ing the logarithm and using Jensen’s inequality. Let
q(f) be a Gaussian approximation of p(f |y). Then,

log p(y) = log

∫
q(f)p(y|f)p(f |X)/q(f)df

≥ Eq(f)[log p(y|f)]−KL[q(f)||p(f |X)] , (7)

by Jensen’s inequality, with KL[·||·] the Kullback
Leibler divergence. Using the first bound in (7) gives

log p(y) ≥ Eq(f)[Ep(f |f)[log p(y|f)]]−KL[q(f)||p(f |X)]

≥ Eq(f)[log p(y|f)]−KL[q(f)||p(f |X)]

≥∑n
i=1 Eq(fi)[log p(yi|fi)]−

KL[q(f)||p(f |X)] , (8)

where q(f) =
∫
p(f |f)q(f)df and q(fi) is the i-th

marginal of q(f). Let q(f) = N (u|m,S), with m
and S variational parameters. Because p(f |f) =
N (f |Af , Kff − AKT

f f
), where A = Kf fK

−1
f f

, and
Kf f is a matrix with the covariances between pairs
of observed inputs and inducing points, q(f) =
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N (f |Am, Kff + A(S − Kf f )AT). S is encoded in
practice as LLT and the lower bound (8) is maxi-
mized with respect to m, L, the inducing points X and
any hyper-parameter using either batch, stochastic or
distributed optimization techniques. In the stochastic
case, small minibatches are considered and the gradi-
ent of

∑n
i=1 Eq(fi)[log p(yi|fi)] in (8) is subsampled and

scaled accordingly. In the distributed case, the gradi-
ent of the sum is computed in parallel. The computa-
tional cost of this method is O(nm2), when trained in
a batch setting, and O(m3), when using minibatches
and stochastic gradients. A practical disadvantage is,
however, that Eq(fi)[log p(yi|fi)] has no analytic solu-
tion. These expectations and their gradients must be
approximated using one-dimensional quadratures. By
contrast, in the approach described in Section 2.2 all
the required computations have a closed form solution.

Another related method is the generalized FITC ap-
proximation (GFITC) of Naish-Guzman and Holden
(2008), in which the values f associated to the induc-
ing points are marginalized, as indicated in Section
2.1. This generates the FITC prior pFITC(f |X) which
leads to a computational cost that is O(nm2). Expec-
tation propagation (EP) is also used in such a model
to approximate p(f |y,X). In particular, EP replaces
with a Gaussian factor each likelihood factor of the
form p(yi|fi) = Φ(yifi). A limitation is, however, that
the estimate of the marginal likelihood p(y|X) pro-
vided by EP in this model does not contain a sum
over the data instances. Thus, GFITC does not al-
low for stochastic nor distributed optimization of the
model hyper-parameters. This is not the case of the
estimate described in (3) for the proposed approach.

A similar model to the one described in Section 2.2
has been proposed by Qi et al. (2010). These authors
also use EP for approximate inference. However, the
moments of the process are matched at f , instead of at
f . This leads to equivalent, but more complicated EP
updates. Furthermore, the inducing points X (which
are considered to be noisy) are not learned from the
observed data, but kept fixed. This is a serious lim-
itation since finding good locations for the inducing
points is strictly required to get good prediction re-
sults. The main advantage with respect to GFITC is
that training can be done in an online fashion. This is
also the case of the approach proposed in Section 2.2.

Other methods have been proposed in the literature
(Henao and Winther, 2012), but they do not allow for
stochastic optimization of the hyper-parameters.

4 EXPERIMENTS

We compare the proposed method for Gaussian pro-
cess classification based on a scalable EP algorithm

(SEP) with (i) the generalized FITC approximation
(GFITC) of Naish-Guzman and Holden (2008) and
(ii) the scalable variational inference (SVI) method of
Hensman et al. (2015). SEP and GFITC use fast paral-
lel EP updates that require only matrix multiplications
and avoid loops over the data. All methods are imple-
mented in R. The code is found in the supplementary
material. Finally, to guarantee a fair comparison, all
hyper-parameters (including the inducing points) are
set to the same initial values in each method.

4.1 Datasets from the UCI Repository

A first set of experiments evaluates the predictive per-
formance of SEP, GFITC and SVI on 7 datasets ex-
tracted from the UCI repository (A. Asuncion, 2007).
We use 90% of the data for training and 10% for test-
ing and report averages over 20 repetitions of the ex-
periments. All methods are trained using batch algo-
rithms for 250 iterations. Both GFITC and SVI use
L-BFGS-B. In SEP we use gradient ascent with an
adaptive learning rate (see the supplementary mate-
rial). We report for each method the average negative
test log-likelihood. A squared exponential covariance
function with automatic relevance determination, an
amplitude parameter and an additive noise parameter
is employed. The initial inducing points are chosen
at random from the training data. All other hyper-
parameters are initialized to the same values. A dif-
ferent number of inducing points m are considered.
Namely, 15%, 25% and 50% of the total number of
instances. The results of these experiments are dis-
played in Table 1. The best method is shown in bold
face. The proposed approach, i.e., SEP, obtains sim-
ilar results to GFITC and SVI and sometimes is the
best method. Table 1 also reports the average training
time in seconds. The fastest method is SEP followed
by SVI. GFITC is the slowest method since it runs EP
until convergence to evaluate then the gradient of the
approximate marginal likelihood. By contrast, SEP
updates at the same time the approximate factors and
the model hyper-parameters, which is more efficient.

4.2 Analysis of Inducing Point Learning

Using the setting of the previous section, we focus
on the two dimensional Banana dataset and analyze
the location of the inducing points inferred by each
method. We initialize the inducing points at random
from the training set and progressively increase their
number m from 4 to 256. Figure 2 shows the results
obtained. For small values of m, i.e., m = 4 or m = 8,
SEP and SVI provide very similar locations for the
inducing points. The estimates provided by GFITC
for m = 4 are different as a consequence of arriving
to a sub-optimal local maximum of the estimate of
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Table 1: Average negative test log likelihood for each method and average training time in seconds.
m = 15% m = 25% m = 50%

Problem GFITC SEP SVI GFITC SEP SVI GFITC SEP SVI
Australian .68 ± .06 .69 ± .07 .63 ± .05 .68 ± .08 .67 ± .07 .63 ± .05 .67 ± .09 .64 ± .05 .63 ± .05
Breast .10 ± .05 .11 ± .05 .10 ± .05 .11 ± .06 .11 ± .05 .10 ± .05 .11 ± .05 .11 ± .05 .10 ± .05
Crabs .07 ± .07 .06 ± .06 .07 ± .06 .06 ± .07 .06 ± .06 .07 ± .07 .06 ± .07 .06 ± .06 .09 ± .06
Heart .43 ± .12 .40 ± .13 .39 ± .11 .42 ± .12 .41 ± .12 .40 ± .11 .42 ± .13 .41 ± .11 .40 ± .10
Ionosphere .30 ± .22 .26 ± .19 .26 ± .14 .29 ± .23 .27 ± .20 .27 ± .18 .30 ± .24 .27 ± .19 .26 ± .16
Pima .54 ± .08 .52 ± .07 .49 ± .05 .53 ± .07 .51 ± .06 .50 ± .05 .53 ± .07 .50 ± .05 .49 ± .05
Sonar .35 ± .13 .33 ± .10 .40 ± .17 .35 ± .12 .32 ± .10 .40 ± .19 .35 ± .13 .29 ± .09 .35 ± .16
Avg. Time 59 ± 4 17 ± 1 40 ± 2 133 ± 6 37 ± 2 65 ± 3 494 ± 29 130 ± 5 195 ± 10

m = 4 m = 8 m = 16 m = 32 m = 64 m = 128 m = 256

G
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Figure 2: Effect of increasing the inducing points for SEP, SVI and GFITC. Each column shows a different number of

inducing points from m = 4 to m = 256. Blue and red points represent training data from the banana dataset. Inducing

points are black dots and decision boundaries are black lines. Best seen in color.

the marginal likelihood. If the initial inducing points
are chosen differently, GFITC gives the same solution
as SEP and SVI. We also observe that SEP and SVI
quickly provide (i.e., for m = 16) estimates of the deci-
sion boundaries that look similar to the ones obtained
with larger values of m (i.e., m = 256). These results
confirm that SEP is able to find good locations for
the inducing points. Finally, we note that SVI seems
to prefer placing the inducing points near the decision
boundaries. This is not the case of GFITC nor SEP.

4.3 Performance as a Function of Time

We profile each method to show the prediction perfor-
mance on the Image dataset a function of the training
time, for different numbers of inducing points m, i.e.,
4, 50 and 200. Training is done as in Section 4.1.
We report averages over 100 realizations of the experi-
ments. The results are displayed in Figure 3 (left). We
observe that the proposed method SEP provides the
best performance at the lowest computational time. It
is faster than GFITC because in SEP we update the
posterior approximation q and the hyper-parameters
at the same time. By contrast, GFITC waits until EP
has converged to update the hyper-parameters. SVI

also takes more time than SEP to obtain a similar
level of performance. This method requires a few extra
matrix multiplications with cost O(nm2) to evaluate
the gradient of the hyper-parameters. Furthermore,
the initial performance of SVI is significantly worse
than the one of GFITC and SEP, for each value of m.
More precisely, after one iteration, both GFITC and
SEP have updated each approximate factor, leading
to a good estimate of q, the posterior approximation,
which is then used for hyper-parameter estimation. By
contrast, SVI updates q using gradient ascent which
requires several iterations to get a good estimate of
this distribution. Thus, at the beginning, SVI is most
probably updating the model hyper-parameters when
q is still a very bad approximation of the posterior.

4.4 Training in a Distributed Fashion

We illustrate the utility of SEP and SVI to carry out
distributed training1. We consider the MNIST dataset
and use 60, 000 instances for training and 10, 000 in-
stances for testing. The number of inducing points m
is set equal to 200 in both SEP and SVI. The task is

1GFITC does not allow for this type of training.
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Figure 3: (left) Prediction performance of each method on the Image dataset as a function of the training time measured

in seconds (in a log10 scale). Different numbers of inducing points are considered, i.e., m = 4, 50, 200. Best seen in

color. (right) Average training time in seconds for SEP and SVI on the MNIST dataset as a function of the number of

computational nodes employed in the process of distributed training. Best seen in color.

to discriminate odd from even digits, which is a highly
non-linear problem. We distribute the data across an
increasing number of nodes from 1 to 12 using a ma-
chine with 12 CPUs. The process of distributed train-
ing is simulated via the R package doMC, which al-
lows to execute for loops in parallel with a few lines
of code. In SVI we parallelize the computation of the
terms (corresponding either to both the lower bound
or the gradient) that depend on the training instances.
In SEP we parallelize the updates of the approximate
factors and the computation of the estimate of the gra-
dient of hyper-parameters. Figure 3 (right) shows the
training time in seconds of each method as a func-
tion of the number of nodes (CPUs) considered. We
observe that using more than 1 nodes significantly re-
duces the training time of SEP and SVI, until 6 nodes
are reached. After this, no improvements are observed,
probably because process synchronization becomes a
bottle-neck. The test error and the avg. neg. test
log likelihood of SVI is 2.2% and 0.0655, respectively,
while for SEP they are 2.7% and 0.0694. These values
are the same independently of the number of nodes
considered. The R code to reproduce these experi-
ments is found in the supplementary material.

4.5 Training using Stochastic Gradients

We evaluate the performance of SEP and SVI on the
MNIST dataset when the training process is imple-
mented using minibatches of 200 instances. Each mini-
batch is used to update the posterior approximation
q and to compute a stochastic approximation of the
gradient of the hyper-parameters. Note that GFITC
does not allow for this type of stochastic optimization.
The learning rate employed for updating the hyper-
parameters is computed using the Adadelta method
in both SEP and SVI with ρ = 0.9 and ε = 10−5

(Zeiler, 2012). The number of inducing points is set

equal to the minibatch size, i.e., 200. We report the
performance on the test set (prediction error and av-
erage negative test log likelihood) as a function of the
training time. We compare the results of these meth-
ods (stochastic) with the variants of SEP and SVI that
use all data instances for the estimation of the gradient
(batch). Figure 4 (top) shows the results obtained. We
observe that stochastic methods (either SEP or SVI)
obtain good results even before batch methods have
completed a single hyper-parameter update. Further-
more, the performance of the stochastic variants of
SEP and SVI in terms of the test error or the avg.
neg. log likelihood is very similar. These are 1.8% and
0.0528 for SEP, and 2.0% and 0.0654 for SVI, respec-
tively. They are better than the results reported by
Hensman et al. (2015). The R code to reproduce these
experiments is found in the supplementary material.

Our last experiments consider information about all
commercial flights in the USA from January 2008 to
April 2008. The task is the same as in (Hensman et al.,
2015). Namely, to predict whether a flight was de-
layed or not based on 8 attributes: age of the aircraft,
distance that needs to be covered, airtime, departure
time, arrival time, day of the week, day of the month
and month. After removing instances with missing val-
ues 2, 127, 068 instances remain. From these, 10, 000
are used for testing and the rest are used for training
the stochastic variants of SVI and SEP (batch meth-
ods are infeasible in this dataset). We use a minibatch
of size 200 and set m = 200 and compare results with
a logistic regression classifier. The results obtained
are displayed in Figure 4 (bottom). We observe that
both SEP and SVI outperform the linear model, which
shows that the problem is non-linear. Eventually SEP
and SVI provide similar performance results, probably
because in this large dataset the posterior distribution
is very close to be Gaussian. However, SEP improves
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Figure 4: (top) Average test error and and average negative test log likelihood for SEP and SVI as a function of training

time on the MNIST dataset. Stochastic variants use a minibatch size equal to 200 to approximate the gradients. Batch

variants use all data instances for the evaluation of the gradient. (bottom) Results for the Airline delays dataset where

batch methods are not feasible. The performance of a linear logistic regression classifier is also shown. Best seen in color.

results more quickly. This supports that, at the begin-
ning, the EP updates of SEP are more effective for esti-
mating q than the gradient updates of SVI. We believe
that SVI is most likely updating the hyper-parameters
using a poor estimate of q, at the beginning.

5 CONCLUSIONS

We have shown that expectation propagation (EP)
can be used for Gaussian process classification in large
scale problems. This scenario was previously consid-
ered infeasible for this approximate inference method.
The scalable variant of EP proposed in this paper
(SEP) allows for (i) training in a distributed fashion
in which the data are sent to different computational
nodes and (ii) for updating the posterior approxima-
tion and the model hyper-parameters at the same time
using minibatches and a stochastic approximation of
the gradient of the estimate of the marginal likelihood.

The proposed method, SEP, has been compared with
other approaches from the literature such as the gen-
eralized FITC approximation (GFITC) and a scalable
variational inference (SVI) method. The results ob-
tained show that SEP outperforms GFITC in large
datasets in which that method is infeasible. Further-
more, SEP is competitive with SVI in large datasets
and provides similar and sometimes even better per-
formance at an equivalent computational cost. If small
minibatches are used for training, the cost of SEP is
O(m3), where m is the number of inducing points.

A disadvantage of SEP is that the memory require-
ments are O(nm), where n is the number of instances.
Nevertheless, we believe this cost may be reduced to
O(m2) by using the approach of Li et al. (2015), in
which the likelihood of the model is approximated us-
ing a single Gaussian factor. In our experiments SEP
seems to provide better results than SVI at the early
iterations. An explanation for this is a better estima-
tion of the posterior approximation q when using the
EP updates, which are free of any learning rate, than
when using the gradient steps employed by SVI.

Finally, the proposed EP algorithm is not restricted to
Gaussian process classification. It may be used for effi-
cient approximate inference in other models. The good
results obtained also show that EP algorithms should
always be implemented as we suggest. That is, q and
all the model hyper-parameters should be updated at
the same time. Currently, all major Gaussian pro-
cess toolboxes do not follow this approach (they run
EP until convergence after each single update of the
hyper-parameters), and they could benefit from it.
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